JPS6018609B2 - Ferromagnetic powder and its manufacturing method - Google Patents

Ferromagnetic powder and its manufacturing method

Info

Publication number
JPS6018609B2
JPS6018609B2 JP56157138A JP15713881A JPS6018609B2 JP S6018609 B2 JPS6018609 B2 JP S6018609B2 JP 56157138 A JP56157138 A JP 56157138A JP 15713881 A JP15713881 A JP 15713881A JP S6018609 B2 JPS6018609 B2 JP S6018609B2
Authority
JP
Japan
Prior art keywords
powder
cobalt
aqueous solution
less
ferromagnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56157138A
Other languages
Japanese (ja)
Other versions
JPS5860624A (en
Inventor
聡一郎 信岡
孝 浅井
和明 阿度
幹雄 岸本
進 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Maxell Ltd
Original Assignee
Agency of Industrial Science and Technology
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Maxell Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56157138A priority Critical patent/JPS6018609B2/en
Priority to DE8282109003T priority patent/DE3274777D1/en
Priority to EP19820109003 priority patent/EP0076462B2/en
Priority to CA000412570A priority patent/CA1246321A/en
Publication of JPS5860624A publication Critical patent/JPS5860624A/en
Publication of JPS6018609B2 publication Critical patent/JPS6018609B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は強磁性粉末およびその製造方法に関し、その
目的とするところは保磁力分布が良好で熱的安定性に優
れたコバルト含有酸化鉄強磁性粉末を堤共することにあ
る。
[Detailed Description of the Invention] The present invention relates to a ferromagnetic powder and a method for producing the same, and an object thereof is to produce a cobalt-containing iron oxide ferromagnetic powder that has a good coercive force distribution and excellent thermal stability. It is in.

コバルト含有酸化鉄強磁性粉末は高保磁力を有するなど
優れた磁気特性を有しているため、高性熊磁気記録媒体
の記録素子として広く使用され、また磁石材料等として
も使用されている。
Since cobalt-containing iron oxide ferromagnetic powder has excellent magnetic properties such as high coercive force, it is widely used as a recording element of high-performance magnetic recording media, and is also used as a magnet material.

このようなコバルト含有酸化鉄強磁性粉末の製造方法は
、これまで種々のものが提案されており、そのなかでも
有用な方法の一つとして、y−Fe203粉末を核晶と
し、これをコバルト塩と第一鉄塩とを含有する溶液に分
散させた後、これにアルカリ溶液を加え、核晶上にコバ
ルトを主体的に含む酸化鉄層を形成させる方法が提案さ
れている。
Various methods have been proposed to date for producing such cobalt-containing iron oxide ferromagnetic powder, and one of the most useful methods is to use y-Fe203 powder as a nucleus crystal, and then add a cobalt salt to the ferromagnetic powder. A method has been proposed in which iron oxide is dispersed in a solution containing cobalt and ferrous salt, and then an alkaline solution is added thereto to form an iron oxide layer containing mainly cobalt on the nuclear crystals.

ところが、この方法で使用されるy−Fe203粉末は
、通常、第一鉄塩とアルカリ水溶溶液とを30〜600
0の温度で混合し反応させるとともにこれを酸化して得
られるQーオキシ水酸化鉄粉末を原料とし、これを加熱
還元しさらに酸化して得られるものである。
However, the y-Fe203 powder used in this method is usually mixed with a ferrous salt and an alkaline aqueous solution at a concentration of 30 to 600
The raw material is Q-iron oxyhydroxide powder, which is obtained by mixing and reacting at a temperature of zero and oxidizing the powder, which is then heated and reduced and further oxidized.

