JPS61126485A - Error measuring instrument - Google Patents

Error measuring instrument

Info

Publication number
JPS61126485A
JPS61126485A JP24734684A JP24734684A JPS61126485A JP S61126485 A JPS61126485 A JP S61126485A JP 24734684 A JP24734684 A JP 24734684A JP 24734684 A JP24734684 A JP 24734684A JP S61126485 A JPS61126485 A JP S61126485A
Authority
JP
Japan
Prior art keywords
error
standard
measuring instrument
instrument
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24734684A
Other languages
Japanese (ja)
Inventor
Teruo Suzuki
照夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24734684A priority Critical patent/JPS61126485A/en
Publication of JPS61126485A publication Critical patent/JPS61126485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To measure a high-precision metering error in an actual load test by calculating the metering error of a metering instrument to be tested on the basis of the metering error of a standard instrument corresponding to an input signal and the metering error of the object instrument from the standard instrument. CONSTITUTION:A metering pulse signal P and a standard metered value signal M inputted to an input/output part 11 are stored in a memory 14 temporarily under the command of a CPU12. Further, outputs of the transformer circuit and current transformer circuit of the standard instrument 20 are converted by an A/D converting circuit 30 into digital signals, which are counted by a counting circuit; and the counted value is stored in the memory 14 to calculate the mean values of a load voltage and a load current during an error measurement. Then, the CPU12 performs arithmetic on the basis of the metering pulse signal P and standard metered value pulse signal M to calculate the error epsilon1 of the object instrument 3 from the standard instrument 20. Then, errors epsilon2 and epsilon3 of the standard instrument 20 are calculated from the mean values of the load voltage and load current and added to find the real error of the object instrument 3.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電力量計、無効電力量計等の計量器の計量精
度を検査する誤差測定装置忙関し、特に標準となる信号
の誤差を加えた誤差測定装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an error measuring device for inspecting the measurement accuracy of a measuring instrument such as a watt-hour meter or a reactive watt-hour meter. This invention relates to an error measuring device.

〔発明の技轡的背景とその問題点〕[Technical background of the invention and its problems]

現在、各電力需要家と電力会社との間の電気料金取引の
、ために、各電力需要家には電力量計や無効電力量計等
の取引用計器が設置されている。これら取引用計器は使
用電力量を計量して電気料金を決めるデータを提供して
いる。したがって、これら取引用計器の計量誤差が許容
誤差範囲内に今るかどうかは電気料金取引上重要な問題
である。こ、のため、定期的に取引用計器の計量誤差が
測定され、許容誤差範囲内の計量、誤差をもつ取引用計
器が使用されるよう管理されている。  。
Currently, each electricity consumer is equipped with transaction instruments such as a watt-hour meter and a reactive watt-hour meter in order to conduct electricity rate transactions between each electricity consumer and an electric power company. These transaction meters measure the amount of electricity used and provide the data that determines electricity rates. Therefore, whether or not the measurement errors of these transaction meters are within the permissible error range is an important issue in electricity rate transactions. For this reason, the measurement errors of transaction instruments are periodically measured, and management is carried out to ensure that transaction instruments with measurements and errors within the permissible error range are used. .

ところで、取引用計器の誤差測定は次のように行なわれ
ている。電力量計(無効電力量計も同様)の誤差測定に
ついて説明すると、先ず電力需要家忙設置されている電
力量計(被試験計量器)が取外される。そして、この電
力量計は、予め誤差の判明している計量試験用電力量計
(以下、標準器と称す)とともに虚負荷試験装置に接続
される。この虚負荷試験装置は所望の電圧値、電流値お
よび電圧−電流間の位相を出力するもので、この装置に
より同一の電圧値、電流値、位相等をもった電力を電力
量計および標準器に供給する。そうして、得られた電力
量計および標準器の各計量値の差により電力量計の計量
誤差が求められる。
By the way, the error measurement of transaction instruments is carried out as follows. To explain the error measurement of a watt-hour meter (the same applies to a reactive watt-hour meter), first, the watt-hour meter (measuring device under test) installed at the power consumer is removed. Then, this watt-hour meter is connected to an imaginary load test device together with a watt-hour meter for a measurement test (hereinafter referred to as a standard device) whose error is known in advance. This imaginary load test device outputs the desired voltage value, current value, and phase between voltage and current. supply to. Then, the measurement error of the watt-hour meter is calculated from the difference between the obtained measured values of the watt-hour meter and the standard device.

