JPS58218169A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS58218169A
JPS58218169A JP10153482A JP10153482A JPS58218169A JP S58218169 A JPS58218169 A JP S58218169A JP 10153482 A JP10153482 A JP 10153482A JP 10153482 A JP10153482 A JP 10153482A JP S58218169 A JPS58218169 A JP S58218169A
Authority
JP
Japan
Prior art keywords
gate electrode
integrated circuit
substrate
semiconductor integrated
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10153482A
Other languages
Japanese (ja)
Inventor
Matsuo Ichikawa
市川 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP10153482A priority Critical patent/JPS58218169A/en
Publication of JPS58218169A publication Critical patent/JPS58218169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce the leak current caused by light by a method wherein an upper gate electrode and a lower gate electrode are formed on the upper and lower sides of a substrate through the intermediary of an insulating film, thereby enabling to enhance the capability of the transistor. CONSTITUTION:An SiO2 film 12 is formed on a quartz glass substrate by performing a vapor-phase growing method, and the lower gate electrode 13 is formed thereon. Then a vapor-phase grown SiO2 film 14 is formed on the above, and an N2 annealing is performed. Then, a P type polycrystalline silicon layer 15 is formed, and after a selective etching has been performed, a thermally oxided SiO2 film 16 is formed and the upper electrode 17 is formed thereon. After an N<+> diffusion layer 18 has been formed by performing an ion implantation, a phosphor silicate glass layer 19 is formed. With the above constitution, a voltage is applied simultaneously to the upper and lower electrodes, upper and lower inversion layers are formed, and a current can be applied to said upper and lower inversion layers. Besides, when an opaque electrode material is used for the upper and lower electrodes, the light coming from both upper and lower directions can be shut out, thereby enabling to reduce the leak current.

Description

【発明の詳細な説明】 本発明は薄膜中導体を基板として用いたMO8型電界効
果トランジスタを構成要素とする半導体集積回路に関し
、ゲートに用いた電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit comprising an MO8 type field effect transistor using a thin film medium conductor as a substrate, and relates to an electrode structure used for a gate.

アモルファスや多結晶薄膜中導体を基板として用いたM
O8電界効果トランジスタの研究開発力さかんにおこな
われている。それは薄膜MO8電界効果トランジスタを
構成要素とする半導体集積回路装置が実用可能となると
、種々の大きなメリットが出てくるからである。たとえ
ば、大幅なコストダウンが期待できるのと、大型のIC
及び多層構造のIC等が実現して、ICの大きな応用範
囲が出現する。
M using an amorphous or polycrystalline thin film medium conductor as a substrate
Research and development efforts for O8 field effect transistors are being actively carried out. This is because if a semiconductor integrated circuit device having thin film MO8 field effect transistors as a component becomes practical, various great advantages will emerge. For example, we can expect significant cost reductions and large ICs.
With the realization of multi-layered ICs and the like, a wide range of applications for ICs will emerge.

現在、至るところで研究開発されつつあるこの薄膜1j
OEI電界効果トランジスタ及び集積回路装置にも大き
な問題点がいくつか存在す石。
This thin film 1j is currently being researched and developed everywhere.
There are some major problems with OEI field effect transistors and integrated circuit devices.

その大きな問題の中K、ソース・ドレイン間のリークが
あり、又、トランジスタのドライブ能力、すなわち移動
度が小さいという問題がある。
Among the major problems are leakage between the source and drain, and the problem of low transistor drive ability, ie, low mobility.

