JPS6016130Y2 - Two-wire information transmission device with fault detection device - Google Patents

Two-wire information transmission device with fault detection device

Info

Publication number
JPS6016130Y2
JPS6016130Y2 JP1982137644U JP13764482U JPS6016130Y2 JP S6016130 Y2 JPS6016130 Y2 JP S6016130Y2 JP 1982137644 U JP1982137644 U JP 1982137644U JP 13764482 U JP13764482 U JP 13764482U JP S6016130 Y2 JPS6016130 Y2 JP S6016130Y2
Authority
JP
Japan
Prior art keywords
transmission
transmission line
current
circulation path
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982137644U
Other languages
Japanese (ja)
Other versions
JPS5888465U (en
Inventor
関次 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1982137644U priority Critical patent/JPS6016130Y2/en
Publication of JPS5888465U publication Critical patent/JPS5888465U/en
Application granted granted Critical
Publication of JPS6016130Y2 publication Critical patent/JPS6016130Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Description

【考案の詳細な説明】 本考案は、有線放送、電話通信等の2線式の情報伝送路
において該伝送路に断線または短絡障害等が生じた際、
情報を伝送中においてもこれをいち速く能率的に知るこ
とができる障害検知装置を備えた2線式情報伝送装置に
係るものである。
[Detailed Description of the Invention] The present invention is a two-wire information transmission line for wired broadcasting, telephone communication, etc. when a disconnection or short-circuit failure occurs in the transmission line.
This invention relates to a two-wire information transmission device equipped with a failure detection device that can quickly and efficiently detect a failure even while information is being transmitted.

従来からある2線式の有線放送路、電話線路等その他の
伝送路の断線、短絡又は絶縁低下(碍子の破損、被覆の
損傷劣化等)、疑似機器の接続による異状障害の有無を
検知する装置は、情報を伝送中や伝送時間帯に異常を検
知することができず、例えば、現在コンピーユータ回線
などは送受信不能(断線又は混線)になって次の取扱が
発生してから障害を知り、又まれであるが伝送路途中に
疑似機器を接続し、盗聴、金銭詐取なども行われても発
見不能であって非常に不便であり、また測定の際、その
都度障害修理者が伝送路の終端まで出向いて行き終端と
導線で短絡したり、装置と伝送路とを結線しなければ検
知できず多くの測定時間を要し、特に悪天候のときや嵐
の際にこのような作業をするのは容易なことではなくま
たその間通信又は放送等の情報の伝送中を中断しなけれ
ばならないから緊急の場合等必要な情報が送れず、多大
な損害を招くようなことがあった。
A device that detects disconnections, short circuits, or poor insulation (damage to insulators, damage and deterioration of coatings, etc.) in conventional two-wire wired broadcasting lines, telephone lines, and other transmission lines, as well as abnormal disturbances due to the connection of pseudo equipment. It is not possible to detect an abnormality during the transmission of information or during the transmission time. For example, if a computer line is currently unable to send or receive data (disconnection or crosstalk), the failure will be discovered only after the next handling occurs. In addition, although it is rare, a pseudo device is connected in the middle of the transmission line, and even if wiretapping or money fraud is carried out, it is impossible to detect and is extremely inconvenient.Furthermore, when making measurements, troubleshooters must repair the transmission line each time. Detection is not possible unless you go to the terminal and short-circuit the terminal and the conductor, or connect the equipment and the transmission line, and it takes a lot of time to perform measurements, especially during bad weather or storms. This is not an easy task, and the transmission of information such as communication or broadcasting must be interrupted during that time, so in case of an emergency, necessary information cannot be sent, resulting in great damage.

その上、最近は公報告知や緊急連絡用として有線放送用
の伝送路が市、町、村又は農協単位で各所に設置されて
おり、この伝送路を各需要家の電灯、ガス、水道等の使
用量の集中検針に利用したりしているが、例えば遠隔地
にある需要家のプロパンガス等の使用量を管理所で検針
腰その需給を集中管理する場合等には障害の発生の検知
から復旧までに手間取りプロパンガス等の供給が必要な
時に間に合わなくなる等のおそれがあった。
In addition, recently, transmission lines for cable broadcasting have been installed in various cities, towns, villages, and agricultural cooperatives for public announcements and emergency communications. It is sometimes used for centralized meter reading of usage, but for example, when the usage of propane gas, etc. of customers in remote areas is measured at a management center, and when supply and demand is centrally managed, it is necessary to detect the occurrence of a failure. There was a risk that the supply of propane gas, etc., would not be available in time when it was needed.