しかし、以上のような測定方法では、電力量計を設置場
所から一旦取外さなければならず、さらに取外した電力
量計と標準器とを虚負荷試験装置に接続して誤差測定す
ることになる。このため誤差測定にかかる時間が非常に
長くなり、誤差測定作業の能率が低下し、そのうえ他の
業務の能率にも影響を与えてしまう。
However, with the above measurement method, the watt-hour meter must be removed from the installation location, and the removed watt-hour meter and standard must be connected to an imaginary load test device to measure the error. . For this reason, the time required for error measurement becomes extremely long, which reduces the efficiency of error measurement work and further affects the efficiency of other tasks.

このような問題を解決するために電力量計を取外さない
方法つまり実負荷(実負荷試験)による電力量計の計量
誤差が行なわれている。この実負荷試験は、電力量計に
負荷電圧および負荷電流が供給されている状態に標準器
を電力量計の計量入力端に接続して誤差測定する方法で
ある。
In order to solve this problem, a method is used in which the watt-hour meter is not removed, that is, an actual load (actual load test) is used to measure the measurement error of the watt-hour meter. This actual load test is a method of measuring errors by connecting a standard to the measurement input terminal of the watt-hour meter while the load voltage and load current are being supplied to the watt-hour meter.

しかしながら実負荷試験では標準器の誤差が問題になる
。すなわち、標準器の誤差が判明しているといっても、
この誤差は、特定の入力条件例えば定格電圧、定格周波
数において入力電流(負荷電流)が定格値あるいは定格
値の2分の1.定格値の5分の1、定格値の10分の1
・・・の各位におけるものである。したがって、実負荷
試験において標準器に供給される入力条件が上記の特定
入力条件に一致することは皆無に等しい。このため、標
準器に対する電力量計の計量誤差は測定できるが、標準
器の誤差を加えた電力量計の真の計量誤差は得られなか
った。
However, in actual load tests, the error of the standard becomes a problem. In other words, even if the error of the standard device is known,
This error occurs when the input current (load current) is the rated value or 1/2 of the rated value under specific input conditions, such as rated voltage and rated frequency. 1/5 of rated value, 1/10 of rated value
This is for each person... Therefore, in an actual load test, the input conditions supplied to the standard device almost never match the above-mentioned specific input conditions. Therefore, although it was possible to measure the measurement error of the watt-hour meter with respect to the standard, it was not possible to obtain the true measurement error of the watt-hour meter including the error of the standard.

なお、誤差が零となる標準器を実現すればよいと考えら
れるが、たとえ誤差が零となる標準器を実現し得たとし
ても、その標準器は非常に高価なものとなり、また設置
条件、温度等の周囲環境の影響を受けないように取扱い
が非常に困難なものになると考えられる。
It would be possible to create a standard device with zero error, but even if it were possible to create a standard device with zero error, the standard device would be very expensive, and the installation conditions and It is thought that it will be very difficult to handle it so that it is not affected by the surrounding environment such as temperature.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に基づいてなさ糺たもので、その目的
とするところは、実負荷試験において標準器の誤差を加
えてより精度の高い被試験計量器の計量誤差の測定がで
きる誤差測定装置を提供することにある。
The present invention was developed based on the above-mentioned circumstances, and its purpose is to provide an error measuring device capable of measuring the measuring error of a measuring instrument under test with higher accuracy by adding the error of a standard instrument in an actual load test. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、被試験計1・器の計量値を示す計量信号と、
前記被試験計量器の入力信号と同一の信号を受ける標準
計量器の標準計量値信゛号とにより前記被試験計量器の
計量誤差を求めるものにあって、予め測定された標準計
量器の”計量誤差全メモリに記憶し、この記憶された計
量誤差から前記入力信号に応じた計量誤差を取出し、こ
の計量誤差と前記被試験計量器の前記標準計量器に対す
る計量誤差とに基づいて誤差演算手段により前記被試験
計量器の真の計量誤差を求める誤差測定装置である。
The present invention provides a measurement signal indicating the measurement value of the meter under test 1,
The measurement error of the measuring instrument under test is determined by the input signal of the measuring instrument under test and the standard measurement value signal of the standard measuring instrument receiving the same signal, and Error calculation means stores a measurement error in a total memory, extracts a measurement error corresponding to the input signal from the stored measurement error, and calculates the measurement error based on this measurement error and the measurement error of the measuring instrument under test relative to the standard measuring instrument. This is an error measurement device that determines the true measurement error of the measuring instrument under test.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る誤差測定装置の一実施例について第
1図ないし第3図を参照して説明する。第3図は本発明
の誤差測定装置の構成図である。電力会社つまり発変電
所からの給電線は各電力需要家に引き込まれて各電力需
要家の受電端1に接続され、この受電端1から各負荷2
に電力が供給されるように構成されている。そこで、電
力量計、無効電力量計等の取引用計量器つまり被試験計
量器3が、受電端1から計器用変成器(P、T) %計
器用変流器(C,T) 4を介して接続され、受電端1
に近接した位置に設置されている。ところで被試験計量
器3には、計量値に比例した計量ノ9ルス信号Pを出力
する手段が設けられている。例えばこの手段は、電力量
計が誘導型であれば1回転円板の回転数をホトセンサに
よ)検出して計量・9ルス信号を作成している。また発
信装置付電力量計であれば、この発信装置から出力され
る計量値に比例した・母ルス信号を計量/fルス信号と
して用いる。そうして、この針量−やルス信号Pは波形
整形回路5を通りて計算機10の入出力部」1に送られ
る6一 ように々っている。
An embodiment of the error measuring device according to the present invention will be described below with reference to FIGS. 1 to 3. FIG. 3 is a block diagram of the error measuring device of the present invention. The power supply line from the power company, that is, the power generation substation, is drawn into each power consumer and connected to the power receiving end 1 of each power consumer, and from this power receiving end 1, each load 2 is connected to the power receiving end 1 of each power consumer.
It is configured so that power is supplied to the Therefore, a transaction measuring instrument such as a watthour meter or a reactive watthour meter, that is, the measuring instrument under test 3, connects the instrument transformer (P, T) % instrument current transformer (C, T) 4 from the power receiving end 1. connected through the power receiving end 1
is located close to. By the way, the measuring instrument 3 under test is provided with means for outputting a measuring pulse signal P proportional to the measured value. For example, if the watt-hour meter is an inductive type, the number of revolutions of a one-rotation disk is detected (by a photo sensor) to generate a measurement/9 pulse signal. In addition, in the case of a watt-hour meter with a transmitting device, a base pulse signal proportional to the measured value outputted from the transmitting device is used as the metering/f pulse signal. Then, this needle amount - and pulse signal P pass through the waveform shaping circuit 5 and are sent to the input/output section 1 of the computer 10.