しかしながら、このようなy一Fe203粉末は、鞠比
が大きく、かつ粒度分布が不均一であるために、保磁力
分布も広く、微細なものを得ようとする場合、転写、加
熱減磁等の熱的安定性に欠け、これを核晶として使用し
たコバルト含有酸化鉄の特性を満足し得るものではなか
った。この発明者らはかかる欠点を改善するため種々検
討を行なった結果、コバルトを主体的に含有する表面層
を形成する前のy一Fe203強磁性粉末を製造するに
当たり、3価の鉄イオンを含有する水溶液を前記鉄イオ
ンに対し当量以上のアルカリ水溶液中に3び0以下の温
度で添加し反応させて水酸化第二鉄を生成し、これを熟
成した後、オートクレープ中で水熱反応させてQ−オキ
シ水酸化鉄粉末を生成し、ろ過、乾燥後この生成粉末を
加熱還元、さらに酸化してy−Fe203強磁性粉末と
すると、微細で軸比の小さなかつ粒度分布の均一なy−
Fe208強磁性粉末が得られ、このy−Fe203強
磁性粉末をコバルト塩を含む溶液中に分散させ、さらに
これにアルカリ水溶液を加えてy−Fe203粉末の表
面にコバルトを主体的に含む表面層を形成させると、最
軸径が30皿m以下、軸比が5以下で、かつBET法に
よる比表面積が40〆/タ以下、保磁力が23.歌A/
m以上の粒度分布が均一で保磁力分布が狭く、熱安定性
も良好で転写および加熱減磁の少ないコバルト含有酸化
鉄強磁性粉末が得られることを見いだし、この発明をな
すに女ごつた。
However, since such y-Fe203 powder has a large magnetic field ratio and an uneven particle size distribution, it also has a wide coercive force distribution, and when trying to obtain a fine powder, it requires transfer, heating demagnetization, etc. It lacked thermal stability and could not satisfy the characteristics of cobalt-containing iron oxide using it as a nucleus crystal. The inventors conducted various studies to improve these drawbacks, and as a result, when producing y-Fe203 ferromagnetic powder before forming a surface layer that mainly contains cobalt, it was found that it contained trivalent iron ions. The aqueous solution is added to an alkaline aqueous solution in an amount equivalent to or more than the iron ion at a temperature of 3°C or lower, and reacted to produce ferric hydroxide, which is aged and then subjected to a hydrothermal reaction in an autoclave. to produce Q-iron oxyhydroxide powder, filtered and dried, and then heat-reduced and further oxidized to produce a y-Fe203 ferromagnetic powder.
Fe208 ferromagnetic powder is obtained, and this y-Fe203 ferromagnetic powder is dispersed in a solution containing a cobalt salt, and an alkaline aqueous solution is added to this to form a surface layer containing mainly cobalt on the surface of the y-Fe203 powder. When formed, the maximum axis diameter is 30 mm or less, the axial ratio is 5 or less, the specific surface area by BET method is 40〆/ta or less, and the coercive force is 23. Song A/
It was discovered that a cobalt-containing iron oxide ferromagnetic powder having a uniform particle size distribution of m or more, a narrow coercive force distribution, good thermal stability, and little transfer and heat demagnetization can be obtained, and this invention was achieved.

この発明において3価の鉄イオンを含有する水溶液をア
ルカリ水溶液中に加えて水酸化第二鉄を生成する際の反
応温度は、3000以上で行なうと水酸化第二鉄の成長
を適度に調整できず粒度分布が均一で、微細なQ−オキ
シ水酸化鉄が得られにくいため3000以下の温度で行
なうの好ましく、低温になるほど水酸化第二鉄の成長の
調整が容易であるため20q○以下の温度で行なうのが
より好ましい。
In this invention, when the aqueous solution containing trivalent iron ions is added to the alkaline aqueous solution to produce ferric hydroxide, the reaction temperature is 3000° C. or higher to appropriately control the growth of ferric hydroxide. Since it is difficult to obtain fine Q-ferric oxyhydroxide with a uniform particle size distribution, it is preferable to carry out the process at a temperature of 3000°C or below. More preferably, it is carried out at temperature.

また熟成は100oo以下で10分以上、通常は常温で
3び分以上好ましくは3〜7加持間行なうのがよく、熟
成時間が短かすぎると水酸化第二鉄の成長が不充分であ
り、長すぎると成長が過度に進み、粒度分布の均一なも
のが得られにくい額向にある。3価の鉄イオンを含有す
る水溶液は、塩化第二鉄、硫酸第二鉄、硝酸第二鉄など
の各種可溶性の第二鉄塩の内から1種もしくは2種以上
を水に熔解するか、あるいは塩化第一鉄、硫酸第一鉄、
硝酸第一鉄などの各種可溶性の第一鉄塩の内から1種も
しくは2種以上を水に落籍した後酸化剤等で酸化して調
製され、3価の鉄イオンが含有された状態で使用される
In addition, the aging is preferably carried out for 10 minutes or more at 100 oo or less, usually for 3 minutes or more at room temperature, preferably 3 to 7. If the aging time is too short, the growth of ferric hydroxide will be insufficient. If it is too long, growth will proceed excessively, making it difficult to obtain a uniform particle size distribution. The aqueous solution containing trivalent iron ions can be prepared by dissolving one or more of various soluble ferric salts such as ferric chloride, ferric sulfate, and ferric nitrate in water; or ferrous chloride, ferrous sulfate,
It is prepared by adding one or more of various soluble ferrous salts such as ferrous nitrate to water and then oxidizing it with an oxidizing agent, etc., and containing trivalent iron ions. used.

これらの鉄塩は濃度0.5モル/そ以下の水溶液で使用
するのがよい。この3価の鉄イオンを含有する水溶液を
添加するアルカリ水溶液は、水酸化ナトリウム、水酸化
カリウム等の苛性アルカリ水溶液が好適なものとして使
用され、使用量は水酸化第二鉄を良好に生成させ、かつ
水酸化第二鉄の粒径を適度なものとするため3価の鉄イ
オンに対して当量以上であれば充分であり、反対にアル
カリ濃度が所定濃度以上で反応させると、生成物が不均
質となり、粒度分布を拡げるので、遊離のアルカリ濃度
が1モル/そ以下となるような範囲で使用するのが好ま
しい。
These iron salts are preferably used in aqueous solutions with a concentration of 0.5 mol/less. The alkaline aqueous solution to which the aqueous solution containing trivalent iron ions is added is preferably a caustic alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, and the amount used is such that ferric hydroxide is produced well. , and in order to make the particle size of ferric hydroxide appropriate, it is sufficient that the amount is equivalent to or more than the trivalent iron ion; Since it becomes heterogeneous and widens the particle size distribution, it is preferable to use it within a range where the free alkali concentration is 1 mol/or less.

