JPS5914367A - Parallel device for inverters - Google Patents

Parallel device for inverters

Info

Publication number
JPS5914367A
JPS5914367A JP57122076A JP12207682A JPS5914367A JP S5914367 A JPS5914367 A JP S5914367A JP 57122076 A JP57122076 A JP 57122076A JP 12207682 A JP12207682 A JP 12207682A JP S5914367 A JPS5914367 A JP S5914367A
Authority
JP
Japan
Prior art keywords
gto
reactor
turned
voltage
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57122076A
Other languages
Japanese (ja)
Other versions
JPH0452068B2 (en
Inventor
Mitsusachi Motobe
本部 光幸
Yasuo Matsuda
松田 靖夫
Miki Kajita
梶田 美樹
Katsunori Suzuki
鈴木 勝徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP57122076A priority Critical patent/JPS5914367A/en
Publication of JPS5914367A publication Critical patent/JPS5914367A/en
Publication of JPH0452068B2 publication Critical patent/JPH0452068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To enable to maintain a current equilibrium with small reactors by selecting the switching operation pattern of a GTO so that the voltage pulse between reactor terminals between phases alternately becomes positive and negative going. CONSTITUTION:When a load current is positive, negative going voltage is applied until a GTO 21 is turned OFF and the GTO 11 is turned OFF, and positive voltage is applied until the GTO 21 is turned OFF and the GTO 11 is turned OFF, between reactor terminals between phases. When the load current is negative, positive going voltage is applied until a GTO 22 is turned ON and a GTO 12 is turned ON, and negative voltage is applied until the GTO 22 is turned OFF and the GTO 12 is turned OFF, between the reactor terminals between phases. Accordingly, the applied voltage to a reactor 7 between phases becomes both positive and negative going voltage, the reactor is not saturated but the current can be maintained in equilibrium state.

Description

【発明の詳細な説明】 本発ソ4は自己消弧形半導体素子、特にゲートターンオ
フサイリスタ(以下GTOと略記)やトランジスタを利
用したインバータセラ)を用い、このインバータセット
を並列接続した装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present oscillator 4 relates to a device using a self-extinguishing semiconductor element, particularly an inverter cell using a gate turn-off thyristor (hereinafter abbreviated as GTO) or a transistor, and in which inverter sets are connected in parallel. It is.

第1図はGTOを利用したインバータセット並列装置で
ある。この回路は2分割直流電源を用いた2アーム単相
インバータ’kl流平衡用相聞リアクトルを介してセッ
ト並列接続したインバータ装置である。図中1.2がそ
れぞれ単相インバータセットであシ、3.4は直流電源
、5は負荷で51は抵抗、52はリアクトルである。1
1゜工2がインバータlのGTO111’、12’はそ
れぞれの帰還ダイオード、21.22がインバータ2の
GTo、21’ 、22’はそれぞれの帰還ダイオード
である。また7はインバータ1と2の出力電流平衡用相
聞リアクトルである。
FIG. 1 shows an inverter set parallel device using GTO. This circuit is an inverter device in which a two-arm single-phase inverter using a two-divided DC power supply is connected in parallel via a phase-to-phase reactor for balancing flow. In the figure, 1.2 is a single-phase inverter set, 3.4 is a DC power supply, 5 is a load, 51 is a resistor, and 52 is a reactor. 1
GTO 111' and 12' of the inverter 1 are the respective feedback diodes, 21 and 22 are the GTOs of the inverter 2, and 21' and 22' are the respective feedback diodes. Further, 7 is a phase reactor for balancing the output currents of the inverters 1 and 2.

この装置においてGTOII、21のターンオン時間と
ターンオフ時間のばらつき、およびGTO12゜22の
ターンオン時間とターンオフ時間のばらつきにより相聞
リアクトルにはGTOのスイッチング時間差に応じた電
圧vxpxが加わる。第2図にGTOのスイッチング時
間のばらつきによるスイッチング動作パターンを示す。
In this device, a voltage vxpx corresponding to the switching time difference of the GTOs is applied to the phase reactor due to variations in the turn-on time and turn-off time of the GTO II and 21, and variations in the turn-on time and turn-off time of the GTOs 12 and 22. FIG. 2 shows switching operation patterns due to variations in GTO switching time.