さて、20は標準計量器であって、この標準計量器20
は、被試験計量器3に加わる負荷電圧および消費電流と
同一の負荷電圧および負荷電流が供給され、被試験計量
器3に対する標準計量値信号Mを作成するものである。
Now, 20 is a standard measuring instrument, and this standard measuring instrument 20
is supplied with the same load voltage and load current as the load voltage and current consumption applied to the measuring instrument 3 under test, and creates a standard measurement value signal M for the measuring instrument 3 under test.

なお、この標準計量器20の計量誤差は既知であって、
入力する負荷電圧値に対する誤差および消費電流値に対
する誤差が判明している。そこで第2図は三相3線式に
適用した場合の標準計量器20の具体的な構成図である
。すなわち、標準計量器20は、第1相P1−第2相P
2間の電圧を内部処理可能な電圧値に変圧する第1の変
圧回路21、第3相P3−第2相P2間の電圧を内部処
理可能な電圧値に変圧する第2の変圧回路22、第1の
線電流JS−JLを内部処理可能な値に変流する第1の
変流回路23、第3の線電流3B−3Lf内部処理可能
な値に変流する第2の変流回路24、第1の変圧回路2
1および第1の変流回路23の出力信号により電力を求
め、この電力に比例した電圧信号を出力する第1の電力
−電圧変換回路25.第2の変圧回路22および第2の
変流回路24の出力信号により電力を求め、この電力に
比例した電圧信号を出力する第2の電力−電圧変換回路
26、これら第1および第2の電力−電圧変換回路25
.26の電圧信号を加算する加算回路27およびこの加
算回路27から出力される加算電圧信号を電圧値に比例
した周波数信号に変換する電圧−周波数変換回路28か
ら構成されている。そうして、この電圧−周波数変換回
路28から出力される標準計量値信号Mとしての周波数
信号が入出力部11に送られるようになっている。
Note that the measurement error of this standard measuring instrument 20 is known,
The error with respect to the input load voltage value and the error with respect to the current consumption value are known. Therefore, FIG. 2 is a specific configuration diagram of the standard measuring instrument 20 when applied to a three-phase three-wire system. That is, the standard measuring instrument 20 has the first phase P1-second phase P
A first transformation circuit 21 that transforms the voltage between the two phases to a voltage value that can be internally processed; a second transformation circuit 22 that transforms the voltage between the third phase P3 and the second phase P2 to a voltage value that can be internally processed; A first current transformation circuit 23 that transforms the first line current JS-JL to a value that can be internally processed, and a second current transformation circuit 24 that transforms the third line current 3B-3Lf to a value that can be internally processed. , first transformer circuit 2
1 and a first power-voltage conversion circuit 25 which obtains electric power from the output signal of the first current transformation circuit 23 and outputs a voltage signal proportional to this electric power. A second power-voltage conversion circuit 26 that calculates power from the output signals of the second transformer circuit 22 and the second current transformer circuit 24 and outputs a voltage signal proportional to this power; -Voltage conversion circuit 25
.. The adder circuit 27 includes an adder circuit 27 that adds up 26 voltage signals, and a voltage-frequency converter circuit 28 that converts the added voltage signal outputted from the adder circuit 27 into a frequency signal proportional to the voltage value. Then, the frequency signal as the standard measurement value signal M output from this voltage-frequency conversion circuit 28 is sent to the input/output section 11.

