JPS61120221A - Tracking device for maximum supply power of solar battery array - Google Patents

Tracking device for maximum supply power of solar battery array

Info

Publication number
JPS61120221A
JPS61120221A JP59241682A JP24168284A JPS61120221A JP S61120221 A JPS61120221 A JP S61120221A JP 59241682 A JP59241682 A JP 59241682A JP 24168284 A JP24168284 A JP 24168284A JP S61120221 A JPS61120221 A JP S61120221A
Authority
JP
Japan
Prior art keywords
change
power
voltage
output
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59241682A
Other languages
Japanese (ja)
Inventor
Yukio Murai
幸夫 村井
Yuji Shirao
白尾 祐司
Kazuhide Watanabe
和英 渡辺
Makoto Morikawa
森川 真
Yasubumi Fukao
保文 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Densan Ltd
Japan Storage Battery Co Ltd
Original Assignee
Ebara Corp
Ebara Densan Ltd
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Densan Ltd, Japan Storage Battery Co Ltd filed Critical Ebara Corp
Priority to JP59241682A priority Critical patent/JPS61120221A/en
Publication of JPS61120221A publication Critical patent/JPS61120221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PURPOSE:To stabilize the supply of maximum electric power to a load by controlling a power converting circuit after discriminating the coincidence or dissidence between the polarity code of secular change's share of the output electric power of a solar battery array, and the corresponding code of the output voltage. CONSTITUTION:A load 2 is connected to a solar battery array 1 via a power converting circuit 3. The voltage V and the current I of an output voltage detecting print Pv and an output current detecting part Pi of the array 2 are supplied to a power change detecting circuit 7 consisting of a multiplier 4, a sample holding circuit 5 and a divider 6. Then the control is carried out so that the maximum supply power is secured for the circuit 3 via a control circuit 8. Here a logical circuit 9 is connected to the divider 6 together with addition of a voltage change detecting circuit 10. A polarity code comparing/ deciding circuit 13 is formed with the circuit 9 and the circuit 8. Then the circuit 13 discriminates the polarity between the voltage and power change signals SV and SP, and the voltage increase/decrease signals are outputted with the coincidence/discordance comparison signal St.

Description

【発明の詳細な説明】 く技術分野〉 この発明は太陽電池アレイから負荷に供給される′電力
を最大にするように追跡制御可能な最大供給電力追跡装
置に関するものであり、特に、太陽電池アレイに対して
入射光量の変化等の外項変化が生じた場合にも、その外
項変化に追従して追跡制御可能とするための改良に係わ
るものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a maximum supply power tracking device that can perform tracking control to maximize the power supplied to a load from a solar cell array. This invention relates to an improvement that enables tracking control to follow the external term change even when an external term change such as a change in the amount of incident light occurs.

〈従来技術〉 太陽電池アレイは、太陽エネルギーを電気工ネルキーに
変換するものであるが、その出力電力は出力電圧や出力
電流に応じて変化するので、単に74、源と負荷の接続
上行なう回路構成では、電源〜負荷間のインピーダンス
不整合に起因する損失が大3過ぎて有効なエネルギー変
換を行なうことができない。
<Prior art> A solar cell array converts solar energy into electric energy, but since its output power changes depending on the output voltage and output current, it is simply In this configuration, the loss due to impedance mismatch between the power supply and the load is too large to perform effective energy conversion.

そのため、従来より、太陽電池アレイと負荷との間には
、出力電圧や出力電流の変化を被っても、太陽電池アレ
イの出力電力が、常に最大となるように作動する最大供
給電力追跡装置を挿入することが常であった。
Therefore, conventionally, a maximum supply power tracking device has been installed between the solar cell array and the load, which operates so that the output power of the solar cell array is always at the maximum even if the output voltage or output current changes. It was customary to insert

yJ3図は従来の最大供給電力追跡装置を示すもので、
昭和59年電気学会全国大会1104にて開示されたも
のである0図において、太陽電池アレイ1には、電力変
換回路3が接続され、これに@続して負荷2が接続され
ている。そして、太陽′1シ池アレイ1の出力電圧検出
部位Pマおよび出力電流検出部位に挿入された電流検出
器Piは、それぞれ乗算器4に接続され、この乗算器4
に後続してサンプルホールド回路5および除算器6が接
続されている。ここで乗算器4、サンプルホールド回路
5および除算器6は電力変化分検出回路7を構成してお
り、除算器6に後続する制御回路8は電力変換回路3に
接続されている。
Figure yJ3 shows a conventional maximum supply power tracking device.
In Figure 0, which was disclosed at the National Conference 1104 of the Institute of Electrical Engineers of Japan in 1981, a power conversion circuit 3 is connected to a solar cell array 1, and a load 2 is connected to the solar cell array 1. The current detectors Pi inserted into the output voltage detection part P and the output current detection part of the solar pond array 1 are respectively connected to a multiplier 4.
A sample and hold circuit 5 and a divider 6 are connected subsequent to the sample and hold circuit 5. Here, the multiplier 4, sample hold circuit 5, and divider 6 constitute a power change detection circuit 7, and a control circuit 8 following the divider 6 is connected to the power conversion circuit 3.