本考案は管理所において、管理者がそこにいたままいつ
でも放送中においても障害の有無を知ることができるよ
う2線式伝送路の終端に放送機等の情報源からの伝送信
号の伝送に支障のないようインダクタンス素子を接続し
該伝送路に直流電流を流し障害が生じた際この直流電流
の変化に差動形のリレー、ホイートストンブリッジ、差
動形の電圧比較器その他の応動手段を応動させ、該応動
手段の応動により警報ランプ、警報ブザ−、警報ベルそ
の他の障害検知具を動作させるようにし、かつ該応動手
段に情報源のエネルギーが流入しないようフィルターを
設けて伝送路に情報源を接続したものである。
This invention is designed to prevent the transmission of signals from information sources such as broadcasters at the end of a two-wire transmission line so that the administrator can know whether there is a problem or not, even during broadcasting, while being present at the management office. An inductance element is connected so that there is no interference, and when a DC current is passed through the transmission line and a fault occurs, differential relays, Wheatstone bridges, differential voltage comparators, and other response means are activated in response to changes in the DC current. The response of the response means operates an alarm lamp, an alarm buzzer, an alarm bell, or other fault detection device, and a filter is provided to prevent the energy of the information source from flowing into the response means, and the information source is connected to the transmission path. It is connected.

以下実施例と共に説明する。This will be explained below along with examples.

第1図には障害が生じた際の伝送路に流れる直流電流の
変化に応動する応動手段として主として差動型のリレー
を用いた例が示されている。
FIG. 1 shows an example in which differential relays are mainly used as response means for responding to changes in direct current flowing through a transmission line when a fault occurs.

伝送路8は公知のように、順次各需要家の受信装置9に
接続され、その終端には伝送信号を十分に阻止し得るイ
ンピーダンスを有するインダクタンス素子1が接続され
ている。
As is well known, the transmission line 8 is sequentially connected to a receiving device 9 of each customer, and an inductance element 1 having an impedance sufficient to block the transmitted signal is connected to the terminal end of the transmission line 8.

このインダクタンス素子には鉄、珪素鋼板、パーマロイ
、フェライトその他の磁性材料製のコアに導線が巻かれ
た塞流線輪が用いられ、通常的2〔H〕以上のインダク
タンスがあれば十分であるが、伝送路その他の種々の条
件により、適宜増減される。
This inductance element uses a blocked wire ring in which a conducting wire is wound around a core made of iron, silicon steel plate, permalloy, ferrite, or other magnetic material, and an inductance of 2 [H] or more is usually sufficient. , may be increased or decreased as appropriate depending on the transmission path and other various conditions.

伝送路の送端は連動切換手段2の共通接点2a及び2b
に接続され、この共通接点に対応し種々接点が設けられ
ており、図において接点Tを電話線等に接続され、接点
Bは放送機7に接続され、その他の用途例えば集中検針
用に用いるよう他の接点が接続されることがある。
The sending end of the transmission line is the common contacts 2a and 2b of the interlocking switching means 2.
Various contacts are provided corresponding to this common contact, and in the figure, contact T is connected to a telephone line, etc., contact B is connected to a broadcaster 7, and can be used for other purposes such as centralized meter reading. Other contacts may be connected.

応動手段として用いられるリレー3は主巻線Waと補助
巻線wbを具備し、主巻線と補助巻線は同じ線材を同じ
回数券いたものや耐電流を大きくするため主巻線を太い
線材で巻いたものを用いることもある。
The relay 3 used as a response means has a main winding Wa and an auxiliary winding wb, and the main winding and the auxiliary winding are made of the same wire with the same number of turns, or the main winding is made of a thick wire to increase the withstand current. Sometimes it is wrapped in paper.

