JPS59146163A - Manufacturing method of electrode for fuel cell - Google Patents

Manufacturing method of electrode for fuel cell

Info

Publication number
JPS59146163A
JPS59146163A JP58020924A JP2092483A JPS59146163A JP S59146163 A JPS59146163 A JP S59146163A JP 58020924 A JP58020924 A JP 58020924A JP 2092483 A JP2092483 A JP 2092483A JP S59146163 A JPS59146163 A JP S59146163A
Authority
JP
Japan
Prior art keywords
base material
gas
electrode
carbon
fluorinating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58020924A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Kazunao Sato
佐藤 一直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58020924A priority Critical patent/JPS59146163A/en
Publication of JPS59146163A publication Critical patent/JPS59146163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To manufacture the titled electrode that keeps the active point of a catalyst and applies effective water repellency by creating a catalytic layer on a base material, pressing, baking, and fluorinating it, and forming a graphite fluoride coat. CONSTITUTION:A cataylytic layer 4 is created by coating a base material 3 whose principal component is carbon with a mixture between conductive porous particles whose principal component is the carbon that carries noble metals catalysts and water repellent polymer and is pressed and baked. Then the base material 3 that forms the catalytic layer 4, that is, an electrode 2 is inserted by a gas separation plate 1 for a compact single cell and a flat plate 5 and proper surface pressure is applied by a press plate 8. Subsequently, F2 gas or the mixed gas between the F2 gas and inert gas is supplied from an inlet tube 7 and is made to flow into the protruded and recessed flow path of the separation plate 1 from a manifold 10. The gas enters the electrode 2 and is discharged from an outlet tube 11. At the same time, a graphite fluoride coat is formed on the surface of carbon by heating a heating device 9 and fluorinating both the base material 3 and catalytic layer 4.

Description

【発明の詳細な説明】 この発明は、燃料電池用電極の製造方法、特にその撥水
性の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrode for a fuel cell, and in particular to improving its water repellency.

燃料電池に使用される電極は、一般に、カーボンを主成
分とする基材に貴金属触媒を担持し次カーボンを主成分
とする導電性多孔質粒子と結着剤、撥水剤として加える
撥水性ポリマーとの混合物をスプレー法や濾過法により
塗布して触媒層を作成し、この触媒層を作成した基材を
加圧焼成することにより製造されている。燃料電池にお
いては、反応は触媒、電解質、反応ガスの8者が共存す
る界面すなわち三相界面で起こる。したがって、反応ガ
スの経路となる基材には炭素繊維で構成さ扛た600ミ
クロン程度の紙状のガス透過性の構造イ杢が用いら扛、
こnにポリテトラフルオロエチレン(以下PTFEtと
略す)などのフッ素樹脂金用いて撥水処理全行ない、基
材が電解質に濡れて反応ガスの透過を阻害することのな
いように工夫さnている。また、触媒層に結着剤、撥水
剤として加えた例えばPTF]!tなどの撥水性ポリマ
ーは、三相界面全維持する上で重要な働きをしている。
Electrodes used in fuel cells generally consist of a carbon-based base material supporting a precious metal catalyst, carbon-based conductive porous particles, a binder, and a water-repellent polymer added as a water-repellent agent. A catalyst layer is created by applying a mixture of the above and the like by a spraying method or a filtration method, and the base material on which this catalyst layer is created is pressure-fired. In a fuel cell, a reaction occurs at an interface where eight components, a catalyst, an electrolyte, and a reactant gas, coexist, that is, at a three-phase interface. Therefore, a paper-like gas-permeable structure of about 600 microns made of carbon fiber is used as the base material that serves as a path for the reaction gas.
For this reason, all water-repellent treatments are performed using fluororesin metal such as polytetrafluoroethylene (hereinafter abbreviated as PTFEt) to prevent the base material from getting wet with the electrolyte and inhibiting the permeation of the reaction gas. . In addition, for example, PTF added to the catalyst layer as a binder and water repellent]! Water-repellent polymers such as t play an important role in maintaining the entire three-phase interface.

この撥水性ポリマーは基材に塗布するまでは粒子状であ
るが、加圧焼成する過程で溶融し、導電性多孔質粒子を
結着するとともに導電性多孔質粒子上に撥水性を与え三
相界面を形成することになる。
This water-repellent polymer is in the form of particles until it is applied to the base material, but it melts during the pressure firing process and binds the conductive porous particles, giving water repellency to the conductive porous particles and providing three-phase This will form an interface.