L2.構成において1乗算器4では、太陽電池アレイ1
の出力電圧Vおよび出力電流工に応答して出力電圧Pが
算出され、サンプルホールド回路5にて出力電力Pのサ
ンプリングが行なわれる。各サンプリング時点での出力
電力増分ΔPは、除算器6にて微小時間Δtに対する経
時変化分△P/△tとして逐次算出され、その算出結果
は電力変化分信号Spとして制御回路8に向けて出力さ
れる。この制御回路8は該電力変化分信号Spに応 4
答1−で、経時変化分△P/△tが正の極性符号を有す
るときには、太陽電池アレイ1の出力電圧Vを増大させ
る指令(以下、電圧増大指令という)を表わす電圧制御
信号Scuを出力し、逆に、経時変化分△P/△tが負
の極性符号を有するときには、太陽t*アレイ1の出力
電圧Vを減少させる指令(以下、電圧減少指令という)
を表わす電圧制御信号Scdを出力する。その結果、電
力変換回路3は両型圧制御信号Scu、Scdにそれぞ
れ応答して、経時変化分△P/△tが零となる雷域、す
なわち、太陽電池アレイ1による負荷2への供給電力が
最大となる領域に、太陽電池アレイ1の動作点を追い込
むような追跡制御を実現するこ゛ととなる6そして、該
動作点が該領域に追い込まれた際には、出力電力の経時
変化分△P/△tの極性符号が各サンプリング時点ごと
に交番して、該動作点が実質的に最大供給電力のための
動作点付近に停滞するものであ番。
L2. In the configuration 1 multiplier 4, solar array 1
The output voltage P is calculated in response to the output voltage V and the output current, and the sample and hold circuit 5 samples the output power P. The output power increment ΔP at each sampling point is sequentially calculated by the divider 6 as the time-dependent change ΔP/Δt with respect to the minute time Δt, and the calculation result is output to the control circuit 8 as the power change signal Sp. be done. This control circuit 8 responds to the power change signal Sp 4
In answer 1-, when the temporal change ΔP/Δt has a positive polarity sign, a voltage control signal Scu representing a command to increase the output voltage V of the solar cell array 1 (hereinafter referred to as voltage increase command) is output. Conversely, when the temporal change ΔP/Δt has a negative polarity sign, a command is issued to decrease the output voltage V of the solar t* array 1 (hereinafter referred to as a voltage reduction command).
It outputs a voltage control signal Scd representing . As a result, the power conversion circuit 3 responds to both type pressure control signals Scu and Scd to control the power supplied to the load 2 by the solar cell array 1 in the lightning region where the time variation ΔP/Δt becomes zero. This is to realize tracking control that drives the operating point of the solar cell array 1 to the region where the maximum The polarity sign of P/Δt alternates at each sampling time so that the operating point remains substantially near the operating point for maximum power supply.

しかしながら、従来の最大供給電力追跡装置にあっては
、制御量である出力電圧の変化方向が常に増大方向であ
って、その変化範囲が出力電圧軍から、特性曲線(p−
v曲線)上最大供給電力を与える電圧に略等しい電圧ま
での範囲であるという前提に基づいているので、何らか
の理由により、出力電圧が減少方向に制御された場合や
、出力電圧が最大供給電力のための電圧を大幅に越えて
増大した場合には、動作上不都合を生ずるものであっ凱 例えば、太陽電池アレイ1の出力電力Pを増大させる途
上において、太陽電池アレイ1に対する入射光量の減少
等の外項変化が一時的に発生したような場合、太陽電池
アレイ1の動作点が特性曲線ヒ最大供給電力のための動
作領点に達していないにもかかわらず、経時変化分△P
/△tの極性符号が正から負に変ることがある。その場
合、サンプリング時点では、電力変換回路3は電圧減少
指令を受け、続いて、次のサンプリング時点では出力電
力Pが一層減少すること電力1ら、経時変化分△P/△
tは負の極性符号に留まり、電力変換回路3が電圧減少
指令を受は続けることとなる。
However, in the conventional maximum supply power tracking device, the direction of change in the output voltage, which is a controlled variable, is always in the increasing direction, and the range of change is from the output voltage force to the characteristic curve (p-
V curve) is based on the premise that the range is approximately equal to the voltage that provides the maximum power supply, so if for some reason the output voltage is controlled in a decreasing direction, or the output voltage exceeds the maximum power supply. If the voltage increases significantly beyond the voltage required for the solar cell array 1, it will cause operational problems. In the case where an external term change occurs temporarily, even though the operating point of the solar cell array 1 has not reached the operating point for the maximum supply power on the characteristic curve, the temporal change △P
The polarity sign of /Δt may change from positive to negative. In that case, at the time of sampling, the power conversion circuit 3 receives a voltage reduction command, and then at the next sampling time, the output power P further decreases.
t remains at a negative polarity sign, and the power conversion circuit 3 continues to receive voltage reduction commands.