また、第1および第2の変圧回路21.22の各出力信
号と第1および第2の変流回路23゜24の各出力信号
とがA/D変換回路30を介して計数回路31に送られ
るようになっており、この計数回路31の計数値が計算
機10に読み取られるようになっている。
Further, each output signal of the first and second transformer circuits 21 and 22 and each output signal of the first and second current transformer circuits 23 and 24 are sent to the counting circuit 31 via the A/D conversion circuit 30. The count value of this counting circuit 31 is read by the computer 10.

計算機10は、計量パルス信号Pと標準計量値信号Mと
に基づいて標準計量部20に対する被試験計量器3の誤
差ε1を、 なる式(tは所定期間における計量)9ルス信号Pのパ
ルス数、Tは所定期間における標準計量値信号Mのパル
ス数である。またAは、計量パルス信号Pに対する標準
計量値信号Mの発信定数比定数である。)により演算し
求める第1の誤差演算機能と、この第1の誤差演算機能
によシ求められた誤差εノと標準計量器20自身の負荷
電圧に応じた誤差ε2および負荷電流に応じた誤差ε3
とにより被試験計量器3の真の誤差εθを、 aO=ε1+ε2+ε3      ・・・(2)なる
式によシ演算し求める第2の誤差演算機能とをもってい
る。具体的な構成は、中央演算処理装置(CPV) J
 2にバス13ft介して入出力部11およびメモリ1
4が接続されている。そこでメモリ14には、標準計量
器20自身の負荷電圧に対する誤差および負荷電流に対
する誤差のデータが格納されている。負荷電流に対する
誤差は、例えば第3図に示すような情報が格納されてい
る。つまり、負荷電流IAのとき−0,5%の誤差〔第
3図Qi生じ、消費電流2.5Aのとき0%の誤差〔第
3図R〕となっている。
The calculator 10 calculates the error ε1 of the measuring instrument under test 3 with respect to the standard measuring section 20 based on the measuring pulse signal P and the standard measuring value signal M using the following formula (t is the measurement in a predetermined period) 9 The number of pulses of the pulse signal P , T is the number of pulses of the standard measurement value signal M in a predetermined period. Further, A is a transmission constant ratio constant of the standard measurement value signal M to the measurement pulse signal P. ), the error ε calculated by this first error calculation function, the error ε2 according to the load voltage of the standard measuring instrument 20 itself, and the error according to the load current. ε3
It has a second error calculation function that calculates the true error εθ of the measuring instrument 3 under test using the formula aO=ε1+ε2+ε3 (2). The specific configuration is the central processing unit (CPV) J
2 to input/output section 11 and memory 1 via bus 13ft.
4 are connected. Therefore, the memory 14 stores data on the error with respect to the load voltage and the error with respect to the load current of the standard measuring instrument 20 itself. Regarding the error with respect to the load current, information as shown in FIG. 3, for example, is stored. In other words, when the load current is IA, there is an error of -0.5% (Qi in FIG. 3), and when the consumption current is 2.5 A, there is an error of 0% (R in FIG. 3).

なお、入出力部11には、標準計量器2oの誤差設定お
よび誤差測定の開始指令等を行なう操作部15.誤差測
定結果等を表示する表示部16が接続されている。
The input/output section 11 includes an operation section 15. which performs error setting of the standard measuring instrument 2o, command to start error measurement, etc. A display section 16 that displays error measurement results and the like is connected.

次に上記の如く構成された装置の動作について説明する
。被試験計量器3に負荷電圧および消費電流が供給され
ると、被試験計量器3は供給された電力の計量動作を行
ない自身の回転円板が回転する。この回転円板の回転数
はホトセンサにより検出され、計量ノfルス信号Pとし
て波形整形回路5t−介して計算機10の入出力部11
に送られる。
Next, the operation of the apparatus configured as described above will be explained. When the load voltage and current consumption are supplied to the measuring instrument 3 under test, the measuring instrument 3 under test performs a measuring operation of the supplied electric power, and its own rotating disk rotates. The number of rotations of this rotating disk is detected by a photo sensor, and is sent to the input/output section 11 of the computer 10 via the waveform shaping circuit 5t as a measurement nolus signal P.
sent to.