主巻線Waの一方は上記伝送路に接続され、他方は補助
巻線wbの一方と共に電源Eaの端子に接続する。
One of the main windings Wa is connected to the transmission line, and the other, together with one of the auxiliary windings wb, is connected to a terminal of the power source Ea.

上記補助巻線の他方は加減抵抗器Rを介して連動切換手
段2の共通接点2bに接続される。
The other of the auxiliary windings is connected to the common contact 2b of the interlock switching means 2 via a rheostat R.

警報ランプ4、警報ブザ−6、警報ベルその他の障害検
知具は上記リレーの接点を介して電源Ebの電圧が上記
検知具に供給されるよう結線される。
The alarm lamp 4, the alarm buzzer 6, the alarm bell, and other fault detection devices are connected so that the voltage of the power source Eb is supplied to the detection devices through the contacts of the relay.

また警報ブザ−、警報ベル等は更にスイッチ5を介して
上記電圧が供給されるよう結線しこのスイッチで上記ブ
ザー、ベル等の動作を停止できるようにもされる。
Further, the alarm buzzer, alarm bell, etc. are further connected so that the above voltage is supplied through the switch 5, and the operation of the above-mentioned buzzer, bell, etc. can be stopped by this switch.

而して上記伝送路の終端には塞流線輪が接続されている
から放送機、電話機、コンピュータ等からの情報信号に
対し伝送路はほぼ開放状態と同等に作用し情報信号のエ
ネルギーを損失なく、かつ伝送路に何ら電気的悪影響を
及ぼすことなく送信、受信を伝送することができる。
Since a blocking wire is connected to the end of the transmission line, the transmission line acts almost as if it were open for information signals from broadcasting equipment, telephones, computers, etc., and the energy of the information signal is lost. Transmission and reception can be performed without any electrical interference and without any adverse electrical effects on the transmission path.

このような状態で電渭槽aより伝送路と主巻線Waに循
環電流が2流れ一方補助巻線wbには上記主巻線に流れ
る電流によって生ずる磁束を打ち消す向きの磁束が発生
するような他の循環電流が流れ、この電流の大きさを上
記加減抵抗器Rで調整腰障害のない平常時リレー3が動
作しないようにしておく。
In this state, two circulating currents flow from the power tank a to the transmission line and the main winding Wa, and on the other hand, a magnetic flux is generated in the auxiliary winding wb in a direction that cancels the magnetic flux generated by the current flowing to the main winding. Another circulating current flows, and the magnitude of this current is adjusted by the rheostat R so that the relay 3 does not operate during normal times when there is no back injury.

1 平常時このような状態にある上記装置において、伝
送路に断線障害が起きると、上記主巻線Waに電流が流
れなくなるのでリレー3は補助巻線wbに流れる電流の
みにより動作し上記障害検知具の動作により障害の発生
がわかる。
1 In the above device which is normally in such a state, if a disconnection fault occurs in the transmission line, current will no longer flow through the main winding Wa, so the relay 3 will operate only with the current flowing through the auxiliary winding wb and detect the fault. The occurrence of a failure can be determined by the movement of the tool.

短絡障害が起きると、伝送路の直流抵抗が低下するので
、主巻線Waに流れる電流が平常時の電流より増加し、
これが補助巻線に流れる電流に打ち勝ってリレー3が動
作する。
When a short circuit fault occurs, the DC resistance of the transmission line decreases, so the current flowing through the main winding Wa increases from the normal current,
This overcomes the current flowing through the auxiliary winding and the relay 3 operates.

上記いずれの場合もリレーが動作して機械的変化すなわ
ちその接点が閉じるので上記障害検知具が動作して障害
が起ったことを知ることができる。
In any of the above cases, the relay operates to cause a mechanical change, that is, its contacts close, so that the fault detector operates and it is possible to know that a fault has occurred.

以上のように、平常時に加減抵抗器Rを調整してリレー
が動作しないようにしておけば、以後管理者が管理所に
いながらにしていつでも障害の有無を容易に知ることが
でき直ちに復旧作業に取りかかることができる。
As described above, if the rheostat R is adjusted to prevent the relay from operating during normal times, the administrator can easily know whether there is a failure at any time from the office and immediately begin recovery work. I can do it.

