JPS6048112B2 - Electrical/mechanical conversion element - Google Patents

Electrical/mechanical conversion element

Info

Publication number
JPS6048112B2
JPS6048112B2 JP54054266A JP5426679A JPS6048112B2 JP S6048112 B2 JPS6048112 B2 JP S6048112B2 JP 54054266 A JP54054266 A JP 54054266A JP 5426679 A JP5426679 A JP 5426679A JP S6048112 B2 JPS6048112 B2 JP S6048112B2
Authority
JP
Japan
Prior art keywords
plate
elastic modulus
displacement
bimorph
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54054266A
Other languages
Japanese (ja)
Other versions
JPS55146989A (en
Inventor
友三郎 北村
幸介 宮原
洋一 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP54054266A priority Critical patent/JPS6048112B2/en
Priority to US06/143,339 priority patent/US4349762A/en
Priority to CA000350753A priority patent/CA1154862A/en
Priority to NL8002472A priority patent/NL8002472A/en
Priority to DE19803016748 priority patent/DE3016748A1/en
Priority to FR8009867A priority patent/FR2455840A1/en
Priority to GB8014165A priority patent/GB2052151B/en
Priority to AT0234480A priority patent/AT369574B/en
Publication of JPS55146989A publication Critical patent/JPS55146989A/en
Publication of JPS6048112B2 publication Critical patent/JPS6048112B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/04Gramophone pick-ups using a stylus; Recorders using a stylus
    • H04R17/08Gramophone pick-ups using a stylus; Recorders using a stylus signals being recorded or played back by vibration of a stylus in two orthogonal directions simultaneously

Description

【発明の詳細な説明】 本発明は、電気的信号を機械的変位に変換する電気・
機械変換素子、例えばバイモルフに係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electric
It relates to a mechanical transducer, such as a bimorph.

近時、磁気記録再生装置(VTR)において、その記
録密度をできるだけ上げるために、記録トラックの幅を
できるだけ幅狭とする努力がなされているが、このよう
にトラック幅を狭くするものにあつては、これに伴つて
、再生磁気ヘッドの記録トラックに対する位置関係には
、より高い正確さが要求される。
Recently, efforts have been made to make the recording track width as narrow as possible in magnetic recording and reproducing devices (VTRs) in order to increase the recording density as much as possible. Accordingly, higher accuracy is required in the positional relationship of the reproducing magnetic head with respect to the recording track.

そして、この位置関係を単に装置の機械的精度に依存さ
せることは、技術的に困難であるか、或いは可成りのコ
スト高を招来するので、電気・機械変換素子を用い、こ
れによつて磁気ヘッドの記録トラックに対する位置関係
を、常時、所定の関係に制御する方法が採られる。即
ち、磁気ヘッドを、電気・機械変換素子に機械的に連結
し、この素子に磁気ヘッドと記録トラックとの位置関係
の変化から生ずる再生信号の変化による電気信号を、磁
気ヘッドが、常時、記録トラックに対し正しい位置関係
にあるように設定す る。 通常、このようなVTRの
トラッキングサーボに用いられるバイモルフ素子は、低
い電圧で大きな変位置が得られる必要がある。
Since it would be technically difficult to simply make this positional relationship depend on the mechanical precision of the device or would result in a considerable increase in cost, an electro-mechanical transducer was used, and thereby the magnetic A method is adopted in which the positional relationship of the head with respect to the recording track is always controlled to a predetermined relationship. Immediately
The magnetic head is mechanically connected to an electromechanical transducer element, and the magnetic head constantly records an electric signal caused by a change in the reproduction signal caused by a change in the positional relationship between the magnetic head and the recording track. Set it so that it is in the correct position relative to the track. Normally, the bimorph element used in the tracking servo of such a VTR needs to be able to obtain a large displacement with a low voltage.

特にトラック幅の広いVTRにおいては、数100〜6
00μm程度の大きな変位置が要求される。 通常のバ
イモルフ素子は、第1図に示すように、夫々両主面に電
極1が被着された2枚の圧電体板2が、これら圧電体板
2間に介在させたシム板と呼称される板状部材4に夫々
接着剤3によつて接着されて積層されて成る。
In particular, for VTRs with wide track widths, there are several hundred to six
A large displacement of about 00 μm is required. As shown in FIG. 1, a normal bimorph element has two piezoelectric plates 2 each having an electrode 1 adhered to each main surface, and is called a shim plate interposed between these piezoelectric plates 2. They are laminated and bonded to plate-like members 4 with adhesive 3, respectively.

圧電体板2は、セラミック、或いは高分子、又はセラミ
ックと高分子の複合材等の圧電材料から成り、シム板4
、チタン、ステンレス、りん青銅等の金属が用いらJれ
、接着剤3としては、導電性接着剤が用いられる。この
構成において、両圧電体板2に、逆向きの電界を与える
ように夫々対向電極1間に電圧を与えるときは、一方の
圧電体板2が伸長し、他方が収縮することによつて変位
が生ずる。即ち、第1図に示すように、バイモルフの一
端を機械的に固定、すなわちクランプするときは、他端
が矢印で示すように変位する。ところが、このような通
常のバイモルフでは左程大きな変位置が得られない。
The piezoelectric plate 2 is made of a piezoelectric material such as ceramic, polymer, or a composite material of ceramic and polymer, and the shim plate 4
, titanium, stainless steel, phosphor bronze, etc., and as the adhesive 3, a conductive adhesive is used. In this configuration, when voltage is applied between the opposing electrodes 1 to both piezoelectric plates 2 so as to apply electric fields in opposite directions, one piezoelectric plate 2 expands and the other contracts, causing displacement. occurs. That is, as shown in FIG. 1, when one end of the bimorph is mechanically fixed, that is, clamped, the other end is displaced as shown by the arrow. However, with such a normal bimorph, it is not possible to obtain as large a displacement as shown on the left.