一方、標準計量器20にも被試験計量器3に供給された
負荷電圧および負荷電流と同一の負荷電圧および負荷電
流が供給される。これにより標準計量器20では、負荷
電圧が第1および第2の変圧回路21.22により変圧
され、また負荷電流が第1および第2の変流器によシ変
流されてそれぞれ第1および第2の電力−電圧変換回路
25.26に送られる。これら第1および第2の電力−
電圧変換回路25.26は、負荷電圧、負荷電流から電
力を求め、この電力に比例した電圧信号をそれぞれ出力
する。そうして、これら電圧信号は加算回路27により
加算されて電圧−周波数変換回路28に送られ、この電
圧−周波数変換回路28は入力した加算電圧信号に比例
した周波数信号Mを入出力部1ノに送出する。
On the other hand, the same load voltage and load current as the load voltage and load current supplied to the measuring instrument 3 under test are also supplied to the standard measuring instrument 20. As a result, in the standard meter 20, the load voltage is transformed by the first and second transformer circuits 21, 22, and the load current is transformed by the first and second current transformers, respectively. It is sent to the second power-voltage conversion circuit 25,26. These first and second powers -
The voltage conversion circuits 25 and 26 determine power from the load voltage and load current, and output voltage signals proportional to this power. Then, these voltage signals are added by an adder circuit 27 and sent to a voltage-frequency conversion circuit 28, which converts a frequency signal M proportional to the input added voltage signal to the input/output section 1. Send to.

また、標準計量器20の第1および第2の変圧回路21
.22、第1および第2の変流回路23.24の各出力
信号はA/D変換回路30によシディジタル信号に変換
されて計数回路31に送られ、この計数回路31により
計数される。
In addition, the first and second transformer circuits 21 of the standard measuring instrument 20
.. 22, each output signal of the first and second current transformation circuits 23 and 24 is converted into a digital signal by an A/D conversion circuit 30 and sent to a counting circuit 31, where it is counted.

ここで計算機10は次のような動作をして被試験計量器
3の誤差を求める。入出力部11において取込まれた計
量パルス信号P、標準計量値信号Mii、CPUJJの
指令によりバス13を通して一時メモリ14の所定エリ
アに格納される。
Here, the calculator 10 performs the following operations to obtain the error of the measuring instrument 3 under test. The measurement pulse signal P and the standard measurement value signal Mii taken in by the input/output section 11 are stored in a predetermined area of the temporary memory 14 via the bus 13 according to a command from the CPUJJ.

また、 CPU J 2は、指令を発して計数回路31
の計数値を一定期間毎に読み込んでメモリ14に格納し
、誤差測定中の負荷電圧の平均値および負荷電流の平均
値を演算し求める。
Further, the CPU J 2 issues a command to the counting circuit 31.
The count value is read every fixed period and stored in the memory 14, and the average value of the load voltage and the average value of the load current during error measurement are calculated and determined.

そこでCPU 12は計量ノ9ルス信号Pと標準計量値
信号Mとに基づいて第(1)式を演算し、標準計量器2
0に対する被試験計量器3の誤差e1を求める。次にC
PU J 2は、負荷電圧、負荷電流の各平均値から負
荷電圧、負荷電流に対する標準計量器20の誤差62.
83を求める。例えば負荷電流が1.75 Aであれば
第3図に示す誤差特性の9点およびR点を通る直線の傾
きから誤差a3=−0,25Nが求められる。そうして
、CPU J 、?は、これら誤差ε2,8Bと先に求
められた誤差εノとによジ第(2)式を演算して被試験
計量器3の真の誤差aOf求める。この誤差60は表示
部16に表示される。
Therefore, the CPU 12 calculates equation (1) based on the measurement signal P and the standard measurement value signal M, and calculates the standard measurement value signal P.
The error e1 of the measuring instrument 3 under test with respect to 0 is determined. Next, C
PU J 2 calculates the error 62. of the standard measuring instrument 20 from each average value of the load voltage and load current to the load voltage and load current.
Find 83. For example, if the load current is 1.75 A, the error a3=-0.25N can be determined from the slope of the straight line passing through the nine points of the error characteristic shown in FIG. 3 and the point R. Then, CPU J? calculates the true error aOf of the measuring instrument 3 under test by calculating equation (2) using these errors ε2, 8B and the previously determined error ε. This error 60 is displayed on the display section 16.