まれではあるが、伝送路の途中に疑似機器を取付けた場
合も、加減抵抗器Rと伝送路の状態の不平衡により即時
に異常が発見される。
Although it is rare, even if a pseudo device is installed in the middle of a transmission line, an abnormality is immediately discovered due to an imbalance between the rheostat R and the transmission line.

なお、情報信号を伝送中でも応動手段を伝送路に接続し
たまま、四六時中障害の有無を監視できるようリレー3
と伝送路の間にフィルターを設け、図に示すものでは塞
流線輪10とンデンサCから成るローパスフィルターを
設けである。
In addition, relay 3 is installed so that the presence or absence of a failure can be monitored 24/7 while the response means is connected to the transmission line even when the information signal is being transmitted.
A filter is provided between the transmission line and the transmission line, and in the one shown in the figure, a low-pass filter consisting of a blockage wire ring 10 and a capacitor C is provided.

放送機又は電話線等からの情報信号のエネルギーは上記
ローパスフィルターで阻止されるからリレー3側へ流入
することなく、各需要家に無駄なく伝送でき、放送中で
も障害が起ると直ちに警報ブザ−、警報ランプ等の障害
検知具が動作して障害を知ることができる。
Since the energy of the information signal from the broadcasting machine or telephone line is blocked by the above-mentioned low-pass filter, it can be transmitted to each customer without waste without flowing into the relay 3 side, and if a problem occurs even during broadcasting, an alarm buzzer is immediately sounded. , fault detection devices such as alarm lamps operate to indicate the fault.

また、電源Eaに流入若しくは流出する電流又は主巻線
Waに流れる電流を電流計により検出すれば平常時の電
流値に比べ断線障害時にはこれが減少するか零になるし
、短絡障害時にはこれが増加するから障害の態様が電流
計の指示値から識別することもできる。
Furthermore, if the current flowing into or out of the power supply Ea or the current flowing through the main winding Wa is detected by an ammeter, this will decrease or become zero in the event of a disconnection fault compared to the normal current value, and will increase in the event of a short circuit fault. The mode of failure can also be identified from the indicated value of the ammeter.

第2図には応動手段として伝送路の直流抵抗を一辺とし
たホイートストンブリッジを使用した例が示されている
FIG. 2 shows an example in which a Wheatstone bridge with one side of the direct current resistance of the transmission line is used as the response means.

該ホイートストンブリッジには電泥建aより発し伝送路
及びS−X間の抵抗を通って該電源Eaに戻る循環電流
と、該電源Eaより発し加減抵抗器R及びV−X間の抵
抗を通って該電海「aに戻る他の循環電流とが形成され
る。
The Wheatstone bridge contains a circulating current that originates from the electrolyte building a and returns to the power supply Ea through the transmission line and the resistance between S and X, and a circulating current that originates from the power supply Ea and passes through the resistance between rheostat R and VX. Then another circulating current is formed which returns to the electric current a.

そしてホイートストンブリッジの各辺の対向する接続間
の一方に、図ではX−V間に直流電源Eaが接続され、
他方には、図ではS−V間に整流素子11を介して継電
器13が接続され、この整流素子に対して逆向きにした
他の整流素子12を介して他の継電器14が接続されて
いる。
Then, a DC power source Ea is connected between X and V in the figure, to one side between the opposing connections on each side of the Wheatstone bridge.
On the other hand, in the figure, a relay 13 is connected between S and V via a rectifying element 11, and another relay 14 is connected via another rectifying element 12 that is oriented in the opposite direction to this rectifying element. .

平常時に、加減抵抗器Rを調整しブリッジの平衡をとり
、障害検知具を動作させるリレー13とリレー14が共
に動作しないようにしておく。
During normal times, the rheostat R is adjusted to balance the bridge so that both the relays 13 and 14 that operate the fault detectors do not operate.