シリコン単結晶基板を用い次トランジスタのドレインリ
ークは、トランジスタ1個あたシに換算すると10−B
〜10−”A程度となる。それに比較してアモルハスシ
リコン及び多結晶シリコンを基板として用いた薄膜MO
B電界効果型のソース汲びドレイン間のリークは、トラ
ンジスタ1個ア次シに換算するとI Ll−’〜1Q−
10Aであり、2桁〜5桁多い。その定めスタティック
タイプの駆動でもリークが多くて問題はめるし、ダイナ
ぐツクタイプの駆動ではリークのため動作ができなくな
ってしまう。
The drain leakage of the next transistor using a silicon single crystal substrate is 10-B when converted to one transistor.
~10-”A. In comparison, thin film MOs using amorphous silicon and polycrystalline silicon as substrates
The leakage between the source and drain of the B field effect type is I Ll-' ~ 1Q- when converted to one transistor.
10A, which is 2 to 5 digits more. Even with a static type drive, there is a lot of leakage, which causes problems, and a dynamic type drive cannot operate due to leakage.

又、薄膜M Q S ’il界効果トランジスタを構成
要素とする半導体集積回路装置の応用範囲の中には液晶
表示パネルの電極パネルとして使用されるなど光を直接
うける用途があり、この場合には前記したリーク電流値
がさらに大きくなる。
Furthermore, among the applications of semiconductor integrated circuit devices that use thin-film MQS'IL field-effect transistors as constituent elements, there are applications in which they are directly exposed to light, such as being used as electrode panels for liquid crystal display panels. The leakage current value described above becomes even larger.

さらに、移動度が小さいためにスピードを要求する回路
には不向であシ応用範囲がかぎられてくる。ちなみに、
多結晶シリコンを用いた場合のNチャンネルトランジス
タにおいて60〜40 cm/V”□e の移動度であり、Pチャンネルトランジスタでは、、: 10〜20備/vlである6□ 従来の構造について第1図1〜第3図に例を挙げて以下
に説明する。
Furthermore, because of its low mobility, it is unsuitable for circuits that require speed, and its range of applications is limited. By the way,
The mobility in N-channel transistors using polycrystalline silicon is 60 to 40 cm/V"□e, and in the case of P-channel transistors, it is 10 to 20 cm/vl. An example will be described below with reference to FIGS. 1 to 3.

第1図に示すように石英ガラス基体1の上に、気相成長
5toz[2を形成し、その上にP型多結晶シリコン層
6を形成し選択的にエツチングする。
As shown in FIG. 1, a layer 5TOZ[2 of vapor phase growth is formed on a quartz glass substrate 1, and a P-type polycrystalline silicon layer 6 is formed thereon and selectively etched.

その上に、熱酸化5i02  t1g4を形成して、ゲ
ート電極配aSを形成する。第2図に示すように、イ 
′オン打込みに19N+拡散層6を形成し、その上にリ
ンシリケイトガラス7を形成する。又、第5図のように
選択エツチングにxDコンタクトホールをあけ、その上
にM配fil 8を形成する。
Thereon, thermal oxidation 5i02 t1g4 is formed to form gate electrode arrangement aS. As shown in Figure 2,
'A 19N+ diffusion layer 6 is formed on the on-implant, and a phosphosilicate glass 7 is formed thereon. Further, as shown in FIG. 5, an xD contact hole is formed by selective etching, and an M film 8 is formed thereon.

以上のような構造をとると、前記したように気相成長5
i02  と多結晶シリコンの界面、及び多結晶中の粒
塊の界面を流れるリークが発生し、さらに光があたると
電荷が発生してリークする。特に液晶表示パネルの電極
基板に用いた場合には元が石英ガラス基体側から直接あ
たるのでリーク電流も非常に多く fUl’る。さらに
前記したように移動度が小さく、内部1寥シフトレジス
タ等のスピードが要求される回J・を内蔵すlができヶ
い。
When the above structure is adopted, as mentioned above, vapor phase growth 5
Leakage occurs at the interface between i02 and polycrystalline silicon, and at the interface between grains in the polycrystalline silicon, and when exposed to light, charges are generated and leakage occurs. In particular, when used as an electrode substrate for a liquid crystal display panel, the leakage current is very large because the source is directly in contact with the quartz glass substrate side. Furthermore, as mentioned above, it is difficult to incorporate circuits J. which have low mobility and require high speed, such as an internal one-bit shift register.