したがって、導電性多孔質粒子と混會する撥水性ポリマ
ーの比率と加圧焼成する過程での焼成温度は三相界面の
形成に大きく影響し、電池特性とその長期安定性を大き
く左右する。例えば撥水性ポリマーが少なすぎたり、焼
成温度が低かった場合には、触媒層は電解質に濡れやす
くなり、三相界面が維持できなくなる。また逆に撥水性
ポリマーが多すぎたり、焼成温度が高すぎる場合には、
触媒の活性点が撥水性ポリマーで覆われてしまって触媒
の利用率が低くなシ、艮好な電池特性が得らnないとい
う問題が生じる。
Therefore, the ratio of the water-repellent polymer mixed with the conductive porous particles and the firing temperature during the pressure firing process greatly influence the formation of the three-phase interface, and greatly influence the battery characteristics and its long-term stability. For example, if the amount of water-repellent polymer is too small or the firing temperature is too low, the catalyst layer becomes easily wetted by the electrolyte, making it impossible to maintain the three-phase interface. On the other hand, if there is too much water-repellent polymer or the firing temperature is too high,
The problem arises that the active sites of the catalyst are covered with the water-repellent polymer, resulting in a low utilization rate of the catalyst and failure to obtain good battery characteristics.

このように、いかに撥水性を維持しつつ、触媒の活性点
ケ最大限に利用するかが艮好な電池特性とその長期安定
性を維持するための重要な問題であるが、従来の方法で
は三相界面の形成は偶然に頼る所が多く、触媒の活性点
を有効に利用することが困難であった。一方、基材に行
なう撥水処理についても、炭素繊維全絶縁体であるFT
FKなどの撥水性ポリマーで覆うことにより、基材と触
#X層あるいは基材とガス分離板との接触抵抗を高める
ことになり、電池特性を低下させるなどの欠1ぐがあっ
た。
In this way, how to maintain water repellency and make maximum use of the active sites of the catalyst is an important issue in order to maintain excellent battery characteristics and long-term stability, but conventional methods cannot The formation of the three-phase interface often relies on chance, making it difficult to effectively utilize the active sites of the catalyst. On the other hand, regarding the water repellent treatment performed on the base material, FT, which is a carbon fiber all-insulator,
By covering with a water-repellent polymer such as FK, the contact resistance between the base material and the #X layer or between the base material and the gas separation plate increases, resulting in disadvantages such as deterioration of battery characteristics.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、カーボンを主成分とする基材に、
貴金属触媒を担持したカーボンを主成分とする導電性多
孔質粒子と撥水性ポリマーとの混合物を塗布して、上記
基材に触媒層を形成する工程、この触媒層を作成した基
材を加圧焼成する工程、及び上記触媒層を作成した基材
全フッ素化してフッ化黒鉛の被膜を形成する工程を施す
ことにより、触媒の活性点を維持しつつ、有効な撥水性
を与えることを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.
A process of applying a mixture of conductive porous particles mainly composed of carbon supporting a noble metal catalyst and a water-repellent polymer to form a catalyst layer on the base material, and pressurizing the base material on which this catalyst layer has been created. By performing a firing process and a process of fully fluorinating the base material on which the catalyst layer was created to form a coating of fluorinated graphite, the aim is to maintain the active sites of the catalyst and provide effective water repellency. There is.

フッ化黒鉛はI’TFFIよりも撥水性に優れ、また極
めて化学的安定性および熱的安定性に優fした材料とし
て固体潤滑剤などに使用されている。フッ化黒鉛には2
種類の安定化合物があり、その化学式は(CF)nと(
C,F)nで表わさ扛、PTFICとは構造的にも物性
的にも異なった物質である。
Fluorinated graphite has better water repellency than I'TFFI, and is used in solid lubricants as a material with extremely superior chemical and thermal stability. 2 for fluorinated graphite
There are several types of stable compounds, whose chemical formulas are (CF)n and (
C, F) Represented by n, it is a substance that is structurally and physically different from PTFIC.

フッ化黒鉛を形成する方法としては、カーボンヶKF・
2HF浴中で電解する湿式法とカーボン金フッ素雰囲気
中で加熱する乾式法とがあるが、以下、後者の乾式法を
用いた場合について図をもとに説明する。
As a method of forming fluorinated graphite, carbon ka KF.
There is a wet method in which electrolysis is performed in a 2HF bath and a dry method in which heating is performed in a carbon-gold-fluorine atmosphere.Hereinafter, the latter dry method will be explained with reference to the drawings.