今、第2図に示すように両主面に電極1が被着された圧
電板2に、その両主面の電極1間に所要の電圧を与える
と、圧電板2は、これに与えられる電界の向きに応じて
伸縮するが、この伸縮は、互に直交する方向x及びyに
関して生ずるので、この圧電板2の一方の面に上述した
ような、金属板より成るシム板のように、その弾性率が
X方向とy方向とに関して同等の、すなわち等方性を有
する補強板4によつてx及びyの両方向に関して機械的
に固定、すなわちクランプさせると、第3図に示すよう
に、x及びyの両方向に関して1そりョを生ずることに
なる。
Now, as shown in FIG. 2, if a required voltage is applied between the electrodes 1 on both main surfaces of the piezoelectric plate 2, which has electrodes 1 adhered to both main surfaces, the piezoelectric plate 2 It expands and contracts depending on the direction of the electric field, but since this expansion and contraction occurs in the directions x and y that are orthogonal to each other, one surface of the piezoelectric plate 2 has a shim plate made of a metal plate as described above. When it is mechanically fixed, that is, clamped, in both the x and y directions by a reinforcing plate 4 whose elastic modulus is the same in the x and y directions, that is, is isotropic, as shown in FIG. 3, This will result in 1 sore in both the x and y directions.

したがつて、今、一方向、例えばx方向に関するそりに
よる変位のみを必要とする場合には、y方向に生ずるそ
りがむしろ構造的にx方向のそりの発生を阻害すること
になる。また、第1図に説明した構造において、接着剤
3としては、一般に高分子系の接着剤を用いるが、この
接着剤の柔軟性によつて圧電体板2に対する適度なりラ
ンプが阻害されて上述のそりの発一生が抑えられる。
Therefore, if only displacement due to warpage in one direction, for example the x direction, is required, the warpage that occurs in the y direction will rather structurally inhibit the occurrence of warp in the x direction. Furthermore, in the structure illustrated in FIG. 1, a polymeric adhesive is generally used as the adhesive 3, but the flexibility of this adhesive inhibits the ramping of the piezoelectric plate 2 to a certain degree, as described above. The occurrence of warping is suppressed.

本発明においては、上述したように、等方性の伸縮や、
接着剤による影響によつて、上述の電気・機械変換素子
におい充分な変位置が得られないことの究明に基いて、
バイモルフ或いはモノモjルフ等の電気・機械変換素子
において、大きな変位置を得ることができるようにする
ものである。
In the present invention, as mentioned above, isotropic expansion and contraction,
Based on the investigation that it is not possible to obtain sufficient displacement in the above-mentioned electromechanical transducer due to the influence of adhesive,
This makes it possible to obtain a large displacement in an electromechanical transducer such as a bimorph or a monomorph.

すなわち、本発明においては、少くとも両主面に電極が
被着された圧電体板よりなる第1の部材と、補強ないし
はクランプ効果を得る例えばシム3板、としての板状の
第2の部材とを積層合体して電気・機械変換素子を構成
するものであるが、特に本発明においては、第2の部材
として、弾性率が異方性を有する部材より構成するもの
とし、互に直交する第1及び第2の2方向x及びyに関
し4て、その弾性率Ex及びEyがEx>Eyなる関係
を有し、且つ第1の部材の圧電体板の弾性率Eが第2の
部材の小なる方の弾性率より大なる弾性率を有するすな
わちE>E,なる関係を有するようにする。次に、本発
明による電気・機械変換素子について詳細に説明する。
That is, in the present invention, a first member is made of a piezoelectric plate having electrodes adhered to at least both main surfaces, and a plate-shaped second member is, for example, three shim plates that provide a reinforcing or clamping effect. In the present invention, the second member is composed of a member having anisotropic elastic modulus, and the two members are orthogonal to each other. Regarding the first and second two directions x and y, the elastic moduli Ex and Ey have the relationship Ex>Ey, and the elastic modulus E of the piezoelectric plate of the first member is the same as that of the second member. The elastic modulus is greater than the smaller elastic modulus, that is, the relationship E>E is established. Next, the electro-mechanical conversion element according to the present invention will be explained in detail.

第4図及び第5図を参照して本発明をバイモルフに適用
する場合の一例を説明する。
An example of applying the present invention to a bimorph will be described with reference to FIGS. 4 and 5.

この例においては、両主面に夫々電極11が被着された
2枚の圧電体板、すなわち、第1の部材12を設け、両
者間に第2の部材13を介在させて積層合体する。
In this example, two piezoelectric plates, ie, a first member 12, each having an electrode 11 adhered to its main surface, are provided and are laminated together with a second member 13 interposed between them.

第1の部材12、すなわち圧電体板は、例えばジルコン
チタン酸鉛のような圧電磁器板より構成される。
The first member 12, that is, the piezoelectric plate, is composed of a piezoelectric ceramic plate made of, for example, lead zirconium titanate.

第2の部材13、すなわち圧電体板間に介在するクラン
プ或いは補強の効果を有するシム板とし・ては、特に弾
性率に異方性を有する材料より構成する。
The second member 13, that is, the shim plate interposed between the piezoelectric plates and having a clamping or reinforcing effect, is made of a material particularly having anisotropy in elastic modulus.