本発明は以上のL5な欠点について改良を加え・   
またものであり、本発明の目的はトランジスタの能力を
アップする事にあシ、本発明の他の目的は、光によるリ
ーク電流を少くする孕にある。又、さらに本発明の他の
目的については、以下の本発明の説明の中であきらかに
する。
The present invention improves the above-mentioned L5 drawbacks.
Another object of the present invention is to improve the performance of a transistor, and another object of the present invention is to reduce leakage current due to light. Furthermore, other objects of the present invention will be made clear in the following description of the present invention.

第4図〜第6図に例を挙げて以下に本発明について説明
する。
The present invention will be described below with examples shown in FIGS. 4 to 6.

第4図に示すように石英ガラス基体11の上に、気相成
長5iQ212を形成し、その上に下部ゲート電極15
を形成する。その上に気相成長51o21JjK14を
形成し、N2アニールをおこなう。そしてP製条結晶シ
リコンIH15を形成し、選択エツチングした後、熱酸
化5102膜16を形成する。その上に上部電極17を
形成する。
As shown in FIG. 4, a vapor phase growth layer 5iQ212 is formed on the quartz glass substrate 11, and a lower gate electrode 15 is formed on it.
form. A vapor phase growth layer 51o21JjK14 is formed thereon, and N2 annealing is performed. Then, after forming a P strip crystal silicon IH 15 and selectively etching it, a thermally oxidized 5102 film 16 is formed. An upper electrode 17 is formed thereon.

第5図に示すように、イオン打込みに工りN+拡散層1
8を形成した後、リンシリケイトガラス19を形成する
As shown in Figure 5, the N+ diffusion layer 1 is
After forming 8, phosphosilicate glass 19 is formed.

さらに、第6図に示すように選択エツチングにニジコン
タクトホールt6け、その上にM配線20を形成する。
Further, as shown in FIG. 6, a rainbow contact hole t6 is formed by selective etching, and an M wiring 20 is formed thereon.

なお必要であれば、下部ゲート電極と上部ゲート電極は
途中工程で接続し短絡する。
If necessary, the lower gate electrode and the upper gate electrode are connected and short-circuited during the process.

以上のように本発明の方法によると、上部ゲート電極と
下部ゲート電極で電圧を同時に加え上部と下部から反転
層を形成して、上部、下部の反転層で電流を流す事ばで
き、父上部と下部から電圧を加える事によって相乗効果
も期待する事ができるO さらに、上部ゲート電極と下部ゲート電極に不透明な電
極材料を用いる事によって、上下両方向からの光を遮断
する事ができリーク電流が少なくなる。なお、下部にも
ゲート電極がめシ、下部からも空乏層が発生している事
もあシ、下部絶縁膜と薄嘆牛導体層との界面でのリーク
も少なくなる。
As described above, according to the method of the present invention, voltage can be simultaneously applied to the upper gate electrode and the lower gate electrode to form an inversion layer from the upper and lower parts, and a current can be passed through the upper and lower inversion layers. A synergistic effect can also be expected by applying voltage from below.Furthermore, by using opaque electrode materials for the upper and lower gate electrodes, it is possible to block light from both the upper and lower directions, reducing leakage current. It becomes less. In addition, a gate electrode is formed at the bottom, and a depletion layer is also generated from the bottom, and leakage at the interface between the bottom insulating film and the thin conductor layer is also reduced.

又、上部ゲート電極と上部ゲート電極とを短絡しないで
、別の電極として用いると2人力で1出力のトランジス
タを形成する事ができる。
Furthermore, if the upper gate electrode and the upper gate electrode are not short-circuited but are used as separate electrodes, a single-output transistor can be formed by two people.

なお、本発明は上下とも金補ゲート電極でも、両者とも
多結晶又はアモル/・スの工うな半透明な電極、父、そ
の両者を用いた場合でもおのおの本・発明のそれぞれの
効果を発揮する事ができる。
In addition, the present invention exhibits the respective effects of the present invention even when both the upper and lower gate electrodes are made of gold, both are semi-transparent electrodes such as polycrystalline or amorphous/silicon, or both are used. I can do things.