図面はこの発明の一実施例にかかわるフッ素化装置の一
部を取り除いて内部を示す側面図であり、電極面積I 
Q Oct1程度の小形単セル試験用電極をフッ素化す
る場合について説明する。図において、(1)は小形単
セル試験用のガス分離板、(2)は基材(3)と触媒層
(4)とからなる電極、(5)は例えばカーボンよりな
る平板、(6)はフッ素樹脂よりなる継手、(7)はフ
ッ素樹脂よりなる導入管、(8)は押え板、(9)は加
熱器、(1(1はマニホールド、 +19は反対端のマ
ニホールドに接続された導出管である。
The drawing is a side view showing the inside of a fluorination apparatus according to an embodiment of the present invention with a part removed, and the electrode area I
The case of fluorinating a small single cell test electrode of about Q Oct 1 will be explained. In the figure, (1) is a gas separation plate for small single cell testing, (2) is an electrode made of a base material (3) and a catalyst layer (4), (5) is a flat plate made of carbon, for example, and (6) is an electrode made of a base material (3) and a catalyst layer (4). is a fitting made of fluororesin, (7) is an inlet pipe made of fluororesin, (8) is a holding plate, (9) is a heater, (1 (1 is a manifold, +19 is an outlet connected to the manifold at the opposite end) It's a tube.

この装置を用いての燃料電池用電極の製造方法を以下に
示す。まず、カーボンを主成分とする基材(3)に、貴
金属触媒を担持したカーボンを主成分とする導電性多孔
質粒子と撥水性ポリマーとの混合物を塗布して触媒層(
4)を作成し、これを加圧焼成する。なお、このとき加
えるPTFEIなどの撥水性ポリマーは導電性多孔質粒
子の結着を目的としているので、従来例に比べて極めて
少量である。
A method of manufacturing a fuel cell electrode using this apparatus will be described below. First, a mixture of conductive porous particles mainly composed of carbon supporting a noble metal catalyst and a water-repellent polymer is applied to a base material (3) mainly composed of carbon to form a catalyst layer (3).
4) is prepared and baked under pressure. Note that since the water-repellent polymer such as PTFEI added at this time is intended to bind the conductive porous particles, the amount is extremely small compared to the conventional example.

次にこの触媒層(4)を形成した基材(3)すなわち電
極(2)全小形単セル用のガス分離板(1)と平板(5
)とではさみ、押え板(8)で8〜5Kg/−程度の面
圧をかける。ガス分離板(1)に設けられた凹凸状の反
応ガス流路にマニホールド00′+:当て、これにフッ
素樹脂よりなる継手(61$”よび管(7)を接続し、
加熱器(9)の中に入れる。導入? +7) ’i窒素
ガスボンベ(図示せず)に接続し、窒素ガスを流し、導
出’!+Il+より排出して、流路を清潔に保つ。次に
、導入g(7)をフッ素ガスボンベ(図示せず)に接1
読し、フッ素ガスまたはフッ素ガスと例えばアルゴン、
ヘリウム、窒素などの不活性ガスとの混会ガスを供給す
る。
Next, the base material (3) on which this catalyst layer (4) was formed, that is, the electrode (2), the gas separation plate (1) for all small single cells, and the flat plate (5).
) and apply surface pressure of about 8 to 5 kg/- with the presser plate (8). Place the manifold 00′+: on the uneven reaction gas flow path provided on the gas separation plate (1), connect the fitting (61$”) and the pipe (7) made of fluororesin to this,
Place it in the heater (9). introduction? +7) 'i Connect to a nitrogen gas cylinder (not shown), flow nitrogen gas, and extract it'! +Il+ to keep the channel clean. Next, connect the inlet g (7) to a fluorine gas cylinder (not shown).
reading, fluorine gas or fluorine gas and e.g. argon,
Supply a gas mixture with an inert gas such as helium or nitrogen.

