JPS5821504B2 - Tanmakihen Atsukigenrino Setsuzoku Niyoru 12 Sousei Riyu Cairo - Google Patents

Tanmakihen Atsukigenrino Setsuzoku Niyoru 12 Sousei Riyu Cairo

Info

Publication number
JPS5821504B2
JPS5821504B2 JP49060533A JP6053374A JPS5821504B2 JP S5821504 B2 JPS5821504 B2 JP S5821504B2 JP 49060533 A JP49060533 A JP 49060533A JP 6053374 A JP6053374 A JP 6053374A JP S5821504 B2 JPS5821504 B2 JP S5821504B2
Authority
JP
Japan
Prior art keywords
phase
voltage
current
primary winding
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49060533A
Other languages
Japanese (ja)
Other versions
JPS50151337A (en
Inventor
松本久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP49060533A priority Critical patent/JPS5821504B2/en
Publication of JPS50151337A publication Critical patent/JPS50151337A/ja
Publication of JPS5821504B2 publication Critical patent/JPS5821504B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 3相交流電源より整流器を介して直流電流を得る場合、
交流側の電流には一般に約20係の第5高調波電流と約
14%の第7高調波電流が含まれる。
[Detailed Description of the Invention] When obtaining DC current from a three-phase AC power supply via a rectifier,
The current on the alternating current generally includes a fifth harmonic current of about 20% and a seventh harmonic current of about 14%.

この高調波電流は、設備容量の大きい場合には、無視で
きない有害な作用を電源系統に与えることになる。
If the installed capacity is large, this harmonic current will have a harmful effect on the power supply system that cannot be ignored.

このため、整流器用の変圧器の巻線を適当に組合せて位
相角が30°づれた2組の電気的に独立な3相交流電源
を得て、これに2組の3相ブリッジ整流回路を接続し、
この2組の整流回路を直列または並列に使用するパルス
数12整流回路を構成し、これにより交流電源電流より
第5および第7高調波成分を除く方法がとられている。
Therefore, by appropriately combining the windings of the rectifier transformer, two sets of electrically independent three-phase AC power supplies with a phase angle of 30° are obtained, and two sets of three-phase bridge rectifier circuits are connected to these. connection,
A method has been adopted in which a 12-pulse rectifier circuit is constructed in which these two sets of rectifier circuits are used in series or in parallel, and thereby the fifth and seventh harmonic components are removed from the AC power supply current.

この発明は、上記の2組の電気的に独立な3相交流電源
の代りに単巻変圧器原理の接続により電気的に独立でな
いが矢張り位相角が30°づれた2組の3相交流電源を
得て、これに2組の3相ブリッジ整流回路を並列に接続
することにより、上記と同様に交流電源電流の低次の高
調波電流を除くものである。
In place of the two sets of electrically independent three-phase AC power supplies described above, this invention uses two sets of three-phase AC power supplies which are not electrically independent but whose phase angles are shifted by 30 degrees by connecting them based on the autotransformer principle. By obtaining a power supply and connecting two sets of three-phase bridge rectifier circuits in parallel to the power supply, lower harmonic currents of the AC power supply current are removed in the same manner as described above.

この回路では、直流系統と交流系統が電気的に絶縁され
なく、また直流電圧を任意に選ぶことができない欠点は
あるが、変圧器容量を著しく小さくできる長所がある。
Although this circuit has the disadvantage that the DC system and the AC system are not electrically isolated and that the DC voltage cannot be arbitrarily selected, it has the advantage that the transformer capacity can be significantly reduced.

また、この回路を逆変換装置として使用して、同期電動
機と組合せれば、相電流に第5および第7高調波成分を
含まないいわゆる無整流子電動機を構成することができ
る。
Furthermore, if this circuit is used as an inverse converter and combined with a synchronous motor, a so-called non-commutator motor that does not contain the fifth and seventh harmonic components in the phase current can be constructed.

つぎに、図面に示す最も効率的な実施例に基づいて、こ
の発明を具体的に説明する。
Next, the present invention will be specifically explained based on the most efficient embodiment shown in the drawings.