又、基体として石英ガラス板を用いた例を下したが、他
のガラス材料、グラスチック材料、セラミック材料及び
その他の材料を用いた場合でも同様である。
Further, although the example has been given in which a quartz glass plate is used as the substrate, the same applies to cases where other glass materials, plastic materials, ceramic materials, and other materials are used.

又、ゲート材料としぞ気相成長のsio、 PIi+と
熱酸化S i Q2  膜について下したが他の材料を
用いた場合も同様である。又、本発明の例ではNチャン
ネルについて示したがPチャンネル、及び相補型でも同
様である。
Further, although the above description has been made regarding the gate material, sio, PIi+, and thermally oxidized Si Q2 film grown in the groove vapor phase, the same applies to the case where other materials are used. Further, although the example of the present invention is shown for N channel, the same applies to P channel and complementary type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は従来方法による製造工程順の断面略図
である。 第4図〜第6図は本発明の方法による製造工程順の断面
略図である。 以下、次の通りである。 : 1、.11・・・石英ガラス基体)、 2.12.14・・・気相成長のS i 02膜、6.
15・・・P型多結晶シリコン層、4.16・・・熱酸
化5102膜、 5・・・ゲート電極配線、 6.18・・・N+拡散層、 7.1?・・・リンシリケイトガラス、8.20・・・
M配線。 16・・・下部ゲート電極配線、 17・・・上部ゲートN極配線、 以   上 出願人 株式会社 諏訪精工台 代理人 弁理士 最 上   務
1 to 3 are schematic cross-sectional views of the manufacturing process according to the conventional method. 4 to 6 are schematic cross-sectional views of the manufacturing process according to the method of the present invention. The following is as follows. : 1,. 11... quartz glass substrate), 2.12.14... vapor phase grown S i 02 film, 6.
15... P-type polycrystalline silicon layer, 4.16... Thermal oxidation 5102 film, 5... Gate electrode wiring, 6.18... N+ diffusion layer, 7.1? ...phosphosilicate glass, 8.20...
M wiring. 16...Lower gate electrode wiring, 17...Upper gate N-electrode wiring, Applicant Suwa Seikodai Co., Ltd. Patent attorney Mogami Tsutomu

Claims (2)

【特許請求の範囲】[Claims] (1)  アモルファス半導体、又は多結晶半導体薄膜
を基板として用いたMO8型電界効果トランジスタを構
成要素とする半導体集積回路装置において、該基板の上
下に、絶縁ゲート膜をかいして上部ゲート電極、下部ゲ
ート電極を形成した事を特徴とする半導体集積回路装置
。・
(1) In a semiconductor integrated circuit device whose component is an MO8 field effect transistor using an amorphous semiconductor or a polycrystalline semiconductor thin film as a substrate, an insulating gate film is provided above and below the substrate to form an upper gate electrode and a lower gate electrode. A semiconductor integrated circuit device characterized by forming a gate electrode.・
(2)該上部ゲート電極と該下部ゲート電極とが短絡し
同電位になっている事を特徴とする特許請求の範囲第1
項記載の半導体集積回路装置。
(2) Claim 1, characterized in that the upper gate electrode and the lower gate electrode are short-circuited and have the same potential.
The semiconductor integrated circuit device described in .
JP10153482A 1982-06-14 1982-06-14 Semiconductor integrated circuit device Pending JPS58218169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10153482A JPS58218169A (en) 1982-06-14 1982-06-14 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10153482A JPS58218169A (en) 1982-06-14 1982-06-14 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS58218169A true JPS58218169A (en) 1983-12-19