フッ素ガスはマニホールドロOからガス分1ull’板
(1)の凹凸状の流路に流れ、そこから多孔質な電瞳に
浸入し、導出管(11)から排出さnる。こnと同時に
加熱器(9>’1200〜8500で数分〜数十分程度
加熱する。以上の工程により、基材(3)および触Km
(4)はフッ素化され、カーボンの表面にフッ化黒鉛の
破膜が形成さルるが、ガス分離板(1)の反応ガス流路
の凸部に接する基材13)はフッ素化さnない。
The fluorine gas flows from the manifold flow path O to the concavo-convex channel of the gas plate (1), enters the porous electric pupil from there, and is discharged from the outlet pipe (11). At the same time, heat with a heater (9>'1200 to 8500 for several minutes to several tens of minutes. Through the above steps, the base material (3) and the contact km
(4) is fluorinated and a broken film of fluorinated graphite is formed on the carbon surface, but the base material 13) in contact with the convex part of the reaction gas flow path of the gas separation plate (1) is not fluorinated. do not have.

したがって、ガス分離板(1)と基材13)との電子伝
導性は保たnる。また、フッ素ガスはカーボンとのみ応
し、貴金属触媒とは反応しないので、触媒の活性点をフ
ッ化物の破膜で覆ってしまうことなく、活性点のイ4近
に撥水性金与えることができる。
Therefore, the electronic conductivity between the gas separation plate (1) and the base material 13) is maintained. In addition, since fluorine gas only reacts with carbon and does not react with precious metal catalysts, it is possible to provide water-repellent gold near the active sites without covering the active sites of the catalyst with a broken film of fluoride. .

なお、どのVA度の1fさのフッ化黒鉛の破膜が形IN
、さ扛るがは、フッ素化の際供給するフッ蒙ガスの分1
王や混合する不活性ガスの種類あるいは加熱の温度と時
間に依存するが、導電性多孔質粒子の種類や加える撥水
性ポリマーの鼠に応じて最適な条件ケ選ぶことができる
In addition, the ruptured membrane of fluorinated graphite of which VA degree and 1f is in the form IN.
, the sample is 1 part of the fluorine gas supplied during fluorination.
The optimum conditions can be selected depending on the type of conductive porous particles and the water-repellent polymer to be added, although this depends on the type of inert gas to be mixed and the heating temperature and time.

なお、」二記実施例では乾式法によって基材(3)およ
び触媒層(4)のフッ素化を行なったが、湿式法を用い
てフッ素化してもよく、」二記実施例と同様の効果會奏
する。
In addition, in Example 2, the base material (3) and the catalyst layer (4) were fluorinated by a dry method, but they may also be fluorinated by a wet method, resulting in the same effect as in Example 2. Have a meeting.

捷た、上記実施例では小形の単セ)V電池用の電極(2
)の製a法について説明したが、大形の積層形電池用の
電極であってもよく、上記実施例と同様の効果?奏する
In the above example, the electrode for a small single-cell V battery (2
) has been described, but it may also be an electrode for a large laminated battery, with the same effect as in the above example. play.

また、触媒層(4)を形成した基材(3)全加圧焼成す
る工程とフッ素化してフッ化黒鉛の破膜を形成する工程
は順序が逆であってもよく、上記実施例と同様の効果を
奏する。
Further, the order of the step of fully pressurizing the base material (3) on which the catalyst layer (4) is formed and the step of fluorinating it to form a ruptured film of fluorinated graphite may be reversed, as in the above example. It has the effect of

w上のように、この発明により、ばカーボン金主成分と
する基材に、貴金属触媒?担持したカーボンを主成分と
する導電性多孔質粒子と撥水性ポリマーとの混合物を塗
布して、上記基材に触媒唐金作成した基材を加圧焼成す
る工1程、及び上記触媒層を作成した基材全フッ素化し
てフッ化黒鉛の破M全形代する工程を施したので、融媒
の活性点全維持しつつ、有効な撥水性を与えることが可
能となる効果がある。
As shown above, this invention allows a noble metal catalyst to be added to a base material mainly composed of carbon and gold. Step 1 of applying a mixture of conductive porous particles containing supported carbon as a main component and a water-repellent polymer to create a catalyst coating on the substrate and firing the substrate under pressure, and forming the catalyst layer. Since the prepared base material was subjected to a step of completely fluorinating and completely removing the fluorinated graphite, it is possible to maintain all the active points of the melting medium while imparting effective water repellency.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例にかかわるフッ素化装置の一
部を取り除いて内部を示す側面図である。 図において、(1)はガス分離板、(2)は電極、(3
)は基材、(4)は触W、層、(5)は平板、(6)は
継手、(7)は管、(8)は押え板、(9)は加熱器で
ある。 代理人 葛野信−
The drawing is a side view showing the inside of a fluorination apparatus according to an embodiment of the present invention, with some parts removed. In the figure, (1) is a gas separation plate, (2) is an electrode, and (3) is a gas separation plate.
) is the base material, (4) is the contact W, layer, (5) is the flat plate, (6) is the joint, (7) is the tube, (8) is the holding plate, and (9) is the heater. Agent Makoto Kuzuno