この部材13としては、例えば一方向に沿つて延長する
ようなりーボン繊維層に、例えばエポキシ接着を含浸さ
せたカーボン繊維シートを用い得る。このカーボン繊維
シートは、カーボン繊維の延長方向に関して最大の弾性
率を示し、これと直交する方向に最小の弾性率を示す。
そして、このカーボン繊維シートによつてバイモルフを
構成するときは、その変位置を得るに寄与する方向の伸
縮が要求される方向、図示の例ではX方向に、最大の弾
性率を示す方向、すなわち、カーボン繊維の延長方向が
沿うように配置する。更に、本発明によるバイモルフの
実施例を詳細に説明する。
This member 13 may be, for example, a carbon fiber sheet in which a carbon fiber layer extending in one direction is impregnated with, for example, epoxy adhesive. This carbon fiber sheet exhibits a maximum elastic modulus in the direction in which the carbon fibers extend, and a minimum elastic modulus in a direction perpendicular to this direction.
When constructing a bimorph with this carbon fiber sheet, the direction in which expansion and contraction is required to contribute to obtaining the displacement, in the illustrated example, the X direction, is the direction in which the maximum elastic modulus is exhibited, , arranged so that the carbon fibers extend in the same direction. Further, embodiments of the bimorph according to the present invention will be described in detail.

実施例1 第1の部材12、すなわち圧電体板として、厚さ250
μmのジルコンチタン酸鉛(PZT)系の圧電磁器より
成る圧電体板2を用意し、その両主面に夫々例えばAu
を蒸着した電極11を形成する。
Example 1 The first member 12, that is, the piezoelectric plate, has a thickness of 250 mm.
A piezoelectric plate 2 made of μm lead zirconium titanate (PZT)-based piezoelectric ceramic is prepared, and both main surfaces thereof are coated with, for example, Au.
An electrode 11 is formed by vapor depositing.

一方、直径10μmのカーボンファイバー15をほぼ一
方向に沿つて延長するように配列し、これにエポキシ系
接着剤16を含浸させて成る厚さ100μmのカーボン
ファイバーシートを用意し、これをシム板13として、
前述の2枚の圧電体板12間に挾み込む。この状態で1
20℃〜130℃で3時間の加熱圧着を行つて接着剤の
硬化を行つて25薗×25rfrInのバイモルフを作
る。このバイモルフのシム板13の繊維の延長方向をx
方向としてこれと直交し、バイモルフの板面方向に沿う
方向をy方向として、X方向の一端を57r0nの幅に
亘つて固定してその遊端のy方向の中央から両側夫々1
0772117!に亘るすなわち20Tf0fLの範囲
の各位置での、バイモルフの板面方向と直交する方向の
変位置を測定した結果を第6図中曲線14に示す。また
、y方向に関する一端を同様に5wnの幅に亘つて固定
してその遊端のx方向の中央から両側夫々10770F
!に亘るすなわち20mInの範囲の各位置での、バイ
モルフの板面方向と直交する方向の変位置を測定した結
果を第6図中曲線15に示す。これら曲線14及び15
を比較することによつて明らかなようにカー1ボンフア
イバーの延長方向に沿うx方向に関する一端を固定した
場合の変位置(以下X方向に関する変位置という)は、
y方向に関する一端を固定した場合の変位置(以下y方
向に関する変位置という)に比し、中央位置で約25倍
、両端位置で約1.8倍の大きな変位置、すなわち高い
感度を示す。このようにy方向に関する変位置がX方向
のそれより低いのはシム板13のy方向がカーボンファ
イバーの並置方向であるがために、この方向の弾性率が
低く、圧電体板12に圧電効果、或い,は電歪効果によ
る伸縮が生じた場合、このy方向に関しては、圧電体板
12の伸縮に伴つてシム板13が或る程度伸縮してしま
つてクランプ効果が小さくなり、この方向に関して圧電
体板12にそりが生じにくくなつて大きな変位置が得ら
れなくなるものと思われる。これに比し、X方向に関し
ては、この方向がシム板13のカーボンファイバーの長
手方向に沿う方向であつてその弾性率が大きいので圧電
体板12に対するクランプ効果は大きく、したがつて大
きな変位置が得られ、その上、上述したy方向のそりの
発生が抑えられることによつて、X方向に関するそりが
生じ易くなり、より大きな変位置が得られる。そして、
曲線14を15と比較してみるに、曲線14の楊合、曲
線15に比し、中央部での変位置の低下が小さい。これ
は、x及びy方向のそりの発生は、特に夫々の中央にお
いて、他の方向のyおよびX方向のそりによつて抑止さ
れ易いが、上述したようにこのバイモルフでは、y方向
に関するそりが生じにくくなつているために、X方向に
関するそりが中央部でも大きく得られ、中央部での変位
置の低下が回避されるものと思われる。また、上述した
例のように、シム板13としてカーボンファイバーのよ
うな繊維に接着剤を含浸させて圧電体板12間に介在さ
せて圧着硬化を行つて得たバイモルフは、第7図にその
要部の拡大断面図を示すように、その繊維15が接着剤
16によつて、接合されるがこの場合、繊維15が殆ん
ど直接的に電極11を有する圧電体板12に接して接合
されるので、両者間には、比較的柔難性に富み、ずれの
生じ易い接着剤16が殆んど介在されないか極く薄く介
在されるに過ぎないのでこの接着剤16によるクランプ
効果が阻害されるを回避できる。
On the other hand, a carbon fiber sheet with a thickness of 100 μm is prepared by arranging carbon fibers 15 with a diameter of 10 μm so as to extend substantially in one direction and impregnating this with an epoxy adhesive 16. As,
It is sandwiched between the two piezoelectric plates 12 described above. In this state 1
The adhesive is cured by heat-pressing at 20 DEG C. to 130 DEG C. for 3 hours to produce a bimorph of 25 mm x 25 rfrIn. The direction of fiber extension of the shim plate 13 of this bimorph is x
The direction perpendicular to this and along the plate surface direction of the bimorph is defined as the y direction, one end in the
0772117! Curve 14 in FIG. 6 shows the results of measuring the displacement in the direction perpendicular to the plate surface direction of the bimorph at each position in the range of 20Tf0fL. In addition, one end in the y direction is similarly fixed over a width of 5wn, and from the center of the free end in the x direction, each side is 10770F.
! Curve 15 in FIG. 6 shows the results of measuring the displacement in the direction perpendicular to the plate surface direction of the bimorph at each position within a range of 20 mIn. These curves 14 and 15
As is clear from comparing the following, the displacement position (hereinafter referred to as displacement position in the X direction) when one end in the x direction along the extension direction of the carbon fiber is fixed is:
Compared to the displacement when one end in the y direction is fixed (hereinafter referred to as displacement in the y direction), the displacement is approximately 25 times greater at the center position and approximately 1.8 times greater at both end positions, that is, exhibits high sensitivity. The reason why the displacement in the y direction is lower than that in the , or when expansion and contraction occurs due to the electrostrictive effect, in this y direction, the shim plate 13 expands and contracts to some extent as the piezoelectric plate 12 expands and contracts, and the clamping effect becomes smaller. It is thought that warpage is less likely to occur in the piezoelectric plate 12 and large displacements cannot be obtained. In contrast, in the X direction, this direction is along the longitudinal direction of the carbon fibers of the shim plate 13 and its elastic modulus is large, so the clamping effect on the piezoelectric plate 12 is large, and therefore a large displacement occurs. In addition, by suppressing the occurrence of warpage in the y direction described above, warpage in the X direction is more likely to occur, and a larger displacement can be obtained. and,
Comparing curve 14 with curve 15, the drop in displacement at the center is smaller than that of curve 14 and curve 15. This is because the occurrence of warpage in the x and y directions is likely to be suppressed by the warpage in the other directions, especially in the respective centers, but as mentioned above, in this bimorph, the warpage in the y direction is Since this is less likely to occur, a large amount of warpage in the X direction can be obtained even in the center, and it is thought that a decrease in displacement in the center can be avoided. In addition, as in the above-mentioned example, a bimorph obtained by impregnating a fiber such as carbon fiber with adhesive as the shim plate 13, interposing it between the piezoelectric plates 12, and performing compression hardening is shown in FIG. As shown in the enlarged sectional view of the main part, the fibers 15 are bonded with an adhesive 16, but in this case, the fibers 15 are almost directly in contact with the piezoelectric plate 12 having the electrodes 11 and bonded. Therefore, the adhesive 16, which is relatively flexible and easily slips, is hardly interposed or only very thinly interposed between the two, so that the clamping effect of the adhesive 16 is inhibited. You can avoid being exposed.