図の(a)はGTOIIの動作、(b)はGTO21の
動作である。GTOを任意に選択した場合、GTOll
を基準としたときGTO21はターンオンか遅れ、ター
ンオフが進みとなるパターン1と、ターンオンが進ミ、
ターンオフが遅れとなるパターン2とが考えられる。l
おGTO12とGTO22についても同様の動作パター
ンがある。よって各GTOを任意に選択した場合相関リ
アクトル端子間には一方向だけの電圧が印加される場合
がある。第3図にGTOIIを基準としてGTO21が
パターン1となり、GTO12を基準としてGTO22
がパターン2の動作となった場合の各部動作を示す。図
中CSr1変調波Aと搬送波Bの制御信号、PWMはパ
ルス幅変調信号、INVIはインバータ1の動作、IN
V2はインバータ2の動作、11は負荷tfi、VIP
Xは相間リアクトル端子間電圧を示す。第3図において
相関リアクトルへの電圧はすべて正方向に印加される。
In the figure, (a) shows the operation of GTOII, and (b) shows the operation of GTO21. If GTO is selected arbitrarily, GTOll
When using this as a reference, GTO21 has pattern 1 where turn-on is delayed and turn-off is advanced, and pattern 1 where turn-on is advanced or delayed.
Pattern 2, in which the turn-off is delayed, can be considered. l
Similar operation patterns exist for GTO12 and GTO22. Therefore, when each GTO is arbitrarily selected, a voltage in only one direction may be applied between the correlation reactor terminals. In Figure 3, GTO21 is pattern 1 based on GTOII, and GTO22 is pattern 1 based on GTO12.
The operation of each part when the operation becomes the operation of pattern 2 is shown. In the figure, control signals for CSr1 modulated wave A and carrier wave B, PWM are pulse width modulated signals, INVI is the operation of inverter 1, IN
V2 is the operation of inverter 2, 11 is the load tfi, VIP
X indicates the voltage between the interphase reactor terminals. In FIG. 3, all voltages to the correlation reactors are applied in the positive direction.

またfIX3図とは逆にGTOIIを基準としてGTO
21がパターン2の動作となシ、GTO12を基準とし
てGTO22がパターン1の動作となる場合には相関リ
アクトルには負方向だけの電圧が印加される。
Also, contrary to the fIX3 diagram, GTO
When GTO 21 operates in pattern 2 and GTO 22 operates in pattern 1 with reference to GTO 12, only negative voltage is applied to the correlation reactor.

第3図に示すように相聞リアクトル端子間に同一極性の
電圧が連続して印加されると相聞リアクトルの磁束が飽
和し、電流平衡を保つことができなくなり、セット並列
運転を正常に行なうことができない。あるいは電流平衡
を保つことができたとしてもそのための相聞リアクトル
は非常に大きなものとなる。
As shown in Figure 3, if a voltage of the same polarity is continuously applied between the mutual reactor terminals, the magnetic flux of the mutual reactors will become saturated, making it impossible to maintain current balance, making it impossible to perform set parallel operation normally. Can not. Alternatively, even if current balance could be maintained, the phase reactor required for this purpose would be extremely large.

本発明は上述した欠点を除去しインバータセット並列装
置における各インバータの出力電流平衡を保ち、さらに
電流平衡用相聞リアクトルを小型化することを目的とし
たものである。
The present invention aims to eliminate the above-mentioned drawbacks, maintain the output current balance of each inverter in a parallel inverter set, and further downsize the current balancing phase reactor.

相関リアクトル端子間への電圧パルスが正方向、負方向
交互に印加するようなGTOのスイッチング動作パター
ンであれば相聞リアクトルの励磁電圧は常に正、負と逆
になり磁束が一方向によらない。このため相間リアクト
ルは飽和しなくなシ、相関リアクトルの励磁量も少なく
なシ、小型のりアクドルで′l1lc流平衡を保つこと
ができる。したがって、相間リアクトル端子間に正、負
方向の電圧が印加するようにインバータセット並列装置
に使用するGTOのスイッチング特性を選択すればよい
If the switching operation pattern of the GTO is such that voltage pulses are applied between the correlation reactor terminals alternately in the positive direction and the negative direction, the excitation voltage of the correlation reactor is always reversed between positive and negative, and the magnetic flux does not depend on one direction. Therefore, the interphase reactor is not saturated, the amount of excitation of the correlation reactor is small, and the 'l1lc flow balance can be maintained with a small glue accelerator. Therefore, the switching characteristics of the GTO used in the inverter set parallel device may be selected so that positive and negative voltages are applied between the interphase reactor terminals.