伝送路に断線障害が生ずると、電源Eaが図に示す極性
の場合、上記伝送路を介して流れていた循環電流が断た
れ、ブリッジの接続点SV間の電位はSが負で■が正と
なるからこの電位差による電圧でリレー13が動作し、
該リレーの動作により適宜の接点を閉成され、上記実施
例と同様に1報ブザー、警報ランプ等の障害検知具を動
作させることができる。
When a disconnection fault occurs in the transmission line, if the power supply Ea has the polarity shown in the figure, the circulating current flowing through the transmission line will be cut off, and the potential between the bridge connection points SV will be such that S is negative and ■ is positive. Therefore, the relay 13 operates with the voltage due to this potential difference,
By the operation of the relay, appropriate contacts are closed, and as in the above embodiment, fault detection devices such as a single alarm buzzer and an alarm lamp can be operated.

なお、これらの障害検知具は、以下記載する実施例の図
面においても、省略されているが、上記の実施例とほぼ
同様に設けられる。
Although these obstacle detection tools are omitted in the drawings of the embodiments described below, they are provided in substantially the same way as in the embodiments described above.

短絡障害が生ずると、上記伝送路を介して流れる循環電
流は増加するが加減抵抗器Rを介して流れる循環電流は
変化せず断線障害の場合とは逆にブリッジの接続点SV
間の電位はSが正で■が負となるのでリレー14が動作
し、このリレーの動作によって他の警報ブザー警報ラン
プ等を動作させることができる。
When a short circuit fault occurs, the circulating current flowing through the transmission line increases, but the circulating current flowing through the rheostat R does not change, and contrary to the case of a disconnection fault, the circulating current flowing through the transmission line increases, and the current flowing through the bridge connection point SV increases.
Since the potential between S is positive and ■ is negative, the relay 14 operates, and by the operation of this relay, other alarm buzzers, alarm lamps, etc. can be operated.

第3図は応動手段として差動形の電圧比較器を使用した
例を示したものである。
FIG. 3 shows an example in which a differential voltage comparator is used as the response means.

この装置では伝送路の送端側に抵抗器Raを設け、該抵
抗器を介して電源Eaからの循環電流を流す。
In this device, a resistor Ra is provided on the sending end side of the transmission line, and a circulating current from the power source Ea is passed through the resistor.

−力差動形の比較器16の入力端子に上記抵抗器Raの
両端に生ずる電圧を供給する。
- supplying the input terminal of the force differential type comparator 16 with the voltage occurring across the resistor Ra;

他の入力端子には電源Esと加減抵抗器Rを循環する循
環電流路において該加減抵抗器に生ずる電圧降下を基準
電圧として供給し、平常時この基準電圧を調整し、比較
器に出力がないようにしておく。
The voltage drop that occurs in the rheostat R in the circulating current path that circulates between the power source Es and the rheostat R is supplied as a reference voltage to the other input terminals, and this reference voltage is adjusted under normal conditions, so that there is no output to the comparator. Let's do it like this.

而して、断線障害が起ると抵抗器Raの両端の電圧が零
となり比較器は正電圧を出力し、この電圧により整流素
子17が導通し、リレー駆動増幅器19が動作してリレ
ー24が動作する。
When a disconnection fault occurs, the voltage across the resistor Ra becomes zero, and the comparator outputs a positive voltage. This voltage makes the rectifying element 17 conductive, and the relay drive amplifier 19 operates, causing the relay 24 to turn on. Operate.

また短絡障害が起ると抵抗器Raの両端の電圧が平常時
よりも高くなり、比較器は負電圧を出力し、これにより
整流素子18が導通し、リレー駆動増幅器20が働いて
リレー22が動作する。
Furthermore, when a short circuit fault occurs, the voltage across the resistor Ra becomes higher than normal, and the comparator outputs a negative voltage, which causes the rectifying element 18 to conduct, causing the relay drive amplifier 20 to operate and the relay 22 to operate. Operate.

そしてこれらのリレーの動作によって警報ブザ−、警報
ランプ等の障害検知具を動作させることができる。
By operating these relays, fault detection devices such as alarm buzzers and alarm lamps can be operated.

またリレーに高感度のものを使用すればリレー駆動増幅
器を省くこともできる。
Also, if a highly sensitive relay is used, the relay drive amplifier can be omitted.