尚、第1の部材、すなわち圧電体板12の各内側の電極
11からの端子導出は、これら電極11に接触するよう
に、バイモルフの固定側において第2の部材、すなわち
、シム板13の端部に金属箔或いは蒸着金属層等の導電
層20を被着し置き、この導電層20から端子導出を行
うこともできるし、図示しないがシム板13の一部に切
り欠きを設けて上述の内側の電極の一部を露呈させ、端
子導出を行う。
Note that the terminals are led out from the electrodes 11 on each inner side of the first member, that is, the piezoelectric body plate 12, from the second member, that is, the end of the shim plate 13 on the fixed side of the bimorph, so as to be in contact with these electrodes 11. A conductive layer 20 such as a metal foil or a vapor-deposited metal layer may be applied to the conductive layer 20, and the terminals may be led out from the conductive layer 20.Alternatively, a cutout may be provided in a part of the shim plate 13 (not shown) and the above-mentioned method may be used. A part of the inner electrode is exposed and the terminal is led out.

次に、本発明の特徴を明確にするために、本発明による
,ことのない比較例について説明する。
Next, in order to clarify the characteristics of the present invention, a comparative example according to the present invention will be described.

比較例1実施例1で説明したバイモルフにおいて、圧電
体板12として、圧電磁器に代えてポリ弗化ビニリデン
と圧電セラミック粉末の複合材より成るいわゆる高分子
圧電体板を用いたバイモルフを作成した。
Comparative Example 1 In the bimorph described in Example 1, a so-called polymer piezoelectric plate made of a composite material of polyvinylidene fluoride and piezoelectric ceramic powder was used as the piezoelectric plate 12 instead of the piezoelectric ceramic.