本発明の一実施列である第1図と全く同じ単相インバー
タセット並列装置において第4図に相聞リアクトルに正
、負方向の電圧が交互に印加する場合のGTOll、G
TOI2を基準としたGTO21゜GTO22のスイッ
チング動作パターンを示す。図の(a)はインバータl
の動作、(b)はインバータ2の動作で図の1〜4の4
つのパターンのhずれかとなるようにGTOのスイッチ
ング特性を選択すればよい。@4図のスイッチング動作
パターン1っま勺GTOII ?基準としてGTO21
のターンオン及びターンオフ時間が速いもの、GTO1
2を基準としてGTO22にターンオン及びターンオフ
時間が速いものを選択した場合の動作を第5図に示す。
In a single-phase inverter set parallel device that is exactly the same as that shown in FIG. 1, which is an embodiment of the present invention, FIG. 4 shows GTOll, G
The switching operation patterns of GTO21° and GTO22 are shown based on TOI2. (a) in the diagram shows the inverter l
(b) is the operation of inverter 2, and (b) is the operation of inverter 2.
The switching characteristics of the GTO may be selected so that the deviation h of the two patterns is obtained. Is the switching operation pattern 1 in Figure 4 GTOII? GTO21 as a standard
Fast turn-on and turn-off times, GTO1
FIG. 5 shows the operation when a GTO 22 with fast turn-on and turn-off times is selected based on GTO 22.

図中の信号は第3図に対応する。第5図において負荷電
流1.が正のときはGTO21がターンオンレGTOI
Iがターンオンするまでの間に負方向電圧、GTO21
がターンオフしGTOIIがターンオフするまでの間に
正方向電圧が相関リアクトル端子間に印加される。また
負荷電流i、が負のときはGTO22が夕′−ンオンじ
GTO12がターンオンするまでの間に正方向電圧、G
TO22がターンオフ LGTO12がターンオフする
までの間に負方向電圧が相間リアクトル端子間に印加さ
れる。
The signals in the figure correspond to those in FIG. In FIG. 5, load current 1. When is positive, GTO21 is turn-on GTOI
Negative voltage until I turns on, GTO21
A positive voltage is applied between the correlation reactor terminals until GTOII is turned off and GTOII is turned off. Also, when the load current i is negative, the positive direction voltage G
TO22 is turned off A negative voltage is applied between the interphase reactor terminals until the LGTO12 is turned off.

したがって相間リアクトルへの印加電圧は正、負両方向
の電圧となるのでリアクトルが飽和することなく\電流
平衡を保つことができる。このとき電流平衡を保つため
に必要な相間リアクトルの大きさは一列として、第3図
と第5図のPWMパルス教9の場合のそれぞれのりアク
ドルについて比較すれば1前者のりアクドルに比較して
後者は鉄心断面積に換算して約1/9とPWMパルス数
の逆数に比的して小さくできる。またPWMパルス数を
15あるいは27とした時にはそれぞれ1/15,1/
27となりパルス数が大きくなるにしたがいこの効果は
大きくなる。
Therefore, since the voltage applied to the interphase reactor is in both positive and negative directions, current balance can be maintained without saturating the reactor. At this time, the size of the interphase reactor required to maintain the current balance is compared for the PWM pulse mode 9 in Figure 3 and Figure 5, assuming that the size of the interphase reactor is one line. can be reduced to about 1/9 in terms of the core cross-sectional area, which is smaller than the reciprocal of the number of PWM pulses. Also, when the number of PWM pulses is 15 or 27, it is 1/15 and 1/1, respectively.
27, and as the number of pulses increases, this effect increases.