上記例では断線障害の際と短絡障害の際とで別別のリレ
ーを働らかせているから、例えば陵線障害が発生したと
きには赤い警報ランプとベルが働くようにし、短絡障害
時には橙色の警報ランプとブザーが働くようにするなど
種々に変えて障害の態様を容易に識別できるようにする
のもよい。
In the above example, different relays are activated in the event of a disconnection fault and in the event of a short circuit fault, so for example, when a line fault occurs, a red alarm lamp and bell are activated, and in the event of a short circuit fault, an orange alarm is activated. It is also a good idea to make various changes such as having a lamp and buzzer working so that the type of failure can be easily identified.

上記塞流線輪の直流抵抗が低い場合伝送路の終端に近い
ところで短絡障害が起ると伝送路に流れる平常時の電流
と短絡障害時に流れる電流との差があまり大きく生じな
いことがあるが、このような場合は差を大きくし障害の
検出がし易くなるよう塞流線輪1に直列に抵抗器Rjを
接続することもある(第4図)。
If the DC resistance of the above-mentioned blocked wire is low, and a short circuit occurs near the end of the transmission line, the difference between the normal current flowing through the transmission line and the current flowing at the time of the short circuit may not be very large. In such a case, a resistor Rj may be connected in series with the blockage wire 1 to increase the difference and make it easier to detect the fault (FIG. 4).

なお伝送路が途中から複数に分岐されている場合はそれ
ぞれの分岐路の終端に塞流線輪を接続すればよい。
Note that if the transmission line is branched into a plurality of branches from the middle, a blocking wire may be connected to the terminal end of each branch line.

また上記各実施例の連動切換手段はロータリースイッチ
等のスイッチによるほかに適宜のリレ一手段等によるこ
ともできる。
Further, the interlocking switching means in each of the above embodiments may be a switch such as a rotary switch, or may be a suitable relay means.

警報ブザー、警報ランプ等の障害検知具を働らかぜるた
めの電源は直流電源が示されているが交流電源を使用す
ることができるのは勿論である。
Although a DC power source is shown as a power source for operating fault detection devices such as an alarm buzzer and an alarm lamp, it is of course possible to use an AC power source.

本考案は上記のように構成され、送信、受信装置等を接
続した伝送路(実伝送路)の状況(正常、断線、短絡)
を掌握するため、該実伝送路の正常状態における場合と
電気的に同等の疑似電流循環路を編成するよう平衡網(
疑似伝送路)を設けたから、正常な疑似伝送路に実伝送
路を描写することができ、通常のないときは似伝送路と
実伝送路が重畳されるので、応動手段は動作せず、異常
が発生すればこの重畳が崩れ、これを描写しである応動
手段が正確に動作して異常を検知することができる。
The present invention is configured as described above, and the status of the transmission line (actual transmission line) connecting the transmitter, receiver, etc. (normal, disconnection, short circuit)
In order to grasp this, a balanced network (
Since the pseudo transmission line (pseudo transmission line) is provided, the actual transmission line can be depicted on the normal pseudo transmission line, and when there is no normal transmission line, the pseudo transmission line and the actual transmission line are superimposed, so the response means will not operate and there will be no abnormality. If this occurs, this superposition is broken, and the response means that depicts this can operate accurately to detect an abnormality.

また、上記平衡網は加減抵抗器を含むから、障害の発生
した際、該加減抵抗器を調整して応動手段を不動作の状
態に戻すとき、抵抗を増加させる方向に調整するか、若
しくは減する方向に調整するかによって断線か短頼かの
相違を知ることができる。
Further, since the above-mentioned balancing network includes a rheostat, when a fault occurs, when adjusting the rheostat to return the response means to an inoperative state, the resistance may be adjusted to increase or decrease. You can tell the difference between a disconnection and a short-circuit depending on the direction you adjust it.