か<1.て、最大供給電力に至る中間段階の動作領域に
おいて、一旦、△P/△tが負極性に転すると、動作点
が特性曲線上の原点(P=O,V=Oの点)に向って追
い込まれてしまうので、負荷2に対する最大供給電力の
ための追い込み制御が、一時的に不能になることがしば
しばであった。
Or<1. Once △P/△t turns negative in the operating region at the intermediate stage leading to the maximum power supply, the operating point moves toward the origin (P=O, V=O point) on the characteristic curve. As a result, the power control for maximizing the power supply to the load 2 is often temporarily disabled.

さらに1例えば、太陽電池アレイ1の動作点が最大供給
電力のための動作点を大vA(通常的には、サンプリン
グ時点ごとの電圧制御量に対応する動作点の移動量以上
)に越えて移動すると、あるす7プリング時点では、出
力電力の経時変化分ΔP7/Δtの極性符号が負となり
、これに応じて、制御回路8が電圧減少指令を出力して
、該動作点を戻すので、次のサンプリング時点では、該
変化分△P/△tの極性符号が正に転じ、これに応じて
、該制御回路が電圧増大指令を出力し、以下電圧増減指
令の交番により、該動作点が停滞し、最大供給電力のた
めの動作点への追い込みに失敗することもあった。
Furthermore, for example, if the operating point of the solar array 1 moves beyond the operating point for maximum power supply by a large vA (usually greater than or equal to the amount of movement of the operating point corresponding to the voltage control amount at each sampling point) Then, at the certain point of pulling 7, the polarity sign of the temporal change ΔP7/Δt in the output power becomes negative, and in response, the control circuit 8 outputs a voltage reduction command to return the operating point. At the time of sampling, the polarity sign of the change △P/△t changes to positive, and in response, the control circuit outputs a voltage increase command, and the alternation of voltage increase/decrease commands causes the operating point to stagnate. However, it sometimes failed to reach the operating point for maximum power supply.

このように、従来の最大供給電力追跡装置では、特性曲
線(P−V曲線)上の動作点の移動が常に電圧(V)の
増大方向に限られていて、最大供給電力のための動作点
を大幅に越えないという前提に基づいて、電圧制御信号
Scu、Scd、が出力電力Pの経時変化分△P/△t
の極性符号のみに支配されるようになっているので、太
陽電池アレイ1が外項変化等を被ると、追跡制御が不調
になるいう欠点があった。
In this way, in the conventional maximum supply power tracking device, the movement of the operating point on the characteristic curve (PV curve) is always limited to the increasing direction of voltage (V), and the operating point for the maximum supply power is Based on the premise that the voltage control signals Scu and Scd do not significantly exceed the change in output power P over time △P/△t
Since the solar cell array 1 is controlled only by the polarity sign of , there is a drawback that tracking control becomes malfunctioning if the solar cell array 1 undergoes an external term change or the like.

く目 的〉 この発明の目的は、上記従来技術に基づく大隅電池アレ
イの最大供給電力追跡装置における太陽電池アレイの外
項変化による制御不調の問題点に鑑み、出力電力の経時
変化分の極性符号と、出力電圧(または出力電流)の経
時変化分の極性符号とを比較することにより、1配架点
を除去して。
Purpose of the present invention In view of the problem of control malfunction due to changes in the outer term of the solar cell array in the Ohsumi battery array maximum supply power tracking device based on the above-mentioned prior art, it is an object of the present invention to By comparing the polarity sign of the change in output voltage (or output current) over time, one mounting point is removed.

外項変化等があっても最大供給電力のための動作領域へ
の追い込み制御が可能な優れた最大供給電力追跡装置を
提供せんとするものである。
It is an object of the present invention to provide an excellent maximum power supply tracking device capable of controlling the drive to the operating range for the maximum power supply even if there is a change in the external term.

〈#V 成〉 前記目的に沿う第1の発明の構成は、太陽電池アレイの
出力電力の経時変化分の極性符号と、その出力電圧の経
時変化分の極性符号とを比較して、両極性符号が一致す
るときには、電圧増大指令を表わす電圧制御信号を電力
変換回路に出力し、両極性符号が不一致のときには、電
圧減少指令を表わす電圧制御信号を電力変換回路に出力
するようにしたことを要旨とするものである。
<#V formation> The configuration of the first invention according to the above object is to compare the polarity sign of the temporal change in the output power of the solar cell array and the polarity sign of the temporal change in the output voltage, and determine whether the polarity is When the signs match, a voltage control signal representing a voltage increase command is output to the power conversion circuit, and when the polarity signs do not match, a voltage control signal representing a voltage decrease command is output to the power conversion circuit. This is a summary.

さらに、E配回的に沿うwII2の発明の構成は。Furthermore, the configuration of the invention of wII2 that follows the E layout is as follows.

wiIllの発明の構成における出力電圧の経時変化分
に代えて、出力電流の経時変化分を用いるようにしたこ
とを要旨とするものである。
The gist of this invention is to use a change in output current over time instead of a change in output voltage over time in the configuration of the invention of wiIll.

〈実施例〉 次に、この発明の実施例を第1図〜第2図に基づいて説
明する。なお、従来技術の構成要素と同一のものについ
ては同一符号を付し、重複した説明を省略する。
<Example> Next, an example of the present invention will be described based on FIGS. 1 and 2. Components that are the same as those in the prior art are given the same reference numerals and redundant explanations will be omitted.