この比較例によるバイモルフの変位置を、前述の実施例
1によるバイモルフに対する変位置の測定方法と同様の
測定方法によつてX方向に関ノする変位置と、y方向に
関する変位置の測定結果は、夫々第8図中曲線17及び
18に示す。これら曲線17及び18から明らかなよう
に、x方向に関する変位置と、y方向に関する変位置と
には殆んど差が生じていない。すなわち、この比較例ダ
ではシム板として、弾性率が異方性を有し、X方向の弾
性率が、y方向の弾性率より大なるものを用いるにもか
かわらず、x及びy方向に関する変位置には差が生じな
い。これは、この比較例によるバイモルフにおける圧電
体板が高分子圧電体板θより成り、これの弾性率がシム
板の弾性率の小さい値を示すy方向の弾性率より更に小
さいがために、クランプの効果が強過ぎるためと思われ
る。そして、ここに、本発明においては、圧電体板12
(第1の部材)の弾性率Eがシム板(第2の部材)のy
方向の弾性率E,より大となる関係を保持するように第
1及び第2の部材の弾性率を選定する所以がある。因み
に、実施例1における圧電磁器の弾性率は、5〜10×
1(1f′KgIcILl例えば7×1伊K9ノdでカ
ーボンファイバーシートの繊維方向のそれは13.5×
1Cf′KgIcItlこれと直交する方向のそれは1
.0×1Cf′K9k!tで、比較例1における高分子
圧電体のそれは2.6×101k91dである。
The displacement position of the bimorph according to this comparative example was measured by the same measuring method as the displacement measurement method for the bimorph according to Example 1 described above, and the displacement position in the X direction and the displacement position in the y direction were measured. , as shown by curves 17 and 18 in FIG. 8, respectively. As is clear from these curves 17 and 18, there is almost no difference between the displacement position in the x direction and the displacement position in the y direction. In other words, although this comparative example uses a shim plate with an anisotropic elastic modulus and a larger elastic modulus in the X direction than in the y direction, there are no changes in the There is no difference in position. This is because the piezoelectric plate in the bimorph according to this comparative example is made of a polymeric piezoelectric plate θ, and its elastic modulus is even smaller than the elastic modulus in the y direction, which indicates the small value of the elastic modulus of the shim plate. This seems to be because the effect is too strong. Here, in the present invention, the piezoelectric plate 12
The elastic modulus E of (first member) is y of the shim plate (second member)
There is a reason why the elastic moduli of the first and second members are selected so as to maintain a relationship in which the elastic modulus E in the direction is larger. Incidentally, the elastic modulus of the piezoelectric ceramic in Example 1 is 5 to 10×
1 (1f'KgIcILlFor example, in 7x1IK9nod, the fiber direction of the carbon fiber sheet is 13.5x
1Cf'KgIcItl In the direction perpendicular to this, it is 1
.. 0×1Cf'K9k! t, that of the polymer piezoelectric material in Comparative Example 1 is 2.6×101k91d.

また従来のシム板のTlは10X1σKgI(:7iで
ある。尚、実施例1においては、シム板13として、x
方向に最大の弾性率を有し、y方向に最小の弾性率を有
する配置をとつた場合であるがシム板13の繊維の延長
方向をx方向と一致させずに或る程度の角度を保有させ
るようにすることもできる。
Further, Tl of the conventional shim plate is 10X1σKgI (:7i. In the first embodiment, as the shim plate 13, x
Although the arrangement is such that the fibers of the shim plate 13 have the maximum elastic modulus in the direction and the minimum elastic modulus in the y direction, the fiber extension direction of the shim plate 13 does not coincide with the x direction and maintains a certain angle. It is also possible to do so.

今、実施例1においてシム板13のカーボン繊維の延長
方向と、X方向のなす角度θを00から5のづつ変化さ
せて得た各バイモルフのX方向に関する変位置を測定し
たところ第9図中曲線17に示す結果が得られた。第9
図において破線aで示す変位置は、従来のように、バイ
モルフのシム板として金属板を用いた場合の値で、この
値は角度θが45属の場合にほぼ相当する。すなわち、
角度θを45属以下に選定するとき、シム板の弾性率の
異方性が生じ、これによる感度上昇の効果が生ずる。因
みに、表1に実施例1で説明したシム板13としてのカ
ーボンファイバーシートにおいて、その繊維の方向とX
方向とのなす角度θを変化させた場合のx方向の弾性率
Exの測定結果と、これとy方向の弾性率Eyとの比を
示す。また上述したように、弾性率に異方性を有する第
2の部材13として、カーボンファイバーのような繊維
配列によるシートを用いる場合、その繊維の延長去向t
寸卜逮1,ナー上らに荀庇O尤NO〜A口0をもつて一
方向に配列する場合に限られるものではなく、例えば第
10図に細線をもつて示すようにx方向に角度十θをも
つてカーボンファイバーのような繊維15を配列したシ
ートと、同様に7細線をもつて示すようにy方向に角度
一θをもつてカーボンファイバーのような繊維15を配
列したシートとを積層合体するか渾然一体に構成するこ
ともできるし、更に或る場合は、y方向の補強のために
、例えば両シート間にθ=90向をもつてク図示しない
が同様の繊維を配列したシートを介在させて積層合体す
るか全体として渾然一体に構成することもできる。上述
したように本発明構成によれば、大きな変位置を得るこ
とができるので、冒頭に述べたよう7に、例えばVTR
における磁気ヘッドのトラッキングサーボに用いて好適
であり、同一変位置に対しては、低電圧駆動を可能にす
るものである。
Now, in Example 1, the displacement position of each bimorph in the X direction was measured by changing the angle θ between the extension direction of the carbon fibers of the shim plate 13 and the X direction in increments of 00 to 5. The results shown in curve 17 were obtained. 9th
The displacement indicated by the broken line a in the figure is the value when a metal plate is used as the shim plate of the bimorph as in the conventional case, and this value almost corresponds to the case where the angle θ is 45 genus. That is,
When the angle θ is selected to be 45 or less, anisotropy in the elastic modulus of the shim plate occurs, which has the effect of increasing sensitivity. Incidentally, Table 1 shows the fiber direction and X of the carbon fiber sheet as the shim plate 13 explained in Example 1.
The measurement results of the elastic modulus Ex in the x direction and the ratio of this to the elastic modulus Ey in the y direction are shown when the angle θ with the direction is changed. Further, as described above, when using a sheet with fiber arrangement such as carbon fiber as the second member 13 having anisotropy in elastic modulus, the extension and departure of the fibers t
The arrangement is not limited to the case where the dimensions are arranged in one direction with the dimensions 1 and 2 and 3. A sheet in which fibers 15 such as carbon fibers are arranged at an angle of 10 θ, and a sheet in which fibers 15 such as carbon fibers are arranged at an angle of 1 θ in the y direction as similarly shown by 7 thin lines. They can be laminated or integrated, or in some cases, similar fibers (not shown) may be arranged between both sheets in the θ=90 direction for reinforcement in the y direction. It is also possible to laminate them together with a sheet interposed therebetween, or to construct them as a whole in a harmonious manner. As mentioned above, according to the configuration of the present invention, it is possible to obtain a large displacement, so as mentioned at the beginning, for example, VTR
It is suitable for use in tracking servo of a magnetic head, and enables low voltage driving for the same displacement position.