その上、一般に受信装置、例えば有線放送などの受信装
置は各所に点在しているのが通常であって、これを管理
所と結合するために幹線回路が何本かあり、そのうちの
−幹線が受信装置の置かれている場所にわたって、例え
ば中央通り(第一枝線)、中央東−通り(第二枝線)、
中央東二通り(第三枝線)の枝線等に分れている。
Furthermore, receiving devices, such as cable broadcasting receiving devices, are generally scattered in various places, and there are several main circuits to connect them to the control center. For example, Chuo-dori (first branch line), Chuo-Higashi-dori (second branch line),
It is divided into branch lines such as Chuo Higashi Nidori Street (Third Branch Line).

また、会社や工場等の構内では、事務新線、第一工場棟
、第二工場等々の各枝線別に分け、これを幹線に結合す
る。
In addition, within the premises of a company or factory, branch lines such as a new office line, first factory building, second factory, etc. are separated and connected to the main line.

ビル等の場合は一階に第一枝線、二階に第二支線、三階
に第三枝線等々を設けたりする。
In the case of a building, the first branch line is installed on the first floor, the second branch line is installed on the second floor, the third branch line is installed on the third floor, etc.

このように伝送路(実伝送路)が途中から複数に分岐さ
れている場合であっても、それぞれの伝送路の終端にイ
ンダクタンス素子を接続すればよく、それに応じて上記
平衡網の加減抵抗器を調整すれば分岐の多少にかかわら
ず1つの伝送路の場合と同様の応動手段を用いることが
でき、経済的に伝送路の増減をすることができる。
Even if the transmission line (actual transmission line) is branched into multiple parts in the middle, it is sufficient to connect an inductance element to the end of each transmission line, and the rheostat of the balanced network can be adjusted accordingly. By adjusting the number of branches, the same response means as in the case of one transmission line can be used regardless of the number of branches, and the number of transmission lines can be increased or decreased economically.

なお、伝送路に複数の分岐を設けた場合にも、異常が発
生したとき、上記加減抵抗器を増加、減少のいずれの方
向にどの程度変化させるかによって、どの分岐線で故障
が生じたかを知ることができる。
Furthermore, even when multiple branches are provided in the transmission line, when an abnormality occurs, it is possible to determine which branch line the failure occurred in by changing the rheostat in either direction (increase or decrease). You can know.

以上のように本考案の障害検知装置を情報伝送路に装置
することによりいつでも伝送路の障害又は異常の発生と
同時に管理者は警報によりそれを知ることができ、また
逆に予め定められておいたモールス符号その他の信号を
表示するよう伝送路を短絡等すれば障害修理者が障害現
場から復旧作業が完了したことなどを管理所に簡単に連
絡できる。
As described above, by installing the fault detection device of the present invention on the information transmission path, the administrator can be notified by an alarm as soon as a fault or abnormality occurs in the transmission path. By short-circuiting the transmission line to display the Morse code or other signals that were present, fault repair personnel can easily notify the management office that the restoration work has been completed from the fault site.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の実施例を示し、第1図は差動形のリレー
を用いた場合の構成図、第2図はホイートストンブリッ
ジを用いた場合の構成図、第3図は差動形の電圧比較器
を用いた場合の構成国、第4図は一部の説明補助図であ
る。
The drawings show an embodiment of the present invention. Figure 1 is a configuration diagram using a differential type relay, Figure 2 is a configuration diagram using a Wheatstone bridge, and Figure 3 is a configuration diagram using a differential type relay. Figure 4 is a partial explanatory diagram of the constituent countries when a comparator is used.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 情報源からの情報を伝えるよう2本の伝送路を有し、該
伝送路間に受信装置若しくは電話機等を接続し、該伝送
路の終端に情報信号を十分阻止得るインピーダンスを有
するインダクタンス素子を接続し、一方、該伝送路にイ
ンダクタンス素子を接続したと同等の疑似電流循環路を
編成するよう加減抵抗器を含む平衡網を設け、上記伝送
路を通じて直流電流を流し平常時は該伝送路を含む電流
循環路で生ずる電気的若しくは磁気的勢力を打ち消すよ
う平衡網の電流循環路に直流電流を流し上記伝送路を含
む電流循環路と上記平衡網の電流循環路の不平衡に応動
して気的若しくは機械的変化をする応動手段を設は該応
動手段の応動に伴なって発光若しくは発報が制御される
障害検知具を設け、上記伝送路に放送機、電話機その他
の情報源を接続し該情報源のエネルギーが応動手段へ流
入しないよう該応動手段と上記伝送路の間にフィルター
を設けたことを特徴とする障害検知装置を有する2線式
情報伝送装置。
It has two transmission lines to transmit information from an information source, a receiving device or telephone, etc. is connected between the transmission lines, and an inductance element having an impedance sufficient to block the information signal is connected at the end of the transmission line. On the other hand, a balanced network including a rheostat is provided to form a pseudo current circulation path equivalent to connecting an inductance element to the transmission path, and a DC current is passed through the transmission path and includes the transmission path in normal times. A direct current is passed through the current circulation path of the balanced network so as to cancel out the electrical or magnetic force generated in the current circulation path, and a direct current is applied to the current circulation path of the balanced network in response to the imbalance between the current circulation path including the transmission path and the current circulation path of the balanced network. Alternatively, if a response means that makes a mechanical change is provided, a failure detection device whose light emission or alarm is controlled in accordance with the response of the response means is provided, and a broadcasting device, telephone, or other information source is connected to the transmission path. A two-wire information transmission device having a failure detection device, characterized in that a filter is provided between the response means and the transmission path so that the energy of the information source does not flow into the response means.
JP1982137644U 1982-09-13 1982-09-13 Two-wire information transmission device with fault detection device Expired JPS6016130Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982137644U JPS6016130Y2 (en) 1982-09-13 1982-09-13 Two-wire information transmission device with fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982137644U JPS6016130Y2 (en) 1982-09-13 1982-09-13 Two-wire information transmission device with fault detection device