Claims (1)

【特許請求の範囲】[Claims] カーボンを主成分とする基材に、貴金属触媒を担持した
カーボンを主成分とする導電性多孔質粒子と撥水性ポリ
マーとの混合物を塗布して、上記基材に触媒層全作成す
る工程、この触媒層全作成した基材を加圧焼成する工程
、及び上記触媒層を作成した基材をフッ素化してフッ化
黒鉛の被膜を形成する工程を施す燃料電池用電極の製造
方法。
A step of applying a mixture of conductive porous particles mainly composed of carbon supporting a noble metal catalyst and a water-repellent polymer to a base material mainly composed of carbon to form a complete catalyst layer on the base material. A method for producing an electrode for a fuel cell, which includes the steps of pressurizing and firing a base material on which a catalyst layer has been entirely formed, and fluorinating the base material on which a catalyst layer has been formed to form a coating of fluorinated graphite.
JP58020924A 1983-02-09 1983-02-09 Manufacturing method of electrode for fuel cell Pending JPS59146163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58020924A JPS59146163A (en) 1983-02-09 1983-02-09 Manufacturing method of electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020924A JPS59146163A (en) 1983-02-09 1983-02-09 Manufacturing method of electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPS59146163A true JPS59146163A (en) 1984-08-21

Family

ID=12040767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020924A Pending JPS59146163A (en) 1983-02-09 1983-02-09 Manufacturing method of electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS59146163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213066A (en) * 1986-03-13 1987-09-18 Masahiro Watanabe Manufacture of gas diffusion electrode
GB2399938A (en) * 2003-03-27 2004-09-29 Nec Tokin Corp Electrode and electrochemical cell therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213066A (en) * 1986-03-13 1987-09-18 Masahiro Watanabe Manufacture of gas diffusion electrode
GB2399938A (en) * 2003-03-27 2004-09-29 Nec Tokin Corp Electrode and electrochemical cell therewith
GB2399938B (en) * 2003-03-27 2005-04-06 Nec Tokin Corp Electrode and electrochemical cell therewith
US7169509B2 (en) 2003-03-27 2007-01-30 Nec Tokin Corporation Electrode and electrochemical cell therewith

Similar Documents

Publication Publication Date Title
US6054230A (en) Ion exchange and electrode assembly for an electrochemical cell
US20060194489A1 (en) Fuel cell gas diffusion layer coating process and treated article
JP2002543578A (en) Electrochemical use of amorphous fluoropolymer.
JPH06169583A (en) Reinforced thin-film electrode interface
JP2002525811A (en) Screen printing method for manufacturing gas diffusion electrodes
JPH07176317A (en) Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body
US4675094A (en) Oxygen-cathode for use in electrolysis of alkali chloride and process for preparing the same
JP4367983B2 (en) Electrode electrolyte assembly for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JPS59146163A (en) Manufacturing method of electrode for fuel cell
US6328862B1 (en) Ozone generating electrolysis cell and method of fabricating the same
Vogel et al. Gas diffusion and electrolyte penetration in porous gas diffusion electrodes
JPH06236763A (en) Manufacture of gas diffused electrode
JPH06260170A (en) Electrode catalyst composition and highpolymer film type electrode
JPH0757742A (en) Gas diffusion electrode
JPH0218861A (en) Electrode catalyzer layer for fuel cell
JPH0227661A (en) Electrode catalyst layer for fuel cell
JPH0711962B2 (en) Method for manufacturing gas diffusion electrode
JPH01292755A (en) Manufacture of electrode for fuel cell
JP2000353529A (en) Forming method for carbon thin film to high polymer film and manufacture of solid high polymer fuel cell using method thereof
JPS6313274A (en) Substrate material of gas diffusion electrode for fuel cell
JPH01130472A (en) Manufacture of complex electrode for phosphoric acid type fuel battery
JPS6086767A (en) Manufacture of electrode catalytic layer of fuel cell
JPS6065466A (en) Gas diffusion electrode for fuel cell
JPS6065465A (en) Gas diffusion electrode for fuel cell
JPH0520868B2 (en)