なお本発明は第1図に示される単相インバータに限定さ
れるものではなく第6図に示す3相インパークにおいて
も適応される。図中10.20がそれぞれ3相インバー
タセツトであり、30は直流電源、5′0は負荷であシ
一般に交流電動機である。直流電源3はインバータ1と
2に共通とし、各インバータのU相、■相、W相は各相
間リアクトル70,80.90に接続し、それぞれの出
力電流を負荷50に供給する。GTOはインバータ10
と20のそれぞれに対応する2個のGTOIIとGTO
21,GTO12とGTO22,GTO13とGTO2
3、GTO14とGTO24,GT015とGTO25
゜GTO16とGTO26において上述の単相イン/<
 −タにおいて示したように一方のGTOのスイッチン
グ特性を基準として、他のGTOはターンオン、ターン
オフ共に進むように、あるいはターンオン、ターンオフ
共に遅れるように選択すれば単相インバータと同様の効
果が得られる。
Note that the present invention is not limited to the single-phase inverter shown in FIG. 1, but can also be applied to a three-phase inverter shown in FIG. 6. In the figure, 10 and 20 are three-phase inverter sets, 30 is a DC power supply, and 5'0 is a load, which is generally an AC motor. The DC power supply 3 is common to the inverters 1 and 2, and the U phase, ■ phase, and W phase of each inverter are connected to interphase reactors 70, 80, and 90, and the respective output currents are supplied to the load 50. GTO has inverter 10
and 20 GTOII and GTO, respectively.
21, GTO12 and GTO22, GTO13 and GTO2
3. GTO14 and GTO24, GT015 and GTO25
゜In GTO16 and GTO26, the above single phase in/<
- As shown in Figure 2, if the switching characteristics of one GTO are used as a reference and the other GTO is selected so that both turn-on and turn-off proceed, or both turn-on and turn-off are delayed, the same effect as a single-phase inverter can be obtained. .

以上述べたように、本発明によれば、GTOを適用した
インバータセット並列装置において、インバータlとイ
ンバータ2のそれぞれ対応する2個のGTOに対してど
ちらか一方を基準とした場合、ターンオン時間、ターン
オフ時間共に速いGTOをもう一方に選択することによ
シインパータの電流平衡状態を保つことが容易となシ、
電流平衡用相聞リアクトルを小型化することができ、装
置の小型化を図ることができるという大きな効果をもた
らす。なお本発明はGTOをインバータに適用し7(場
合について述べたか、トランジスタの場合に対しても、
同様に適用できることはもちろんである。
As described above, according to the present invention, in an inverter set parallel device using GTOs, when one of the two GTOs corresponding to inverter 1 and inverter 2 is used as a reference, the turn-on time is By selecting a GTO with a fast turn-off time as the other, it is easy to maintain the current balance state of the shifter.
This brings about the great effect that the current balancing phase reactor can be downsized, and the device can be downsized. In addition, the present invention applies GTO to an inverter and applies it to the case 7 (I have described the case, but also to the case of a transistor,
Of course, it can also be applied in the same way.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単相インバータセット並列回路例を示す図、第
2図は第1図のGTOのスイッチング動作パターン例を
示す図、第3図は相間リアクトルへの一方向電圧が印加
される場合の第1図の動作説明図、第4図は相関リアク
トルへ正、負両方向鑞圧が印加される場合のGTOスイ
ッチング動作パターン例を示す図、第5図は第4図の動
作説明図、第6図は本発明の他の実施例を示す図である
。 1.2,10.20・・・インバータセット、11゜1
2.13,14,15,16,21,22゜23.24
,25.26・・・GTO17,70゜80.90・・
・電流平衡用相関リアクトル。
Figure 1 is a diagram showing an example of a single-phase inverter set parallel circuit, Figure 2 is a diagram showing an example of the switching operation pattern of the GTO in Figure 1, and Figure 3 is a diagram showing an example of a switching operation pattern of the GTO in Figure 1. 1 is an explanatory diagram of the operation, FIG. 4 is a diagram showing an example of the GTO switching operation pattern when both positive and negative solder pressure is applied to the correlation reactor, FIG. 5 is an explanatory diagram of the operation of FIG. 4, and FIG. The figure shows another embodiment of the invention. 1.2, 10.20...Inverter set, 11゜1
2.13,14,15,16,21,22゜23.24
,25.26...GTO17,70゜80.90...
・Correlation reactor for current balance.