第1図において、電力変化分検出回路7の除算器6には
、論理回路9が接続されており、さらに、この論理回路
9には、電圧変化分検出回路107 が接続されている
。一方、電圧変化分検出回路10は、サンプルホールド
回路12と、これに後続し、上記論理回路9に接続され
る除算器11とから成り、サンプルホールド回路12は
太陽電池アレイlの出力電圧検出部位Pマに接続されて
いる、前記論理回路9はこれに後続する制御回路8とと
もに極性符号比較判別回路13を構成し、この回路13
は雨検出回路7.10とともに電圧制御信号供給部14
を構成している。
In FIG. 1, a logic circuit 9 is connected to the divider 6 of the power change detection circuit 7, and a voltage change detection circuit 107 is further connected to this logic circuit 9. On the other hand, the voltage change detection circuit 10 includes a sample and hold circuit 12 and a divider 11 that follows this and is connected to the logic circuit 9, and the sample and hold circuit 12 is the output voltage detection portion of the solar cell array l. The logic circuit 9 connected to the P signal constitutes a polarity code comparison and determination circuit 13 together with the control circuit 8 that follows it, and this circuit 13
is the voltage control signal supply section 14 together with the rain detection circuit 7.10.
It consists of

上記4I成において、太陽電池アレイ1の出力電圧Vは
サンプルホールド回路12にてサンプリングされ、各サ
ンプリング時点での出力電圧変化分ΔVは後続の除算器
11に供給され、ここで微少時間Δtに対する経時変化
分△V/△tが逐次算出される。そして、この経時変化
分△V/△tを表わす電圧変化分信号Sマは、第3図に
示す構成におけるそれと同様の信号処理により、電圧変
化分検出回路7にて得られた経時変化分△P/△tを表
わす電力変化分信号Spとともに、論理回路9に供給さ
れる。この論理回路9では、電力変化分信号spと電圧
変化分信号Sマとから1両経時変化分△P/△t、△V
/△tの各極性符号が検出され、(排他的論理和ゲート
等により)両極性符号の「一致」、「不一致」が判別さ
れる。そして、この判別結果を表わす比較信号Siが制
御回路8に供給されると、該制御回路8からは、「一致
」のときには電圧増大指令を表わす電圧制御信号Scu
が、「不一致Jのときには、電圧減少信号を表わす電圧
制御信号Scdがそれぞれ出力される次に、第2図にお
いて実線で糸す特性曲線(P−V曲線)に基き、回路の
動作を具体的に説明する。同図に示される特性面@(p
−v曲11)は、出力電力Pを表わす縦軸と、出力電力
Vを表わす横軸との間の平面で上方に膨出する軌跡を描
いている。
In the above 4I configuration, the output voltage V of the solar cell array 1 is sampled by the sample hold circuit 12, and the output voltage change ΔV at each sampling time is supplied to the subsequent divider 11, where it The amount of change ΔV/Δt is calculated sequentially. The voltage change signal Sma representing the time change ΔV/Δt is obtained by the voltage change detection circuit 7 through signal processing similar to that in the configuration shown in FIG. It is supplied to the logic circuit 9 together with a power change signal Sp representing P/Δt. In this logic circuit 9, from the power change signal sp and the voltage change signal Sma, one time change △P/△t, △V
/Δt is detected, and it is determined (by an exclusive OR gate, etc.) whether the polarity codes match or do not match. When a comparison signal Si representing this determination result is supplied to the control circuit 8, the control circuit 8 outputs a voltage control signal Scu representing a voltage increase command when there is a "match".
However, when there is a mismatch J, a voltage control signal Scd representing a voltage decrease signal is output. The characteristic surface @(p
-v song 11) draws a locus that bulges upward on a plane between the vertical axis representing the output power P and the horizontal axis representing the output power V.

先ず、太陽電池アレイlの動作点が1例えば。First, let's say that the operating point of the solar cell array l is 1.

原点から始動して出力電圧Vを漸増させつつ、出力電力
Pを増大させる途上の動作領域中の動作点M1にある場
合には、その領域中でのその方向への動作点の移動に関
しては、出力電力Pの経時変化分△P/△tの極性符号
と出力電圧Vの経時変化分△V/△tの極性符号とが共
に正であって、両極性符号は「一致」となる、したがっ
て、この「一致」を表わす比較信号Siに応答して制御
回路8かも電圧増大指令を表わす電圧制御信号Scuが
電力変換回路3に向けて出力され、動作点は特性曲線上
の最頂点である最大供給電力のための動作点MOに向か
って追い込まれる。
When the operating point M1 is in the operating region in the process of increasing the output power P while gradually increasing the output voltage V while starting from the origin, the movement of the operating point in that direction in that region is as follows. The polarity sign of the temporal change △P/△t of the output power P and the polarity sign of the temporal change △V/△t of the output voltage V are both positive, and the two polarity signs "match," so , in response to the comparison signal Si representing "match", the control circuit 8 outputs a voltage control signal Scu representing a voltage increase command to the power conversion circuit 3, and the operating point is set at the highest point on the characteristic curve. Driven towards the operating point MO for the supplied power.