このように本発明の装置においては、被試験計量器3の
計量値を示す計量p4ルス信号Pと標準計量器20によ
り作成された標準計量値信号Mとに基づいて標準計量器
20に対する被試験計量器3の誤差ε1を求め、さらに
標準計量器20の負荷電圧、負荷電流に対する誤差ε2
゜ε3を誤差特性から求めてこれら誤差ε2゜e3fp
差61に加算して被試験計量器3の真の誤差60を求め
るようにしたので、標準計量器20に対する被試験計量
器30誤差ε1に標準計量器20の誤差ε2.@3t−
加えた被試験計量器3の真の誤差を求めることができる
。そのうえ、標準計量部20の誤差ε2.ε3は、メモ
リ14に格納された誤差特性によ多負荷電圧、負荷電流
がいかなる値であっても求めることができる。したがっ
て、よυ精度の高い被試験計1器3の計量誤差測定が実
負荷試験においてできる。
As described above, in the apparatus of the present invention, the test object for the standard measuring instrument 20 is determined based on the measurement p4 pulse signal P indicating the measured value of the measuring instrument 3 under test and the standard measuring value signal M created by the standard measuring instrument 20. Find the error ε1 of the measuring instrument 3, and further calculate the error ε2 for the load voltage and load current of the standard measuring instrument 20.
Determine ゜ε3 from the error characteristics and calculate these errors ε2゜e3fp
Since the true error 60 of the measuring instrument under test 3 is obtained by adding it to the difference 61, the error ε2 of the standard measuring instrument 20 is added to the error ε1 of the measuring instrument 3 under test with respect to the standard measuring instrument 20. @3t-
The added true error of the measuring instrument 3 under test can be determined. Moreover, the error ε2 of the standard measuring section 20. ε3 can be determined from the error characteristics stored in the memory 14 no matter what the load voltage or load current is. Therefore, the measurement error of the meter under test 3 can be measured with high accuracy in the actual load test.

力お、標準計量器20も長期間経過すれば狂いが生じる
ため、所定期間毎に標準計量器20の計量誤差測定を行
なって更新された誤差データをメモリ20に格納するよ
うにすれば、長期間にわたって安定した被試験計量器3
の誤差測定ができる。
Moreover, since the standard measuring instrument 20 also becomes distorted after a long period of time, it is possible to measure the weighing error of the standard measuring instrument 20 at predetermined intervals and store the updated error data in the memory 20. Measuring instrument under test 3 stable over a period of time
The error can be measured.

なお、本発明は上記一実施例に限定されるものではない
。上記一実施例では、標準計量部20の誤差要因として
負荷電圧、負荷電流に対する誤差を用いたが、この他に
印加周波数変化や電圧−電流量位相変化に係る誤差もあ
る。このような周波数変化および位相変化に対しては、
周波数、位相に対する誤差な予め記憶させておき実負荷
試験における誤差測定中の平均周波数、平均位相角を求
め、これら平均周波数、平均位相角に対する誤差を演算
し求めて誤差ε1に加えるようにすればよい。
Note that the present invention is not limited to the above embodiment. In the above-mentioned embodiment, errors related to the load voltage and load current are used as error factors in the standard measuring section 20, but there are also errors related to changes in the applied frequency and changes in the voltage-current amount phase. For such frequency and phase changes,
Errors for frequency and phase are memorized in advance, and the average frequency and average phase angle during error measurement in an actual load test are calculated, and the errors for these average frequencies and average phase angles are calculated and added to the error ε1. good.

また、標準計量器20の誤差は、供給された負荷電圧、
負荷電流等が特定の入力条件のいずれかに近いかを判別
し、近い方の誤差をもって決定してもよい。
Moreover, the error of the standard measuring instrument 20 is the supplied load voltage,
It may be determined whether the load current or the like is close to one of the specific input conditions, and the error of the closer one may be used for determination.