このように3価の鉄イオンを含有する水溶液を当量以上
のアルカリ水溶液中に30q0以下の温度で添加し反応
させて水酸化第二鉄を生成し、さらに常温で熟成を行な
うと水酸化第二鉄の成長が適度に調整された懸濁液が得
られ、この懸濁液をオートクレープ中に入れて水熱反応
を行なうと粒度分布が均一でかつ鞠比の小さい微細なQ
−オキシ水酸化鉄粉末が得られる。
In this way, an aqueous solution containing trivalent iron ions is added to an equivalent or more alkaline aqueous solution at a temperature of 30q0 or less and reacted to produce ferric hydroxide, which is further aged at room temperature to produce ferric hydroxide. A suspension with appropriately controlled iron growth is obtained, and when this suspension is placed in an autoclave and subjected to a hydrothermal reaction, fine Q particles with a uniform particle size distribution and a small
- Iron oxyhydroxide powder is obtained.

そして次いでこのQーオキシ水酸化鉄粉末を水洗、ろ過
、乾燥した後、還元ガス、たとえば水素気流中で250
〜400ooの温度で加熱還元し、さらにたとえば空気
中で20000以上の温度で酸化すると軸比が小さくか
つ粒度分布が均一で微細な針状のy−Fe203強磁性
粉末が得られる。Q−オキシ水酸化鉄粉末を生成する際
のオートクレープ中での水熱反応は、12000以下の
温度で行なうと結晶化に長時間を要し、25000以上
の温度で行なうとQ−Fe203粉末が混在してくるた
め120〜25000の範囲の温度で行なうのが好まし
く、150〜220ごCの範囲内で行なうのがより好ま
しい。
Then, this Q-iron oxyhydroxide powder is washed with water, filtered, and dried, and then heated for 250 min in a reducing gas such as hydrogen stream.
By thermal reduction at a temperature of ~400 oo and further oxidation at a temperature of 20,000 or higher in air, for example, fine needle-shaped y-Fe203 ferromagnetic powder with a small axial ratio and a uniform particle size distribution can be obtained. In the hydrothermal reaction in an autoclave when producing Q-iron oxyhydroxide powder, if it is carried out at a temperature of 12,000 or less, it will take a long time to crystallize, and if it is carried out at a temperature of 25,000 or more, Q-Fe203 powder will be Therefore, it is preferable to carry out the process at a temperature in the range of 120 to 25,000 degrees Celsius, and more preferably in the range of 150 to 220 degrees Celsius.

また加熱還元する際の温度は250℃以上で行なうと有
効な磁気特性を有するものが得られ、加熱温度の上昇と
ともに還元が促進されるが、40000以上に加熱する
と暁結が起り保磁力が低下するため250〜400q○
の範囲内で行なうのが好ましい。また加熱還元後酸化す
る際の温度は低温では酸化が不充分となったり、長時間
を要するなどのため20ぴ0以上の温度で行なうのが好
ましい。このようにして得られたy−Fe203強磁性
粉末は、次にコバルト塩と第一鉄塩を含む溶液中に分散
させ、さらにこれにアルカリ水溶液を加えて反応させる
と長軸径が30仇m以下、鞄比が5以下でかつBET法
による比表面積が40で/タ以下、保磁力が23.鰍A
/m以上の粒度分布の均一なコバルト含有酸化鉄強磁性
粉末が得られる。コバルト塩としては硫酸第一コバルト
、塩化第一コバルト、硝酸第一コバルト等がまた第一鉄
塩としては硫酸第一鉄、塩化第一鉄、硝酸第一鉄等が好
適なものとして使用され、アルカリ水溶液としては水酸
化ナトリウム、水酸化カリウム等の苛′性アルカリ水溶
液が好適なものとして使用される。
In addition, when heating and reducing the temperature at 250°C or higher, a product with effective magnetic properties can be obtained, and reduction is promoted as the heating temperature increases, but heating at 40,000°C or higher causes crystallization and decreases the coercive force. 250-400q○ for
It is preferable to carry out the test within the range of . Further, the temperature at which the oxidation is carried out after heating reduction is preferably 20 mm or higher, since at low temperatures the oxidation becomes insufficient or takes a long time. The thus obtained y-Fe203 ferromagnetic powder is then dispersed in a solution containing a cobalt salt and a ferrous salt, and an aqueous alkaline solution is further added thereto for reaction, resulting in a major axis diameter of 30 m. Below, the bag ratio is 5 or less, the specific surface area by BET method is 40/ta or less, and the coercive force is 23. Mackerel A
A cobalt-containing iron oxide ferromagnetic powder with a uniform particle size distribution of /m or more can be obtained. Suitable cobalt salts include cobaltous sulfate, cobaltous chloride, cobaltous nitrate, etc., and ferrous salts include ferrous sulfate, ferrous chloride, ferrous nitrate, etc. As the alkaline aqueous solution, a caustic alkali aqueous solution such as sodium hydroxide or potassium hydroxide is preferably used.