Publications (2)

Publication Number Publication Date
JPS5888465U JPS5888465U (en) 1983-06-15
JPS6016130Y2 true JPS6016130Y2 (en) 1985-05-20

Family

ID=29930900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982137644U Expired JPS6016130Y2 (en) 1982-09-13 1982-09-13 Two-wire information transmission device with fault detection device

Country Status (1)

Country Link
JP (1) JPS6016130Y2 (en)

Also Published As

Publication number Publication date
JPS5888465U (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US5825599A (en) Ground fault circuit interrupter system with uncommitted contacts
US8891211B2 (en) Potential arc fault detection and suppression
US8717721B2 (en) High impedance fault isolation system
US8861155B2 (en) High-impedance fault detection and isolation system
CN101738568B (en) Distributed DC ground fault detector
NO173076B (en) PROCEDURE AND DEVICE FOR LOCATING EARTH CIRCULATION OF A THREE PHASE NET WORKER
WO2018131797A1 (en) Real-time detection/recovery system of power line failure in power distribution system and construction method therefor
Garcia-Santander et al. Down-conductor fault detection and location via a voltage based method for radial distribution networks
US4096539A (en) Detector of backfeed electrical currents
CA2069665C (en) Apparatus for detecting short-circuit for use in bi-polar d.c. transmission system
JPS6016130Y2 (en) Two-wire information transmission device with fault detection device
WO1993012436A1 (en) Fault indicator for power lines
US6333625B1 (en) Fault localizing and identifying device for electric systems
Roberts et al. Trip and restore distribution circuits at transmission speeds
US3723813A (en) Alarm circuit for monitoring the primary winding of a neutralizing transformer and its grounding connection
KR20220056064A (en) Power supply system for transportation facilities to prevent electric breakdown accidents (electric leakage, flooding, surge, electric shock, fire, power outage, etc.)
HUT62730A (en) Protective unit for electric machines, electric devices and assembly units
KR20000052024A (en) A dectctor of short circuit for electric line
Bjerkan et al. Reliable detection of downed and broken conductors
JPH05268735A (en) Load controller
KR200398633Y1 (en) Monitoring Device of disconnection for Reactor coil
US3489865A (en) Routiners for checking telephone circuits
JP2893290B2 (en) Distribution line ground fault detection method
JP2000321316A (en) Ground fault accident detecting method for parallel dual communication underground power transmission line
JPH0324129B2 (en)