なお1本発明の装置は、実負荷試験に適用したものであ
るが、虚負荷試験にも適用できることはいうまでもない
Note that although the apparatus of the present invention is applied to an actual load test, it goes without saying that it can also be applied to an imaginary load test.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、実負荷試験においても標準計量器に対
する被試験計量器の誤差に、標準計量器の誤差を加えて
被試験計量器の誤差を求めるので、よシ精度の高い被試
験計量器の計量誤差の測定ができる誤差測定装置を提供
できる。
According to the present invention, since the error of the measuring instrument under test is determined by adding the error of the standard measuring instrument to the error of the measuring instrument under test with respect to the standard measuring instrument even in an actual load test, it is possible to obtain a measuring instrument under test with higher accuracy. It is possible to provide an error measuring device that can measure weighing errors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る誤差測定装置の一実施例を示す構
成図、第2図は第1図に示す装置における標準計量器の
具体的な構成図、第3図は第1図に示す装置における標
準計量器の誤差特性の一例を示す図である。 3・・・被試験計量器、5・・・波形整形回路、10・
・・計算機、Jl・・・入出力部、12・・・CPU、
J、9・・・パス、14・・・メモリ、15・・・操作
部、16・・・表示部、20・・・標準計量器、30・
・・A/D変換回路、31・・・計数回路。
FIG. 1 is a block diagram showing an embodiment of an error measuring device according to the present invention, FIG. 2 is a specific block diagram of a standard measuring instrument in the device shown in FIG. 1, and FIG. 3 is a block diagram shown in FIG. 1. FIG. 3 is a diagram showing an example of error characteristics of a standard measuring instrument in the device. 3... Measuring instrument under test, 5... Waveform shaping circuit, 10.
...Calculator, Jl...Input/output section, 12...CPU,
J, 9...Pass, 14...Memory, 15...Operation unit, 16...Display unit, 20...Standard measuring instrument, 30...
...A/D conversion circuit, 31...counting circuit.

Claims (1)

【特許請求の範囲】[Claims] 被試験計量器の計量値を示す計量信号と、前記被試験計
量器の入力信号と同一信号を受ける標準計量器から出力
される標準計量値信号とに基づいて前記被試験計量器の
計量誤差を求める誤差測定装置において、予め測定され
た前記標準計量器の計量誤差を記憶し、前記入力信号に
応じた前記標準計量器の計量誤差を出力するメモリと、
このメモリから出力された計量誤差と前記被試験計量器
の前記標準計量器に対する前記計量誤差とに基づいて前
記被試験計量器の計量誤差を求める誤差演算手段とを具
備したことを特徴とする誤差測定装置。
Calculate the measurement error of the measuring instrument under test based on a measurement signal indicating the measurement value of the measuring instrument under test and a standard measurement value signal output from a standard measuring instrument that receives the same signal as the input signal of the measuring instrument under test. In the error measuring device to be obtained, a memory that stores the measurement error of the standard measuring instrument measured in advance and outputs the measuring error of the standard measuring instrument according to the input signal;
Error calculating means for calculating the measurement error of the measuring instrument under test based on the measurement error output from the memory and the measurement error of the measuring instrument under test with respect to the standard measuring instrument. measuring device.
JP24734684A 1984-11-22 1984-11-22 Error measuring instrument Pending JPS61126485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24734684A JPS61126485A (en) 1984-11-22 1984-11-22 Error measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24734684A JPS61126485A (en) 1984-11-22 1984-11-22 Error measuring instrument

Publications (1)

Publication Number Publication Date
JPS61126485A true JPS61126485A (en) 1986-06-13

Family

ID=17162043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24734684A Pending JPS61126485A (en) 1984-11-22 1984-11-22 Error measuring instrument

Country Status (1)