アルカリ水溶液の濃度は少なくともコバルトおよび第一
鉄の水酸化物が沈澱する濃度であることが必要で、反応
温度は反応を均一に進行させるため、50qo以下であ
ることが好ましい。以上のようにして得られるコバルト
含有酸化鉄強磁性粉末は、長軸径が30仇m以下、鞠比
が5以下でかつBET法による比表面積が40〆/多以
下、保磁力が23.眺A/m以上で、粒度分布が均一な
ため保磁力分布が狭く熱安定性もよくて転写特性に優れ
、加熱減磁が少ない。次に、この発明の実施例について
説明する。
The concentration of the alkaline aqueous solution must be such that at least cobalt and ferrous hydroxides precipitate, and the reaction temperature is preferably 50 qo or less in order to allow the reaction to proceed uniformly. The cobalt-containing iron oxide ferromagnetic powder obtained as described above has a major axis diameter of 30 m or less, a ball ratio of 5 or less, a specific surface area of 40 m/m or less by the BET method, and a coercive force of 23. The diameter is A/m or more, the particle size distribution is uniform, the coercive force distribution is narrow, the thermal stability is good, the transfer characteristics are excellent, and there is little heating demagnetization. Next, embodiments of the invention will be described.

実施例 1塩化第二鉄(FeC131細20)10モル
を水30〆に熔解した塩化第二鉄水溶液と、水酸化ナト
リウム60モルを水60夕に溶解した水酸化ナトリウム
水溶液を調製し、温度loo○で塩化第二鉄水溶液を水
酸化ナトリウム水溶液中に加え褐色の沈澱を得た。次い
でこれを常温で1鞘時間熟成した後、この懸濁液をオー
トクレープ中に入れ180q0で1時間水熱反応を行な
った。反応終了後生成した黄色の沈澱物を水洗、ろ過、
乾燥して以−オキシ水酸化鉄粉末を得た。次に、得られ
たQ−オキシ水酸化鉄粉末を空気中、60000で1時
間加熱してQ−Fe203粉末を生成し、このQ−Fe
203粉末80雌を石英ボード中に展開し、管状気炉内
に軟遣して水素ガスを5そ/分の速度で通気し、300
00で還元してFe304粉末を得、さらにこれを空気
中で250ooの温度で酸化し長軸径20仇m、軸比4
、BET法による比表面積25め/夕、保磁力23眺A
/m、飽和磁化量(〇s)9.11×10‐3Kb・m
/k9のy−Fe203粉末を得た。
Example 1 A ferric chloride aqueous solution was prepared by dissolving 10 moles of ferric chloride (FeC131 fine 20) in 30 ml of water, and a sodium hydroxide aqueous solution was prepared by dissolving 60 mol of sodium hydroxide in 60 ml of water. At ○, an aqueous ferric chloride solution was added to an aqueous sodium hydroxide solution to obtain a brown precipitate. Next, after aging this at room temperature for one hour, this suspension was placed in an autoclave and a hydrothermal reaction was carried out at 180q0 for 1 hour. After the reaction is complete, wash the yellow precipitate with water, filter it,
After drying, iron oxyhydroxide powder was obtained. Next, the obtained Q-iron oxyhydroxide powder was heated in air at 60,000 ℃ for 1 hour to produce Q-Fe203 powder, and this Q-Fe
80 pieces of 203 powder were spread on a quartz board, softened in a tubular air furnace, and hydrogen gas was bubbled through at a rate of 300 pieces per minute.
00 to obtain Fe304 powder, which was further oxidized in air at a temperature of 250 oo to obtain a powder with a major axis diameter of 20 m and an axial ratio of 4.
, specific surface area 25th/evening by BET method, coercive force 23 view A
/m, saturation magnetization amount (〇s) 9.11×10-3Kb・m
/k9 y-Fe203 powder was obtained.

次いでこのy−Fe20〆分末80雌を硫酸コバルト0
.4モルと硫酸第一鉄1.2モルとが溶解された水溶液
3そ中に分散させ、これに16モルの水酸化ナトリウム
を溶解させた水酸化ナトリウム水溶液3〆を加えた。
Next, 80 pieces of this y-Fe20 powder were treated with 0 cobalt sulfate.
.. 4 moles of ferrous sulfate and 1.2 moles of ferrous sulfate were dispersed in an aqueous solution 3, and an aqueous sodium hydroxide solution 3 containing 16 moles of sodium hydroxide dissolved therein was added.