また、上述した例のように、第2の部材、すなわちシム
板としてカーボンファイバーのような繊維に、接着剤を
含浸させたシートを用いるときは、従来のように接着剤
を塗布する工程が不要となるので、製造工程の簡略化、
ひいては価格の低廉化をはかることができる。また、変
位置を得るに供しないy方向に関する変位はこれを抑え
るようにしたので、大振幅動作時の亀裂の発生を回避で
きる効果もある。尚、上述した例では、主として2枚の
圧電体板が積層されて成るバイモルフに本発明を適用す
る場合について説明したが、バイモルフを始めとして種
々の構成を採る電気・機械変換素子に本発明を適用でき
ることは明らかであろう。
In addition, as in the above example, when a sheet made of fibers such as carbon fiber impregnated with adhesive is used as the second member, that is, the shim plate, the conventional process of applying adhesive is unnecessary. Therefore, the manufacturing process can be simplified,
In turn, it is possible to reduce the price. Further, since the displacement in the y-direction, which does not contribute to obtaining a displaced position, is suppressed, it is possible to avoid the occurrence of cracks during large amplitude operation. In the above example, the present invention was mainly applied to a bimorph formed by laminating two piezoelectric plates, but the present invention can also be applied to electromechanical transducers having various configurations including the bimorph. It is obvious that it can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバイモルフの拡大断面図、第2図及び第
3図はその説明図、第4図は本発明による電気・機械変
換素子の一例の拡大断面図、第5図はその要部の一部を
切り欠いた拡大斜視図、第6図はその変位置の測定結果
を示す図、第7図は本発明素子の更に要部の拡大断面図
、第8図は本発明に対する比較例の変位置の測定結果を
示す図、第9図は本発明の説明に供する第2の部材の繊
維の方向と変位置の関係の測定結果を示す図、第10図
は、本発明素子の他の例の第2の材の拡大平面図てある
。 12は圧電体板、すなわち第1の部材、11はその電極
、13はシム板ないしは補強板、すなわち第2の部材で
ある。
FIG. 1 is an enlarged sectional view of a conventional bimorph, FIGS. 2 and 3 are explanatory diagrams thereof, FIG. 4 is an enlarged sectional view of an example of the electromechanical conversion element according to the present invention, and FIG. 5 is its essential part. FIG. 6 is a diagram showing the measurement results of the displacement, FIG. 7 is an enlarged cross-sectional view of the main part of the device of the present invention, and FIG. 8 is a comparative example for the present invention. FIG. 9 is a diagram showing the measurement results of the relationship between the direction of the fibers and the displacement position of the second member used for explaining the present invention, and FIG. It is an enlarged plan view of the second material of the example. 12 is a piezoelectric plate, that is, a first member; 11 is an electrode thereof; and 13 is a shim plate or a reinforcing plate, that is, a second member.

Claims (1)

【特許請求の範囲】[Claims] 1 両主面に電極が被着された圧電体板よりなる第1の
部材と、該第1の部材の一主面に固着された第2の部材
とより成り、該第2の部材は、第1の方向の弾性率が該
第1の方向に直交する第2の方向の弾性率より大きく、
且つ上記第1の部材の弾性率が上記第2の部材の上記第
2の方向の弾性率より大きく選ばれた電気・機械変換素
子。
1. Consists of a first member made of a piezoelectric plate with electrodes adhered to both main surfaces, and a second member fixed to one main surface of the first member, the second member comprising: the elastic modulus in a first direction is greater than the elastic modulus in a second direction orthogonal to the first direction,
and an electromechanical conversion element in which the elastic modulus of the first member is selected to be larger than the elastic modulus of the second member in the second direction.
JP54054266A 1979-05-02 1979-05-02 Electrical/mechanical conversion element Expired JPS6048112B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP54054266A JPS6048112B2 (en) 1979-05-02 1979-05-02 Electrical/mechanical conversion element
US06/143,339 US4349762A (en) 1979-05-02 1980-04-24 Fiber reinforced piezoelectric bender transducer
CA000350753A CA1154862A (en) 1979-05-02 1980-04-28 Fiber reinforced piezoelectric bender transducer
NL8002472A NL8002472A (en) 1979-05-02 1980-04-28 ELECTROMECHANICAL TRANSDUCER.
DE19803016748 DE3016748A1 (en) 1979-05-02 1980-04-30 ELECTROMECHANICAL CONVERTER
FR8009867A FR2455840A1 (en) 1979-05-02 1980-04-30 ELECTROMECHANICAL TRANSDUCER
GB8014165A GB2052151B (en) 1979-05-02 1980-04-30 Electro-mechanical transducers
AT0234480A AT369574B (en) 1979-05-02 1980-05-02 ELECTROMECHANICAL CONVERTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54054266A JPS6048112B2 (en) 1979-05-02 1979-05-02 Electrical/mechanical conversion element

Publications (2)

Publication Number Publication Date
JPS55146989A JPS55146989A (en) 1980-11-15
JPS6048112B2 true JPS6048112B2 (en) 1985-10-25