次いで、動作点が最大供給電力のための動作点MOを通
過して、出力電圧Vの増大に従って出力電力Pが減少す
る動作領域中の動作点M2まで移動すると、その領域中
でのその方向への動作点の移動に関しては、経時変化分
△P/△tの極性符号が負であり、かつ、経時変化分△
V/△tの極性符号か正であるので、両極性符号は「不
一致」となる。この「不一致」を表わす比較信号Siに
応答して制御回路8からは、電圧減少指令を表わす電圧
制御信号Scdが出力され、動作点は最大供給電力のた
めの動作点MOに戻される。
Then, when the operating point passes through the operating point MO for maximum supplied power and moves to the operating point M2 in the operating region where the output power P decreases as the output voltage V increases, in that direction in that region Regarding the movement of the operating point, the polarity sign of the temporal change △P/△t is negative and the temporal change △
Since the polarity sign of V/Δt is positive, both polarity signs are "inconsistent". In response to the comparison signal Si representing this "mismatch", the control circuit 8 outputs a voltage control signal Scd representing a voltage reduction command, and the operating point is returned to the operating point MO for maximum power supply.

もし仮に、動作点が、何らかの理由により、最大供給電
力のための動作点MOを原点側に越えて、出力電圧Vを
漸減させる方向に移動し、出力電圧■の減少に従って出
力電力Pも減少する動作領域中の動作点M4に至ると、
ここでのこの方向への移動に関しては、両極性符号が「
一致」となるので、制御回路8からは電圧増大指令を表
わす電圧制御信号Scuが出力され動作点はやはり最大
供給電力のための動作点MOに戻される。
If, for some reason, the operating point moves beyond the operating point MO for maximum supply power toward the origin and moves in a direction that gradually decreases the output voltage V, the output power P also decreases as the output voltage ■ decreases. When the operating point M4 in the operating region is reached,
For movement in this direction here, the bipolar sign is “
Therefore, the control circuit 8 outputs the voltage control signal Scu representing the voltage increase command, and the operating point is returned to the operating point MO for the maximum power supply.

さらに、動作点が最大供給電力のための動作点MOを通
過した後反転し、出力電圧Vの減少に従って出力電力P
が増大する動作領域中の動作点M3に至ると、ここでの
この方向への移動に関しては、両極性符号が「不一致」
となるので、制御回路8からは電圧減少指令を表わす電
圧制御信号Scdが出力されて、動作点M2の場合と同
様に、動作点は最大供給電力のための動作点MOに戻さ
れる。
Furthermore, the operating point reverses after passing the operating point MO for maximum supply power, and as the output voltage V decreases, the output power P
When we reach the operating point M3 in the operating region where increasing
Therefore, the voltage control signal Scd representing the voltage reduction command is output from the control circuit 8, and the operating point is returned to the operating point MO for the maximum power supply, as in the case of the operating point M2.

上記実施例の説明において、電力変換回路3は電圧制御
信号Scu、Scdによる電圧制御により。
In the description of the above embodiment, the power conversion circuit 3 is controlled by voltage control signals Scu and Scd.

その機能が実現されることとしたが、回路条件によって
は電流制御にする方が都合のよい場合もあるので、かか
る場合は、電流制御信号が供給されるように構成する。
Although it is assumed that this function is realized, it may be more convenient to use current control depending on the circuit conditions, so in such a case, the configuration is such that a current control signal is supplied.

すなわち、太陽電池アレイ1の出力電流検出部位に挿入
された電流検出器Piから出力′心流工を検出して、こ
れを、第1図中に破線で示すように、サンプルホールド
回路12′に供給し、ここでサンプリングし、谷サンプ
リング時点での出力電流Iの経時変化分ΔI/ΔLを除
算器11′で算出する。すると、サンプルホールド回路
12および除算器11′で構成される電板変化分検出回
路10′からは、経時変化分△I/△tを表わす電流変
化分信号Siが出力され、それが電力変化分検出回路7
からの電力変化分信号Spとともに極性符号比較判別回
路13に供給される。こうして、電力変化分検出回路7
、電流変化分検出回路10′および極性符号比較判別回
路13から成る電流制御信号供給部14′からは各経時
変過分△P/△t、ΔI/Δtの極性符号が一致したと
きには、電流増大指令を表わす電流制御信号S cu 
′が出力され、その両極性符号が不−・致のときには、
電流AIV指令を表わす電流制御信号S cd ’が出
力される。
That is, the output 'cardiac current' is detected from the current detector Pi inserted in the output current detection part of the solar cell array 1, and this is sent to the sample and hold circuit 12' as shown by the broken line in FIG. The output current I is supplied and sampled here, and the time variation ΔI/ΔL of the output current I at the time of valley sampling is calculated by the divider 11'. Then, a current change signal Si representing a change over time △I/△t is outputted from the electric plate change detection circuit 10', which is composed of a sample hold circuit 12 and a divider 11', and is converted into a power change signal Si. Detection circuit 7
The signal is supplied to the polarity code comparison and determination circuit 13 together with the power change signal Sp from . In this way, the power change detection circuit 7
, a current control signal supply section 14' consisting of a current change detection circuit 10' and a polarity sign comparison/discrimination circuit 13 issues a current increase command when the polarity signs of each time-varying portion ΔP/Δt and ΔI/Δt match. A current control signal S cu representing
′ is output, and when the polarity signs are unmatched,
A current control signal S cd ' representing the current AIV command is output.