この分散液の温度を45℃まで昇温し、この温度を保持
したままで6時間損拝を続けた。次いで、磁性粉末を取
り出し、充分に水洗して反応溶液を除去した後、乾燥し
、コバルト含有酸化鉄強磁性粉末を得た。このようにし
て得られたコバルト含有酸化鉄強磁性粉末は、最軸径が
20仇m、短軸径が5仇m、軸比が4、BET法による
比表面積22.1で/夕、保磁力が51.7KA/mで
コバルト原子の含有量は2.5り重量%であった。
The temperature of this dispersion liquid was raised to 45° C., and the dispersion was continued for 6 hours while maintaining this temperature. Next, the magnetic powder was taken out, thoroughly washed with water to remove the reaction solution, and then dried to obtain a cobalt-containing iron oxide ferromagnetic powder. The thus obtained cobalt-containing iron oxide ferromagnetic powder had a maximum axis diameter of 20 m, a short axis diameter of 5 m, an axial ratio of 4, and a specific surface area of 22.1 by the BET method. The magnetic force was 51.7 KA/m, and the content of cobalt atoms was 2.5% by weight.

このようにして得られたコバルト含有y−Fe203粉
末を使用し、 Co含有y−Fe203粉末 8の重量部
VAGH(米国U.C.C社製、塩化 11″ビ
ニルー酢酸ビニルービニルアルコール共重合体) パンデツクスT−5250(大日本 7″インキ
社製、ウレタンェラストマー)コロネートL(日本ポリ
ウレタン工 2重量部業社製、三官能性低分子量ィソシ
アネート化合物) シクロヘキサノン 60″トルエ
ン 60″の組成から
なる組成物をボールミル中で7湖寺間混合分散して磁性
塗料を調製した。
Using the thus obtained cobalt-containing y-Fe203 powder, 8 parts by weight of Co-containing y-Fe203 powder VAGH (manufactured by U.C.C., USA, 11" vinyl chloride-vinyl acetate-vinyl alcohol copolymer) ) Pandex T-5250 (manufactured by Dainippon 7″ Ink Co., Ltd., urethane elastomer) Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd., trifunctional low molecular weight isocyanate compound) Composed of cyclohexanone 60″ toluene 60″ A magnetic paint was prepared by mixing and dispersing the composition in a ball mill.

この磁性塗料を厚さ12仏mのポリエステルベースフィ
ルム上に乾燥厚が4仏mとなるように塗布、乾燥し、表
面処理を行なった後所定の中に裁断して磁気テープをつ
くった。実施例 2 実施例1において塩化第二鉄水溶液を水酸化ナトリウム
水溶液中に加える時の温度を0℃として、褐色の沈澱を
得、この懸濁液をオートクレープ中に入れ180ご○で
1時間水熱反応を行なって、Q−オキシ水酸化鉄を得た
化外は実施例1と同様にして、長軸蚤12仇m、短軸径
3仇m、軸比4、BET法による比表面積28.7で/
夕、保磁力50.1KA/mでコバルト原子の含有量5
.90重量%のコバルト含有y−Fe203粉末を得、
さらにこのコバルト含有y−Fe203粉末を使用して
実施例1と同様にして磁気テープをつくった。
This magnetic paint was applied onto a polyester base film with a thickness of 12 mm to a dry thickness of 4 mm, dried, surface treated, and then cut into predetermined shapes to produce a magnetic tape. Example 2 In Example 1, the temperature when adding the ferric chloride aqueous solution to the sodium hydroxide aqueous solution was set to 0°C to obtain a brown precipitate, and this suspension was placed in an autoclave and heated at 180°C for 1 hour. A hydrothermal reaction was carried out to obtain Q-iron oxyhydroxide. At 28.7/
In the evening, the cobalt atom content was 5 with a coercive force of 50.1 KA/m.
.. Obtain 90% by weight cobalt-containing y-Fe203 powder,
Furthermore, a magnetic tape was produced in the same manner as in Example 1 using this cobalt-containing y-Fe203 powder.

実施例 3 実施例2においてコバルト含有酸化鉄粉末を得る過程に
おいて、硫酸コバルトの使用量を0.8モル、硫酸第一
鉄の使用量を2.4モルとした以外は実施例2と同様に
して、長軸径12肌血、短軸径3仇m、鼠比4、BET
法による比表面積28.1の/夕、保磁力75.舷A/
mでコバルト源子の含有量4.50重量%のコバルト含
有y−Fe2Q粉末を得、さらにこのコバルト含有y一
Fe203粉末を使用して実施例2と同様にして磁気テ
ープをつくった。
Example 3 In the process of obtaining cobalt-containing iron oxide powder in Example 2, the procedure was the same as in Example 2 except that the amount of cobalt sulfate used was 0.8 mol and the amount of ferrous sulfate was 2.4 mol. , long axis diameter 12 meters, short axis diameter 3 meters, mouse ratio 4, BET
Specific surface area by method: 28.1/unit, coercive force: 75. Ship A/
A cobalt-containing y-Fe2Q powder having a cobalt source content of 4.50% by weight was obtained using m, and a magnetic tape was produced in the same manner as in Example 2 using this cobalt-containing y-Fe203 powder.

比較例硫酸第一鉄(FeS04.740)10モルを水
40そに溶解した硫酸第1鉄水溶液と、水酸化トリウム
70モルを水40れこ溶解した水酸化ナトリウム水溶液
を調製し、温度25qoで硫酸第一鉄水溶液中に水酸化
ナトリウム水溶液を加え淡緑色の沈澱を得た。
Comparative Example A ferrous sulfate aqueous solution in which 10 moles of ferrous sulfate (FeS04.740) was dissolved in 40 mL of water, and a sodium hydroxide aqueous solution in which 70 moles of thorium hydroxide were dissolved in 40 mL of water were prepared. A sodium hydroxide aqueous solution was added to the ferrous aqueous solution to obtain a pale green precipitate.