Family

ID=12965758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54054266A Expired JPS6048112B2 (en) 1979-05-02 1979-05-02 Electrical/mechanical conversion element

Country Status (8)

Country Link
US (1) US4349762A (en)
JP (1) JPS6048112B2 (en)
AT (1) AT369574B (en)
CA (1) CA1154862A (en)
DE (1) DE3016748A1 (en)
FR (1) FR2455840A1 (en)
GB (1) GB2052151B (en)
NL (1) NL8002472A (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3010580A1 (en) * 1980-03-19 1981-09-24 Siemens AG, 1000 Berlin und 8000 München VIDEO TAPE ACTUATOR
DE3223801A1 (en) * 1982-06-25 1983-12-29 Siemens AG, 1000 Berlin und 8000 München Process for producing a piezoelectric actuator
DE3240884A1 (en) * 1982-11-05 1984-05-10 Philips Patentverwaltung Gmbh, 2000 Hamburg CERAMIC BISTABLE BENDING ELEMENT
DE3425290A1 (en) * 1984-07-10 1986-01-16 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl PIEZOCERAMIC VALVE PLATE AND METHOD FOR THE PRODUCTION THEREOF
FR2567705B1 (en) * 1984-07-13 1986-11-14 Thomson Csf PIEZOELECTRIC TRANSDUCER AND PRESSURE SENSOR USING SUCH A TRANSDUCER
US4833659A (en) * 1984-12-27 1989-05-23 Westinghouse Electric Corp. Sonar apparatus
US4769570A (en) * 1986-04-07 1988-09-06 Toshiba Ceramics Co., Ltd. Piezo-electric device
JPS63237044A (en) * 1987-03-25 1988-10-03 Minolta Camera Co Ltd Electrostrictive shutter driving device
JPS6420756U (en) * 1987-07-27 1989-02-01
JPH02164284A (en) * 1988-04-12 1990-06-25 Tomio Kotaki Ultrasonic actuator
US5037208A (en) * 1989-04-06 1991-08-06 Branson Ultrasonics Corporation Immersible transducer assembly
DE3935474A1 (en) * 1989-06-22 1991-01-03 Hoechst Ceram Tec Ag PIEZOELECTRIC BENDING CONVERTER AND ITS USE
JPH04216409A (en) * 1990-12-18 1992-08-06 Matsushita Electric Ind Co Ltd Angular velocity sensor
JPH05218517A (en) * 1992-02-06 1993-08-27 Murata Mfg Co Ltd Piezoelectric bimolph type actuator
US5424596A (en) * 1992-10-05 1995-06-13 Trw Inc. Activated structure
US6420819B1 (en) 1994-01-27 2002-07-16 Active Control Experts, Inc. Packaged strain actuator
JPH10211701A (en) * 1996-11-06 1998-08-11 Seiko Epson Corp Actuator with piezoelectric element, ink jet type recording head, and manufacture of them
US5834882A (en) * 1996-12-11 1998-11-10 Face International Corp. Multi-layer piezoelectric transformer
DE19732513C2 (en) * 1997-07-29 2002-04-11 Eurocopter Deutschland Method of making a composite structure
US5942838A (en) * 1997-08-19 1999-08-24 The Hong Kong University Of Science & Technology Rotary motor driven by a piezoelectric composite laminate
DE59813810D1 (en) * 1997-09-30 2006-12-28 Argillon Gmbh PIEZOELECTRIC ELEMENT
EP1089353B1 (en) * 1999-10-01 2006-11-08 Ngk Insulators, Ltd. Piezoelectric/electrostrictive device
DE10023556A1 (en) * 2000-05-15 2001-11-29 Festo Ag & Co Piezo bending transducer and use of the same
DE10025561A1 (en) 2000-05-24 2001-12-06 Siemens Ag Self-sufficient high-frequency transmitter
EP1292995A1 (en) * 2000-06-21 2003-03-19 Siemens Aktiengesellschaft Piezo-electric bending transducer
FR2810686B1 (en) * 2000-06-23 2002-10-11 Thomson Marconi Sonar Sas ANTI-VIBRATION DEVICE FOR WALL
EP1168463A1 (en) * 2000-06-23 2002-01-02 DORNIER GmbH Fiber composite with integrated piezoelectric actor or sensor
DE10040994C2 (en) * 2000-08-18 2003-12-24 Univ Dresden Tech Arrangement for generating sound in the low to high frequency range
US7084529B2 (en) 2001-07-03 2006-08-01 Face International Corp. Self-powered switch initiation system
DE20202297U1 (en) * 2001-09-07 2002-08-29 Drei S Werk Praez Swerkzeuge G Flat actuator or sensor with internal preload
DE10150128C2 (en) 2001-10-11 2003-10-02 Enocean Gmbh Wireless sensor system
US6888291B2 (en) * 2002-10-31 2005-05-03 The Boeing Company Electrical system for electrostrictive bimorph actuator
JP2007534172A (en) 2004-04-23 2007-11-22 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Micro electromechanical device
US7497133B2 (en) 2004-05-24 2009-03-03 Drexel University All electric piezoelectric finger sensor (PEFS) for soft material stiffness measurement
DE502005003241D1 (en) * 2005-11-25 2008-04-24 Festo Ag & Co Piezoelectric bending transducer
US8481335B2 (en) * 2006-11-27 2013-07-09 Drexel University Specificity and sensitivity enhancement in cantilever sensing
US7992431B2 (en) * 2006-11-28 2011-08-09 Drexel University Piezoelectric microcantilevers and uses in atomic force microscopy
EP2100125A4 (en) * 2006-11-28 2012-02-15 Univ Drexel Piezoelectric microcantilever sensors for biosensing
US8456150B2 (en) 2007-02-01 2013-06-04 Drexel University Hand-held phase-shift detector for sensor applications
US20080211353A1 (en) * 2007-03-02 2008-09-04 Charles Erklin Seeley High temperature bimorph actuator
US8241569B2 (en) 2007-11-23 2012-08-14 Drexel University Lead-free piezoelectric ceramic films and a method for making thereof
WO2009126378A2 (en) 2008-03-11 2009-10-15 Drexel University Enhanced detection sensitivity with piezoelectric microcantilever sensors
CN102066928B (en) 2008-05-16 2015-08-05 德瑞索大学 The system and method for assessment tissue
US8722427B2 (en) * 2009-10-08 2014-05-13 Drexel University Determination of dissociation constants using piezoelectric microcantilevers
US20110086368A1 (en) * 2009-10-08 2011-04-14 Drexel University Method for immune response detection
US8659211B1 (en) * 2011-09-26 2014-02-25 Image Acoustics, Inc. Quad and dual cantilever transduction apparatus
DE102013205626A1 (en) * 2013-03-28 2014-10-02 Siemens Aktiengesellschaft Bending transducer with piezoelectric bending element, cooling device and electronic module
US9882115B2 (en) * 2015-04-02 2018-01-30 The Boeing Company Integrated compliant boundary for piezoelectric bimorph actuator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518793A (en) * 1944-04-10 1950-08-15 Helen Keller Crystal mounting
US3447217A (en) * 1964-02-05 1969-06-03 Hitachi Ltd Method of producing ceramic piezoelectric vibrator
CH429228A (en) * 1964-12-10 1967-01-31 Kistler Instrumente Ag Piezoelectric installation body for installation in a piezoelectric transducer
GB1278996A (en) * 1968-11-06 1972-06-21 Motorola Inc Bender bimorph construction
US3631383A (en) * 1969-07-25 1971-12-28 Bendix Corp Piezoelectric transducer configuration
US3622815A (en) * 1970-03-25 1971-11-23 Motorola Inc High reliability ceramic bender
US3629625A (en) * 1970-09-17 1971-12-21 Motorola Inc Piezoelectric bender bilayer with flexible corrugated center vane
US4047060A (en) * 1971-09-07 1977-09-06 Motorola, Inc. Acoustic transducer with elastomeric coupling
US3979565A (en) * 1975-08-11 1976-09-07 Westinghouse Electric Corporation Metal enclosed transducer assembly
DE2922451C2 (en) * 1978-06-02 1986-09-18 Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto Piezoelectric resonator device