他の構成や動作は電圧制御の場合と同様である。なお、
電流制御の場合、第1図中で、それに特有な回路や信号
を表わす符号(電流変化分信号S1を除く)に、ダッシ
ュを付した符号を用い、その特性曲線(P−I曲1りを
第2図中に破線で示している。
Other configurations and operations are the same as in the case of voltage control. In addition,
In the case of current control, in Fig. 1, the symbols representing circuits and signals specific to the circuit and signals (excluding the current change signal S1) are given a dash, and the characteristic curve (P-I curve 1) is It is indicated by a broken line in FIG.

以上のように、第1の発明によれば、太陽電池アレイの
出力電力の経時変化分の極性符号と、その出力電圧の経
時変化分の極性符号との一致、不一致を判別して、これ
に基き電力変換回路の制御をするように構成したことに
より、太陽電池アレイに対する外項変化等、何らかの理
由により、特性曲線(P−V曲線)上における動作点に
出力電圧漸減方向への移動があっても、その動作点は常
に最大供給電力のだめの動作領域に追い込まれるように
制御されるので、太陽電池アレイから負荷への最大電力
の供給が極めて安定に行なえるという優れた効果が得ら
れる。
As described above, according to the first invention, it is determined whether the polarity sign of the output power of the solar cell array changes over time and the polarity sign of the output voltage changes over time, and the polarity sign of the output voltage changes over time. Due to the configuration in which the power conversion circuit is configured to control the power converter circuit, the operating point on the characteristic curve (PV curve) may shift in the direction of gradual decrease in output voltage due to some reason such as a change in the external term for the solar cell array. However, since the operating point is always controlled to be in the operating region where the maximum power can be supplied, an excellent effect can be obtained in that the maximum power can be extremely stably supplied from the solar cell array to the load.

さらに、第2の発明によれば、電力変換回路を電流制御
で行なえるようにしたので、第1の発明と同様な効果を
奏し得る回路の適用条件を拡大できるという利点がある
Furthermore, according to the second invention, since the power conversion circuit can be controlled by current control, there is an advantage that the application conditions of the circuit that can achieve the same effects as the first invention can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例の構成を示す回路図、@2
図はその実施例の動作を説明するための特性曲線(P−
V曲線、P−r[1hyJ)を示すグラフ、第3図は、
従来の最大供給電力追跡装置の構成を示す回路図である
。 1・・・・・・太陽電池アレイ 2・・・・・・負荷3
・・・・・・電力変換回路  4・・・・・・乗算器5
・・・・・・サンプルホールド回路 6・・・・・・除算器   7・・・・・パ成力変化分
検出回路8・・・・・・制御回路  9・・・・・・論
理回路10・・・・・・電圧変化分検出回路 10′・・・・・・電流変化分検出回路11.11′・
・・・・・除算器 12.12′・・・・・・サンプルホールド回路13・
・・・・・極性符号比較判別回路14・・・・・・電圧
制御信号供給部 14′・・・・・・電流制御信号供給部Sp・・・・・
・電力変化分信号 Si・・・・・・電圧変化分信号 Si・・・・・・電流変化分信号 Si・・・・・・比較信号
FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, @2
The figure shows a characteristic curve (P-
The graph showing the V curve, P-r[1hyJ), FIG. 3, is
FIG. 2 is a circuit diagram showing the configuration of a conventional maximum supply power tracking device. 1...Solar cell array 2...Load 3
...Power conversion circuit 4... Multiplier 5
...Sample hold circuit 6...Divider 7...Passenger force change detection circuit 8...Control circuit 9...Logic circuit 10 ...Voltage change detection circuit 10'...Current change detection circuit 11.11'.
...Divider 12.12' ...Sample and hold circuit 13.
. . . Polarity sign comparison and discrimination circuit 14 . . . Voltage control signal supply section 14' . . . Current control signal supply section Sp...
・Power change signal Si...Voltage change signal Si...Current change signal Si...Comparison signal

Claims (4)