次いでこの懸濁液を恒温水槽中で4ぴCに加溢しながら
毎分10その空気を懸濁液中に吹き込み、6時間酸化反
応を行なって黄色沈澱物を得、水洗、ろ過、乾燥してQ
−オキシ水酸化鉄粉末を得た。次に、このQ−オキシ水
酸化鉄を実施例1と同様にして加熱還元しさらに酸化し
てy−Fe203粉末を得、次いでコバルト被着処理を
行なって長磁径20仇m、短麹径3伽m、麹比6.7、
BET法による比表面積39.5〆/夕、保磁力39.
桃A/mでコバルト原子の含有量2.55重量%のコバ
ルト含有y−Fe203粉末を得た。さらにこのコバル
ト含有y−Fe203粉末を使用して実施例1と同様に
して磁気テープをつくった。実施例1および比較例で得
られたコバルト含有酸化鉄強磁性粉末の保磁力分布を調
べるため試料振動型磁力計を使って異方性磁界分布を測
定した。
Next, this suspension was placed in a constant temperature water bath, and the air was blown into the suspension at 4 picoC per minute, and an oxidation reaction was carried out for 6 hours to obtain a yellow precipitate, which was washed with water, filtered, and dried. TeQ
- Iron oxyhydroxide powder was obtained. Next, this Q-iron oxyhydroxide was heated and reduced in the same manner as in Example 1, further oxidized to obtain y-Fe203 powder, and then treated with cobalt to give a long magnetic diameter of 20 m and a short koji diameter. 3.m, Koji ratio 6.7,
Specific surface area by BET method: 39.5/unit, coercive force: 39.
A cobalt-containing y-Fe203 powder having a cobalt atom content of 2.55% by weight at peach A/m was obtained. Furthermore, a magnetic tape was produced in the same manner as in Example 1 using this cobalt-containing y-Fe203 powder. In order to investigate the coercive force distribution of the cobalt-containing iron oxide ferromagnetic powders obtained in Example 1 and Comparative Example, the anisotropic magnetic field distribution was measured using a sample vibrating magnetometer.

第1図はこの結果をグラフで表わしたもので、グラフA
は実施例1で得られた磁性粉末の異方性磁界分布を示し
、グラフBは比較例で得られた磁性粉末の異万性磁界分
布を示す。このグラフから明らかなようにこの発明で得
られたコバルト含有酸化鉄強磁性粉末は比較例で得られ
たものよりも異方性磁界分布が狭く、このことからこの
発明によって得られるコバルト含有酸化鉄強磁性粉末は
保磁力分布が良好なことがわかる。また、各実施例およ
び比較例で得られたコバルト含有酸化鉄強磁性粉末につ
いて熱的安定性を調べるため、加熱減磁を測定し、転写
特性を試験した。
Figure 1 shows this result graphically, and graph A
Graph B shows the anisotropic magnetic field distribution of the magnetic powder obtained in Example 1, and graph B shows the anisotropic magnetic field distribution of the magnetic powder obtained in Comparative Example. As is clear from this graph, the cobalt-containing iron oxide ferromagnetic powder obtained according to the present invention has a narrower anisotropic magnetic field distribution than that obtained in the comparative example, which indicates that the cobalt-containing iron oxide ferromagnetic powder obtained according to the present invention has a narrower anisotropic magnetic field distribution than that obtained in the comparative example. It can be seen that the ferromagnetic powder has a good coercive force distribution. Furthermore, in order to examine the thermal stability of the cobalt-containing iron oxide ferromagnetic powders obtained in each of the Examples and Comparative Examples, thermal demagnetization was measured and transfer characteristics were tested.

加熱減磁は直径6柳、高さ3側の容器に得られた磁性粉
末を充填し、これを室温で79舷A/m磁界で飽和磁化
し、飽和残留磁化量lrsを測定した後、次いでこの飽
和磁化した試料を60午○で2時間保持し、室温で取り
出して残留磁化量lrを頚。定し、竿;xlo。力柳鰍
減蝿を百分率計算して測定した。
For heating demagnetization, a container with a diameter of 6 yen and a height of 3 was filled with the obtained magnetic powder, which was then saturated magnetized at room temperature in a magnetic field of 79 A/m, and the saturated residual magnetization amount lrs was measured. This saturated magnetized sample was held at 60 pm for 2 hours, taken out at room temperature, and the residual magnetization lr was measured. Set the rod; xlo. The percentage of fly loss was measured.