Family

ID=14303106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10153482A Pending JPS58218169A (en) 1982-06-14 1982-06-14 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS58218169A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308386A (en) * 1987-01-30 1988-12-15 Sony Corp Semiconductor device and manufacture thereof
JPS6459866A (en) * 1987-08-31 1989-03-07 Sony Corp Manufacture of mos transistor
US4998152A (en) * 1988-03-22 1991-03-05 International Business Machines Corporation Thin film transistor
JPH0354865A (en) * 1989-07-24 1991-03-08 Sharp Corp Thin film field effect transistor and manufacture thereof
US5061648A (en) * 1985-10-04 1991-10-29 Hosiden Electronics Co., Ltd. Method of fabricating a thin-film transistor
EP0481734A2 (en) * 1990-10-16 1992-04-22 Agency Of Industrial Science And Technology Light valve device
US5550390A (en) * 1991-08-08 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5859444A (en) * 1991-08-08 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7078321B2 (en) * 2000-06-19 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7122409B2 (en) 1999-12-10 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
US9799731B2 (en) 2013-06-24 2017-10-24 Ideal Power, Inc. Multi-level inverters using sequenced drive of double-base bidirectional bipolar transistors

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061648A (en) * 1985-10-04 1991-10-29 Hosiden Electronics Co., Ltd. Method of fabricating a thin-film transistor
JPS63308386A (en) * 1987-01-30 1988-12-15 Sony Corp Semiconductor device and manufacture thereof
JPS6459866A (en) * 1987-08-31 1989-03-07 Sony Corp Manufacture of mos transistor
US4998152A (en) * 1988-03-22 1991-03-05 International Business Machines Corporation Thin film transistor
JPH0354865A (en) * 1989-07-24 1991-03-08 Sharp Corp Thin film field effect transistor and manufacture thereof
US5926699A (en) * 1990-10-16 1999-07-20 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having stacked layer substrate
EP0481734A2 (en) * 1990-10-16 1992-04-22 Agency Of Industrial Science And Technology Light valve device
US5672518A (en) * 1990-10-16 1997-09-30 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having stacked layered substrate
US5759878A (en) * 1990-10-16 1998-06-02 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having epitaxially grown semiconductor single crystal film
US5550390A (en) * 1991-08-08 1996-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5859444A (en) * 1991-08-08 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7122409B2 (en) 1999-12-10 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
US7078321B2 (en) * 2000-06-19 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9799731B2 (en) 2013-06-24 2017-10-24 Ideal Power, Inc. Multi-level inverters using sequenced drive of double-base bidirectional bipolar transistors

Similar Documents

Publication Publication Date Title
US6172671B1 (en) Active matrix type display device and fabrication method of the same
KP et al. Kink-free polycrystalline silicon double-gate elevated-channel thin-film transistors
KR930017218A (en) Thin Film Field Effect Transistors and Manufacturing Method Thereof
JPS58218169A (en) Semiconductor integrated circuit device
EP0646289B1 (en) Semiconductor devices with a double gate
JPS63102264A (en) Thin film semiconductor device
US20120164801A1 (en) Semiconductor device and method of manufacturing the same
JPS59204275A (en) Manufacture of thin film transistor
JP2722890B2 (en) Thin film transistor and method of manufacturing the same
KR930018754A (en) Semiconductor devices
JPH0430746B2 (en)
JPS63237571A (en) Manufacture of thin film transistor
JPS6376474A (en) Inverter circuit for thin film transistor
JPS6148976A (en) Thin-film transistor
Nara et al. An amorphous silicon integrated inverter
JPH05114732A (en) Thin film transistor
JPS5929459A (en) Semiconductor integrated circuit device
JPH04320063A (en) Thin film transistor
JPS63193568A (en) Thin film transistor
JP2005236191A (en) Thin film transistor substrate and liquid crystal display device comprising it, and its manufactuing method
JPS63237570A (en) Manufacture of thin film transistor
KR950009797B1 (en) Fid poly silicon tft with bottom gate
JP3370263B2 (en) Insulated gate transistor
JPS57180177A (en) Semiconductor device
JPS62109026A (en) Liquid crystal display device with built-in driving circuit