【特許請求の範囲】[Claims] (1)太陽電池アレイ1と、 太陽電池アレイ1からの出力電力を受ける負荷2と、 太陽電池アレイ1と負荷2との間に介装され、電圧制御
信号Scu、Scdが表わす電圧増大指令または電圧減
少指令のそれぞれに応答して、太陽電池アレイ1から負
荷2への出力電圧を増大または減少させて、該負荷への
出力電力を最大にする電力変換手段3と、 電力変換手段3に対して電圧制御信号Scu、Scdを
供給する電圧制御信号供給部14とから成り上記電圧制
御信号供給部14は、太陽電池アレイ1からの出力電力
Pの経時変化分△P/△tを検出する電力変化分検出手
段7と、 太陽電池アレイ1からの出力電圧Vの経時変化分△V/
△tを検出する電圧変化分検出手段10と前記出力電力
の経時変化分△P/△tの極性符号と前記出力電圧の経
時変化分△V/△tの極性符号とを比較し、両者の一致
を判別したときは、電圧増大指令を表わす電圧制御信号
Scuを出力し、両者の不一致を判別したときは、電圧
減少指令を表わす電圧制御信号Scdを出力する極性符
号比較判別手段13と を含むことを特徴とする太陽電池アレイの最大供給電力
追跡装置。
(1) A solar cell array 1, a load 2 that receives the output power from the solar cell array 1, and a voltage increase command or A power conversion means 3 for increasing or decreasing the output voltage from the solar cell array 1 to the load 2 to maximize the output power to the load in response to each of the voltage reduction commands; and for the power conversion means 3. and a voltage control signal supply section 14 that supplies voltage control signals Scu and Scd. The change detection means 7 and the change over time △V/ of the output voltage V from the solar cell array 1
The voltage change detection means 10 for detecting Δt compares the polarity sign of the output power change over time ΔP/Δt with the polarity sign of the output voltage change over time ΔV/Δt, and determines the difference between the two. When it is determined that they match, it outputs a voltage control signal Scu representing a voltage increase command, and when it is determined that they do not match, it outputs a voltage control signal Scd that represents a voltage decrease command. A maximum supply power tracking device for a solar cell array, characterized in that:
(2)前記電力変化分検出手段7は、太陽電池アレイ1
からの出力電力Pの経時変化分△P/△tを検出して、
その検出結果を電力変化分信号Spとして出力し、前記
電圧変化分検出手段10は、太陽電池アレイ1からの出
力電圧Vの経時変化分△V/△tを検出して、その検出
結果を電圧変化分信号Svとして出力し、さらに、前記
極性符号比較判別手段13は、上記電力変化分信号Sp
が表わす出力電力Pの経時変化分△P/△tの極性符号
と、上記電圧変化分信号Svが表わす出力電圧Vの経時
変化分△V/△tの極性符号とを比較することを特徴と
する特許請求の範囲第1項記載の太陽電池アレイの最大
供給電力追跡装置。
(2) The power change detection means 7 is configured to detect a change in the power of the solar cell array 1.
Detecting the temporal change △P/△t of the output power P from
The detection result is output as a power change signal Sp, and the voltage change detection means 10 detects the time change ΔV/Δt of the output voltage V from the solar cell array 1, and converts the detection result into a voltage Further, the polarity sign comparing and determining means 13 outputs the power change signal Sp as a change signal Sv.
The polarity sign of the temporal change ΔP/Δt in the output power P represented by is compared with the polarity sign of the temporal change ΔV/Δt in the output voltage V represented by the voltage change signal Sv. A maximum power supply tracking device for a solar cell array according to claim 1.
(3)太陽電池アレイ1と、 太陽電池アレイ1からの出力電力を受ける負荷2と、 太陽電池アレイ1と負荷2との間に介装され電流制御信
号Scu′、Scd′が表わす電流増大指令または電流
減少指令のそれぞれに応答して、太陽電池アレイ1から
負荷2への出力電流を増大または減少させて、該負荷へ
の出力電力を最大にする電力変換手段3と、 電力変換手段3に対して電流制御信号Scu′Scd′
を供給する電流制御信号供給部14′とから成り、 上記電流制御信号供給部14′は、太陽電池アレイ1か
らの出力電力Pの経時変化分△P/△tを検出する電力
変化分検出手段7と、 太陽電池アレイ1からの出力電流 I の経時変化分△I
/△tを検出する電流変化分検出手段10′と、 前記出力電力の経時変化分△P/△tの極性符号と前記
出力電流の経時変化分△I/△tの極性符号とを比較し
、両者の一致を判別したときは、電流増大指令を表わす
電流制御信号Scu′を出力し、両者の不一致を判別し
たときは、電流減少指令を表わす電流制御信号Scd′
を出力する極性符号比較判別手段13と を含むことを特徴とする太陽電池アレイの最大供給電力
追跡装置。
(3) A solar cell array 1, a load 2 receiving output power from the solar cell array 1, and a current increase command interposed between the solar cell array 1 and the load 2 and represented by current control signals Scu' and Scd'. or a power conversion means 3 that increases or decreases the output current from the solar cell array 1 to the load 2 to maximize the output power to the load in response to each of the current reduction commands; On the other hand, the current control signal Scu′Scd′
and a current control signal supply section 14' that supplies a current control signal supply section 14', the current control signal supply section 14' is a power change amount detection means that detects a time change amount ΔP/Δt of the output power P from the solar cell array 1. 7, and the change over time of the output current I from the solar cell array 1 △I
A current change detection means 10' for detecting /Δt compares the polarity sign of the output power change over time ΔP/Δt with the polarity sign of the output current change over time ΔI/Δt. , when it is determined that they match, it outputs a current control signal Scu' representing a current increase command, and when it is determined that they do not match, it outputs a current control signal Scd' that represents a current decrease command.
A maximum supply power tracking device for a solar cell array, comprising: a polarity sign comparison and determination means 13 that outputs a polarity code comparison and determination means 13 for outputting a polarity code comparison and determination means 13 for outputting a polarity code comparison and determination means 13 for outputting a polarity code comparison and determination means 13 for outputting a polarity code comparison and determination means 13 for outputting a polarity code comparison and determination means 13 for outputting a polarity sign comparison and determination means 13 for outputting a polarity sign comparison and determination means 13 for outputting a polarity sign comparison and determination means 13;
(4)前記電力変化分検出手段7は、太陽電池アレイ1
からの出力電力Pの経時変化分△P/△tを検出して、
その検出結果を電力変化分信号Spとして出力し、前記
電流変化分検出手段10′は、太陽電池アレイ1からの
出力電流 I の経時変化分△ I /△tを検出して、その
検出結果を電流変化分信号Siとして出力し、さらに、
前記極性符号比較判別手段13は、上記電力変化分信号
Spが表わす出力電力Pの経時変化分△P/△tの極性
符号と、上記電流変化分信号Siが表わす出力電流 I
の経時変化分△I/△tの極性符号とを比較することを
特徴とする特許請求の範囲第3項記載の太陽電池アレイ
の最大供給電力追跡装置。
(4) The power change detection means 7 is configured to detect a change in the power of the solar cell array 1.
Detecting the temporal change △P/△t of the output power P from
The detection result is output as a power change signal Sp, and the current change detection means 10' detects the time change ΔI/Δt of the output current I from the solar cell array 1, and outputs the detection result as a power change signal Sp. Output as a current change signal Si, and further,
The polarity sign comparing and determining means 13 compares the polarity sign of the temporal change ΔP/Δt of the output power P represented by the power change signal Sp and the output current I represented by the current change signal Si.
4. The maximum power supply tracking device for a solar cell array according to claim 3, wherein the tracking device compares the polarity sign of the temporal change ΔI/Δt.
JP59241682A 1984-11-16 1984-11-16 Tracking device for maximum supply power of solar battery array Pending JPS61120221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59241682A JPS61120221A (en) 1984-11-16 1984-11-16 Tracking device for maximum supply power of solar battery array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59241682A JPS61120221A (en) 1984-11-16 1984-11-16 Tracking device for maximum supply power of solar battery array