また転写特性試験は直径6肌、高さ3仇の容器に得られ
た磁性粉末を充填し、これを6ぴ0で3.がAノmの磁
界中に1時間保持した後室糧で残留磁化量lr概を測定
し、次いで79腿A/mの磁界で飽和磁化し飽和残留磁
化量,rSを順して‐2。10よ麓も)らデシ小対算し
て行なった。
In addition, for the transfer property test, a container with a diameter of 6 mm and a height of 3 mm was filled with the obtained magnetic powder, and the magnetic powder was poured into a container with a diameter of 6 mm and a height of 3 mm. After holding the sample in a magnetic field of Anom for 1 hour, the residual magnetization lr was measured, and then it was saturated in a magnetic field of 79 A/m, and the saturation residual magnetization, rS, was -2. 10 and the foot of the mountain) and decimals.

下記第1表はその結果である。Table 1 below shows the results.

第1表 上表から明らかなように、この発明で得られたコバルト
含有酸化鉄強磁性粉末(実施例1〜3)は従釆のコバル
ト含有酸化鉄強磁性粉末(比較例)に比し、いずれも加
熱減磁および転写が少なく、このことからこの発明によ
って得られるコバルト含有酸化鉄強磁性粉末は熱的安定
性に優れていることがわかる。
As is clear from the above table of Table 1, the cobalt-containing iron oxide ferromagnetic powders obtained in the present invention (Examples 1 to 3) are superior to the subordinate cobalt-containing iron oxide ferromagnetic powders (comparative examples). In all cases, thermal demagnetization and transfer were small, which indicates that the cobalt-containing iron oxide ferromagnetic powder obtained by the present invention has excellent thermal stability.

さらに各実施例および比較例で得られた磁気テープにつ
いて、保磁力(Hc)、残留磁束密度(Br)、角型(
Br/&)、DCS/NおよびACS/Nを測定し、消
去特性を試験した。
Furthermore, regarding the magnetic tapes obtained in each example and comparative example, coercive force (Hc), residual magnetic flux density (Br), square shape (
Br/&), DCS/N and ACS/N were measured to test the erasure characteristics.

消去特性試験は磁気テープに十母Bの入力でIKEzの
信号を記録し、基準テープ(BASFC401R)の消
去特性が0.&旧となる消去電流の20%増の消去電流
で消去した時の消去前後の再生出力信号の差を測定し、
dBで示した。下記第2表はその結果である。
In the erasing characteristic test, the IKEz signal was recorded on a magnetic tape with a tenth B input, and the erasing characteristic of the reference tape (BASFC401R) was 0. &Measure the difference in the playback output signal before and after erasing when erasing with an erase current 20% higher than the old erase current,
Expressed in dB. Table 2 below shows the results.

第2表 上表から明らかなように、この発明のコバルト含有酸化
鉄強磁性粉末を使用して得られる磁気テープ(実施例1
〜3)は従来の磁気テープ(比較例)に比し、いずれも
保磁力、残留磁束密度、角型が高くてDCS/Nおよび
ACS/Nが低く、また消去特性が良好で、このことか
らこの発明のコバルト含有酸化鉄強磁性粉末を使用して
得られる磁気記録媒体は磁気特性に優れ、またノイズが
少なくて消去特性も改善されることがわかる。
As is clear from the upper table of Table 2, the magnetic tape obtained using the cobalt-containing iron oxide ferromagnetic powder of the present invention (Example 1
-3) have higher coercive force, higher residual magnetic flux density, higher squareness, lower DCS/N and ACS/N, and better erasing characteristics than conventional magnetic tapes (comparative example). It can be seen that the magnetic recording medium obtained using the cobalt-containing iron oxide ferromagnetic powder of the present invention has excellent magnetic properties, has less noise, and has improved erasing properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明で得られたコバルト含有酸化鉄強磁性
粉末の異万性磁界と、粉末粒子の体積パーセントとの関
係図である。 第1図
FIG. 1 is a diagram showing the relationship between the anisotropic magnetic field of the cobalt-containing iron oxide ferromagnetic powder obtained by the present invention and the volume percent of the powder particles. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 酸化鉄強磁性粉末を核晶とし、この核晶上にコバル
トを主体的に含有する表面層を有する長軸径が300n
m以下、軸比が5以下でかつBET法による比表面積が
40m^2/g以下、保磁力が23.9KA/m以上の
強磁性粉末2,3価の鉄イオンを含有する水溶液を当量
以上のアルカリ水溶液中に30℃以下の温度で添加し反
応させて水酸化第二鉄を生成し、さらに熟成した後、こ
の水酸化第二鉄をオートクレーブ中で水熱反応させてα
−オキシ水酸化鉄粉末を生成し、ろ過、乾燥後この生成
粉末を加熱還元しさらに酸化してγ‐Fe_2O_3粉
末とした後、このγ−Fe_2O_3粉末をコバルト塩
と第一鉄塩を含む溶液中に分散させ、さらにこれにアル
カリ水溶液を加えてγ−Fe_2O_3粉末の表面にコ
バルトを主体的に含む表面層を形成させることを特徴と
する強磁性粉岬の製造方法。
1 Iron oxide ferromagnetic powder is used as a core crystal, and the major axis diameter is 300n, which has a surface layer mainly containing cobalt on the core crystal.
m or less, an axial ratio of 5 or less, a specific surface area of 40 m^2/g or less by the BET method, and a coercive force of 23.9 KA/m or more. is added to an alkaline aqueous solution at a temperature below 30°C and reacted to produce ferric hydroxide. After further aging, this ferric hydroxide was hydrothermally reacted in an autoclave to form α
- After producing iron oxyhydroxide powder, filtering and drying, this produced powder is heated and reduced, and further oxidized to obtain γ-Fe_2O_3 powder, and then this γ-Fe_2O_3 powder is placed in a solution containing cobalt salt and ferrous salt. 1. A method for producing a ferromagnetic powder cape, which comprises dispersing the γ-Fe_2O_3 powder into a powder and adding an alkaline aqueous solution thereto to form a surface layer containing mainly cobalt on the surface of the γ-Fe_2O_3 powder.
JP56157138A 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method Expired JPS6018609B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56157138A JPS6018609B2 (en) 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method
DE8282109003T DE3274777D1 (en) 1981-10-01 1982-09-29 Magnetic particles and method of production thereof
EP19820109003 EP0076462B2 (en) 1981-10-01 1982-09-29 Method of production of magnetic particles
CA000412570A CA1246321A (en) 1981-10-01 1982-09-30 Magnetic particles and method of production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157138A JPS6018609B2 (en) 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5860624A JPS5860624A (en) 1983-04-11
JPS6018609B2 true JPS6018609B2 (en) 1985-05-11