Claims (1)

【特許請求の範囲】[Claims] 1、自己消弧形半導体素子の直列接続体を少なくとも一
組南えたインバータセットを複数個備え、各インバータ
セット;の゛出力点をリアクトルを介して接続し、この
リアクトルの中点から負荷に電力を供給するようにした
インバータの並列装置において、上記各インバータセッ
トの相互に対応する自己消弧形半導体素子のスイッチン
グ特性は、一方の素子のターンオン及びターンオフ動作
を基準とした場合に、他の素子のターンオン及びターン
オフ動作が共に進み、又は共に遅れる関係を有すること
t%徴とするインバータの並列装置。
1. Equipped with a plurality of inverter sets each having at least one series connection of self-extinguishing semiconductor elements, the output points of each inverter set are connected via a reactor, and power is supplied to the load from the midpoint of the reactor. In a parallel inverter system configured to supply A parallel inverter device in which the turn-on and turn-off operations of the inverters are both advanced or both delayed.
JP57122076A 1982-07-15 1982-07-15 Parallel device for inverters Granted JPS5914367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122076A JPS5914367A (en) 1982-07-15 1982-07-15 Parallel device for inverters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122076A JPS5914367A (en) 1982-07-15 1982-07-15 Parallel device for inverters

Publications (2)

Publication Number Publication Date
JPS5914367A true JPS5914367A (en) 1984-01-25
JPH0452068B2 JPH0452068B2 (en) 1992-08-20

Family

ID=14827053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122076A Granted JPS5914367A (en) 1982-07-15 1982-07-15 Parallel device for inverters

Country Status (1)

Country Link
JP (1) JPS5914367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122764A (en) * 1984-07-11 1986-01-31 Fuji Electric Co Ltd Parallel operation control system of voltage type inverter
JPH01110062A (en) * 1987-10-22 1989-04-26 Fuji Electric Co Ltd Parallel operation circuit for inverter
US4986369A (en) * 1988-07-11 1991-01-22 Makita Electric Works, Ltd. Torque adjusting mechanism for power driven rotary tools
CN102064759A (en) * 2011-01-11 2011-05-18 山东大学 Self-excited controllable saturation resistor and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357428A (en) * 1976-11-04 1978-05-24 Toyo Electric Mfg Co Ltd Method of suppressing cross current
JPS5722385A (en) * 1980-07-15 1982-02-05 Hitachi Ltd Pulse width modulation type converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357428A (en) * 1976-11-04 1978-05-24 Toyo Electric Mfg Co Ltd Method of suppressing cross current
JPS5722385A (en) * 1980-07-15 1982-02-05 Hitachi Ltd Pulse width modulation type converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122764A (en) * 1984-07-11 1986-01-31 Fuji Electric Co Ltd Parallel operation control system of voltage type inverter
JPH01110062A (en) * 1987-10-22 1989-04-26 Fuji Electric Co Ltd Parallel operation circuit for inverter
US4986369A (en) * 1988-07-11 1991-01-22 Makita Electric Works, Ltd. Torque adjusting mechanism for power driven rotary tools
CN102064759A (en) * 2011-01-11 2011-05-18 山东大学 Self-excited controllable saturation resistor and control method thereof

Also Published As

Publication number Publication date
JPH0452068B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
US9787213B2 (en) Power cell bypass method and apparatus for multilevel inverter
JP7074144B2 (en) Rotating electric machine control device
EP2413489B1 (en) Highly efficient half-bridge DC/AC converter
US4084220A (en) Power converter
Chéron et al. Soft commutation
US4039926A (en) Current fed inverter with commutation independent of load inductance
JPH0799959B2 (en) Inverter with winding switching function
CN111509980B (en) Power converter
US4549258A (en) Inverter device using gate turn-off thyristors
JP2000134953A (en) Inverter
US4951187A (en) Method for controlling a three-phase inverter
US3465233A (en) Self-commutating inverter
US4327314A (en) Inverter system for driving synchronous motor
JPS5914367A (en) Parallel device for inverters
US4220989A (en) Polyphase variable frequency inverter with output voltage control
US5010470A (en) Current balancing structure for semiconductor switching devices
US3483462A (en) Inverters operable with a wide range of load impedances
US3422338A (en) Reversible current converter for selective direction of current flow through d.c. load and including choke coil with unidirectional current flow
US4247887A (en) AC--AC Converter device
US3984752A (en) Electrical valve circuit apparatus
JPH09289979A (en) Power unit for magnetic resonance imaging device
JPH02131370A (en) Inverter circuit
SU652669A1 (en) Thyristorized series inverter
JPS6132914B2 (en)
US4426678A (en) D.C. to D.C. converter