Publications (1)

Publication Number Publication Date
JPS61120221A true JPS61120221A (en) 1986-06-07

Family

ID=17077947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59241682A Pending JPS61120221A (en) 1984-11-16 1984-11-16 Tracking device for maximum supply power of solar battery array

Country Status (1)

Country Link
JP (1) JPS61120221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324361B2 (en) 2005-01-28 2008-01-29 Kasemsan Siri Solar array inverter with maximum power tracking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381911A (en) * 1976-12-27 1978-07-19 Sony Corp Dc-dc converter
JPS57206929A (en) * 1981-06-15 1982-12-18 Toshiba Corp Controlling system for maximum output electric power of photoelectric cell
JPS58101313A (en) * 1981-12-11 1983-06-16 Nissin Electric Co Ltd Output adjusting and controlling system of solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381911A (en) * 1976-12-27 1978-07-19 Sony Corp Dc-dc converter
JPS57206929A (en) * 1981-06-15 1982-12-18 Toshiba Corp Controlling system for maximum output electric power of photoelectric cell
JPS58101313A (en) * 1981-12-11 1983-06-16 Nissin Electric Co Ltd Output adjusting and controlling system of solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324361B2 (en) 2005-01-28 2008-01-29 Kasemsan Siri Solar array inverter with maximum power tracking

Similar Documents

Publication Publication Date Title
EP1143594B1 (en) Power converting apparatus, control method therefor, and solar power generation apparatus
US6927955B2 (en) Apparatus and method of detecting ground fault in power conversion system
JPH1083223A (en) Power controller and photovoltaic power generation system using the same
JP2001178145A (en) Maximum power operating inverter system
JP2000112545A (en) Photovoltaic power generation system
JPH08123563A (en) Photovoltaic power generation system, device and method for controlling power for the same
CN110058111A (en) T-type three-level inverter method for diagnosing faults based on phase voltage residual error
JPH07325635A (en) Output controller for inverter
JPS61120221A (en) Tracking device for maximum supply power of solar battery array
JPH10117440A (en) Photovoltaic power generation system
JPH0568722B2 (en)
JPH11122819A (en) Dc ground fault detector
JPS63181015A (en) Control system for maximum output of photovoltaic power generator
WO2022267409A1 (en) Photovoltaic power generation system control method and apparatus, power optimizer, and storage medium
JPS62200413A (en) Control device for power converter
JPH10240361A (en) Photovoltaic power generator
US20120013312A1 (en) Power Control Device and Method thereof
CN1469390A (en) Latch structure and system for increasing speed and reducing current consumption
JPS6341315B2 (en)
CN112968619B (en) Trigger device and method for silicon controlled rectifier in single-phase alternating current circuit
JP3680438B2 (en) Maximum power tracking control method and apparatus for solar cell
JPH0895655A (en) Inverter control system for drive of solar battery
JP3439828B2 (en) Solar power generator
US20230400489A1 (en) Inverter and method for detecting insulation impedance of inverter
JP3397138B2 (en) Inverter device