Family

ID=15643023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157138A Expired JPS6018609B2 (en) 1981-10-01 1981-10-01 Ferromagnetic powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6018609B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205224U (en) * 1985-05-20 1986-12-24

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255627A (en) * 1984-06-01 1985-12-17 Ube Ind Ltd Prduction of ferromagnetic powder
JPH0822746B2 (en) * 1985-04-01 1996-03-06 富士写真フイルム株式会社 Ferromagnetic fine powder and its manufacturing method
JPH089486B2 (en) * 1986-01-30 1996-01-31 石原産業株式会社 Cobalt-containing ferromagnetic iron oxide powder and method for producing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949475A (en) * 1972-05-24 1974-05-14
JPS49113199A (en) * 1973-03-05 1974-10-29
JPS50115698A (en) * 1974-02-22 1975-09-10
JPS5145506A (en) * 1974-10-17 1976-04-19 Fuji Photo Film Co Ltd
JPS5233320A (en) * 1975-09-09 1977-03-14 Keisuke Shimizu Umbrellaashaped ridge
JPS5233319A (en) * 1975-09-09 1977-03-14 Rokude Sangiyou Kk Structure pillar in stainless steel plate
JPS545519A (en) * 1977-06-15 1979-01-17 Hitachi Ltd Voltage controller for ac generator
JPS55162430A (en) * 1979-06-02 1980-12-17 Hitachi Maxell Ltd Manufacture of ferromagnetic powder
JPS567403A (en) * 1979-06-30 1981-01-26 Toda Kogyo Corp Preparation of acicular crystalline magnetic iron oxide grain powder
JPS5732408A (en) * 1980-08-06 1982-02-22 Chinon Kk Focusing controller

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949475A (en) * 1972-05-24 1974-05-14
JPS49113199A (en) * 1973-03-05 1974-10-29
JPS50115698A (en) * 1974-02-22 1975-09-10
JPS5145506A (en) * 1974-10-17 1976-04-19 Fuji Photo Film Co Ltd
JPS5233320A (en) * 1975-09-09 1977-03-14 Keisuke Shimizu Umbrellaashaped ridge
JPS5233319A (en) * 1975-09-09 1977-03-14 Rokude Sangiyou Kk Structure pillar in stainless steel plate
JPS545519A (en) * 1977-06-15 1979-01-17 Hitachi Ltd Voltage controller for ac generator
JPS55162430A (en) * 1979-06-02 1980-12-17 Hitachi Maxell Ltd Manufacture of ferromagnetic powder
JPS567403A (en) * 1979-06-30 1981-01-26 Toda Kogyo Corp Preparation of acicular crystalline magnetic iron oxide grain powder
JPS5732408A (en) * 1980-08-06 1982-02-22 Chinon Kk Focusing controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205224U (en) * 1985-05-20 1986-12-24

Also Published As

Publication number Publication date
JPS5860624A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
US3702270A (en) Method of making a magnetic powder
JPH0624062B2 (en) Magnetic recording medium
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
EP0076462B2 (en) Method of production of magnetic particles
JPS6129122B2 (en)
JPS6048885B2 (en) magnetic recording medium
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JP2002050508A (en) Method of manufacturing magnetic powder
JPH0122968B2 (en)
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPS5813008B2 (en) Manufacturing method of magnetic iron powder
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5853495B2 (en) magnetic recording medium
JPS638224A (en) Production of ferro magnetic powder for magnetic recording
JPS6136684B2 (en)
JPS59169937A (en) Production of magnetic powder
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPH0120201B2 (en)
KR910009210B1 (en) Method for manufacturing lepidocrocite
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JPS61139922A (en) Magnetic recording medium
JPH0147522B2 (en)
JPS6012763B2 (en) Manufacturing method of ferromagnetic powder