Country Link
JP (1) JPS61126485A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199756B1 (en) 1997-06-04 2001-03-13 Sony Corporation Memory card, and receptacle for same
US6786417B1 (en) 1997-06-04 2004-09-07 Sony Corporation Memory card with write protection switch
WO2009099082A1 (en) * 2008-02-06 2009-08-13 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
CN102540135A (en) * 2012-01-18 2012-07-04 航天科工深圳(集团)有限公司 Separated site calibrator and using method thereof
CN103149546A (en) * 2012-11-30 2013-06-12 河南工业大学 Portable electric energy measuring terminal comprehensive calibration instrument on site
CN103513218A (en) * 2012-06-27 2014-01-15 苏州工业园区新宏博通讯科技有限公司 Calibration method for multi-path alternating-current ammeter
CN104062625A (en) * 2014-06-27 2014-09-24 国家电网公司 Digital electric energy metering device calibration equipment and method thereof
CN106501764A (en) * 2017-01-12 2017-03-15 国网江苏省电力公司电力科学研究院 The real-time contrastive test system and method for the online electric energy error of intelligent substation electric energy meter
CN111505735A (en) * 2020-04-22 2020-08-07 北京港震科技股份有限公司 Parameter measurement method, device and system of seismic observation instrument
CN111998917A (en) * 2019-05-27 2020-11-27 武汉国测数据技术有限公司 Mesh flow sensor system and use method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538178A (en) * 1976-07-12 1978-01-25 Takeda Riken Ind Co Ltd Digital type field strength measuring device
JPS59104576A (en) * 1982-12-08 1984-06-16 Osaki Denki Kogyo Kk Induction type watt-hour meter testing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538178A (en) * 1976-07-12 1978-01-25 Takeda Riken Ind Co Ltd Digital type field strength measuring device
JPS59104576A (en) * 1982-12-08 1984-06-16 Osaki Denki Kogyo Kk Induction type watt-hour meter testing device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199756B1 (en) 1997-06-04 2001-03-13 Sony Corporation Memory card, and receptacle for same
US6295206B1 (en) 1997-06-04 2001-09-25 Sony Corporation Memory card, and receptacle for same
US6361369B1 (en) 1997-06-04 2002-03-26 Sony Corporation Memory card, and receptacle for same
US6616053B2 (en) 1997-06-04 2003-09-09 Sony Corporation Memory card, and receptacle for same
US6729548B2 (en) 1997-06-04 2004-05-04 Sony Corporation Memory card, and receptacle for same
US6783076B2 (en) 1997-06-04 2004-08-31 Sony Corporation Memory card, and receptacle for same
US6786417B1 (en) 1997-06-04 2004-09-07 Sony Corporation Memory card with write protection switch
US7066394B2 (en) 1997-06-04 2006-06-27 Sony Corporation Memory card, and receptacle for same
AU2009211720B2 (en) * 2008-02-06 2012-08-23 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
WO2009099082A1 (en) * 2008-02-06 2009-08-13 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
US8476895B2 (en) 2008-02-06 2013-07-02 Mitsubishi Electric Corporation Power measuring system, measuring apparatus, load terminal, and device control system
CN102540135A (en) * 2012-01-18 2012-07-04 航天科工深圳(集团)有限公司 Separated site calibrator and using method thereof
CN103513218A (en) * 2012-06-27 2014-01-15 苏州工业园区新宏博通讯科技有限公司 Calibration method for multi-path alternating-current ammeter
CN103149546A (en) * 2012-11-30 2013-06-12 河南工业大学 Portable electric energy measuring terminal comprehensive calibration instrument on site
CN104062625A (en) * 2014-06-27 2014-09-24 国家电网公司 Digital electric energy metering device calibration equipment and method thereof
CN106501764A (en) * 2017-01-12 2017-03-15 国网江苏省电力公司电力科学研究院 The real-time contrastive test system and method for the online electric energy error of intelligent substation electric energy meter
CN106501764B (en) * 2017-01-12 2019-03-19 国网江苏省电力公司电力科学研究院 The real-time contrastive test method of the online electric energy error of intelligent substation electric energy meter
CN111998917A (en) * 2019-05-27 2020-11-27 武汉国测数据技术有限公司 Mesh flow sensor system and use method thereof
CN111998917B (en) * 2019-05-27 2023-11-28 深圳电蚂蚁数据技术有限公司 Mesh flow sensor system and application method thereof
CN111505735A (en) * 2020-04-22 2020-08-07 北京港震科技股份有限公司 Parameter measurement method, device and system of seismic observation instrument

Similar Documents

Publication Publication Date Title
US6185508B1 (en) Power meter for determining parameters of multi-phase power lines
US6173236B1 (en) Vector electricity meters and associated vector electricity metering methods
CN101183032A (en) Temperature simple calibrating method suitable for reflection-type polarization-preserving fiber temperature sensor
KR100537018B1 (en) System and Method for Frequency Compensation in an Energy Meter
CN111505563B (en) Comprehensive error testing method for electric energy meter
JPS61126485A (en) Error measuring instrument
US4937520A (en) Instrument to measure the errors of apparent power meters
Cataliotti et al. Metrological characterization and operating principle identification of static meters for reactive energy: An experimental approach under nonsinusoidal test conditions
Girgis et al. Testing the performance of three-phase induction watthour meters in the presence of harmonic distortion
CN103023497B (en) The digital signal of selsyn module and analog signal conversion accuracy method of testing
US10067167B2 (en) Method and apparatus for precision phasor measurements through a medium-voltage distribution transformer
Bucci et al. Development of a low cost power meter based on a digital signal controller
Chen et al. Power-component definitions and measurements for a harmonic-polluted power circuit
JPS6275278A (en) Decision device for instrument accuracy
JPH0652277B2 (en) Standard device with calculation function
JPS62501445A (en) Electrostatic device for measuring electrical energy usage in power supply networks
CN213023536U (en) Improve measurement accuracy's capacity tester calibrating device
So et al. A new current-comparator-based high-voltage low-power-factor wattmeter
JPH04240574A (en) Method for measuring fundamental wave power and higher harmonic power of strain wave power supply
Oldham et al. A power factor standard using digital waveform generation
Arseneau Calibration system for power quality instrumentation
US20140309954A1 (en) VA Metering in Delta-Wired Electrical Service
JP3766865B2 (en) Test power separation type standard power generator
Isaiev et al. Characterization of Three-Phase Calibrator for Traceable Measurement of Voltage Unbalance
SU958995A1 (en) Watt-meter checking method