Also Published As

Publication number Publication date
FR2455840B1 (en) 1985-03-22
NL8002472A (en) 1980-11-04
US4349762A (en) 1982-09-14
JPS55146989A (en) 1980-11-15
ATA234480A (en) 1982-05-15
FR2455840A1 (en) 1980-11-28
GB2052151B (en) 1983-04-27
DE3016748C2 (en) 1988-10-06
DE3016748A1 (en) 1980-11-13
CA1154862A (en) 1983-10-04
GB2052151A (en) 1981-01-21
AT369574B (en) 1983-01-10

Similar Documents

Publication Publication Date Title
JPS6048112B2 (en) Electrical/mechanical conversion element
JP3675315B2 (en) Head gimbal assembly having an actuator for minute positioning of a head element and disk apparatus having the head gimbal assembly
US4363993A (en) Piezoelectric electro-mechanical bimorph transducer
US6118637A (en) Piezoelectric assembly for micropositioning a disc drive head
JP4075475B2 (en) Head gimbal assembly having an actuator for minute positioning of a head element and disk apparatus having the head gimbal assembly
US4374402A (en) Piezoelectric transducer mounting structure and associated techniques
US5276657A (en) Metal-electroactive ceramic composite actuators
JP3501758B2 (en) Recording / reproducing head support mechanism and recording / reproducing apparatus
JP2002133803A (en) Very small positioning actuator for head element, head gimbal assembly equipped with the actuator, disk device equipped with the head gimbal assembly, actuator manufacturing method, and head gimbal assembly manufacturing method
US7352538B2 (en) Magnetic disk drive piezoelectric actuator with hinge plate limbs extending non-linear symmetrically from central portion
JP2004158163A (en) Actuator for fine positioning of head element, head gimbals assembly equipped with the actuator, and disk unit with head gimbals assembly
JP2000102268A (en) Piezoelectric/electrostriction device
US5103361A (en) Magnetic head apparatus having non-magnetic metal interposed between piezoelectric members
JP2002329376A (en) Actuator for micropositioning of head element and head gimbals assembly having method of manufacturing this actuator
JP2002329375A (en) Head gimbals assembly having actuator for micropositioning of head element
JP3210011B2 (en) Piezoelectric bending transducer and method of manufacturing the same
WO2001026168A1 (en) Piezoelectric / electrostrictive device
JPS6310912B2 (en)
US20020008942A1 (en) Precise positioning actuator, actuator for precisely positioning thin-film magnetic head element and head gimbal assembly with the actuator
JPH11213365A (en) Recording/reproducing head supporting mechanism and actuator
JP4360053B2 (en) Head slider bonded to micropositioning actuator, head gimbal assembly provided with head slider, method of bonding head slider and actuator, and method of manufacturing head gimbal assembly
JPS5946432B2 (en) bimorph piezoelectric element
JP3428773B2 (en) Bimorph piezoelectric element and method of manufacturing the same
JP4110802B2 (en) Head element micropositioning actuator, head gimbal assembly including the actuator, and disk device including the head gimbal assembly
JP3608964B2 (en) Magnetic disk unit