第1図において、3相交流電源1より給電される単巻変
圧器原理の接続による3相変圧器2の一次巻線IL21
,31は△結線してあり、二次巻線12,13,22,
23,32.33の電圧は一次巻線の0.149倍に選
んである。
In FIG. 1, a primary winding IL21 of a three-phase transformer 2 connected according to the autotransformer principle is supplied with power from a three-phase AC power supply 1.
, 31 are △ connected, and the secondary windings 12, 13, 22,
The voltage at 23,32.33 is chosen to be 0.149 times that of the primary winding.

このようにすると、端子10.20および30の電圧ベ
クトルを第2図の10’、 20’、 30’で表すと
、図の接続において、端子14,15,24,25,3
4゜35の電圧ベクトルは、第2図の14′、15′、
24′。
In this way, if the voltage vectors of terminals 10, 20 and 30 are represented by 10', 20', and 30' in FIG.
The voltage vector of 4°35 is 14', 15', and
24′.

25’、 34’、 35’で表される。25', 34', 35'.

これにより得られた30′位相のづれた2組の3相起動
電力14′。
Two sets of three-phase starting power 14' with a phase shift of 30' are thus obtained.

24’、34’および15’、 25’、 35’を、
第1図の接続により、2組の3相ブリッジ整流回路3,
4に供給する。
24', 34' and 15', 25', 35',
With the connections shown in Figure 1, two sets of three-phase bridge rectifier circuits 3,
Supply to 4.

この2組の3相ブリッジ整流回路のサイリスタ16,1
6’、26,26’、36,36’および17,17’
、27,27’、37,37’は同じ点弧角で点弧して
位相制呻する。
Thyristors 16 and 1 of these two sets of three-phase bridge rectifier circuits
6', 26, 26', 36, 36' and 17, 17'
, 27, 27', 37, and 37' are fired at the same firing angle for phase control.

負荷8に直列接続した平滑リアクトル7のインダクタン
スが非常に大きくて負荷電流80が完全に平滑な直流電
流であり、相間リアクトル5,6により両整流回路の直
流電流81と82が完全に等しく保たれており、また各
ブリッジ整流回路のサイリスク間の電流の転流が瞬時に
完了するものとすると、巻線12.22,32の電流4
0,41,42と巻線13.23,33の電流50,5
L52は、それぞれ第3図の40’、 41’、 42
’と50’、 51’。
The inductance of the smoothing reactor 7 connected in series with the load 8 is very large, so that the load current 80 is a completely smooth DC current, and the DC currents 81 and 82 of both rectifier circuits are kept completely equal by the interphase reactors 5 and 6. and assuming that the commutation of the current between the sirisks of each bridge rectifier circuit is completed instantaneously, the current 4 in the windings 12.22 and 32 is
0,41,42 and the current in winding 13.23,33 50,5
L52 are 40', 41', and 42 in Fig. 3, respectively.
' and 50', 51'.

52′にその波形を示すように、通常の3相ブリッジ整
流回路の相電流波形と同じになり、位相が120°づれ
た180°区間中120°区間通電する3相交流電流に
なり、両3相交流電流の位相が30’つれたものになる
As shown in Fig. 52', the waveform is the same as the phase current waveform of a normal three-phase bridge rectifier circuit, and is a three-phase alternating current that conducts in a 180° section with a phase difference of 120°. The phases of the phase alternating currents are shifted by 30'.

また、その波高値は直流電流81と82の大きさを■と
するとこれと等しく■となる。
Further, the peak value is equal to the magnitude of the DC currents 81 and 82, which is .largecircle..

これにより、一次巻線11の電流60は、これに流れる
励磁電流を一般にその大きさが小さいので無視すると、
次に説明するように、第3図の60′に示すような波形
の大きさの小さいものになる。
As a result, the current 60 in the primary winding 11 can be calculated as follows, if the excitation current flowing through it is ignored since its magnitude is generally small.
As will be explained next, the waveform becomes smaller in size as shown at 60' in FIG.

すなわち、第3図にAで示す区間では、巻線13の電流
50の波形50′の値は0であり、巻線12の電流40
の波形40′の値は+1である。
That is, in the section indicated by A in FIG. 3, the value of the waveform 50' of the current 50 in the winding 13 is 0, and
The value of waveform 40' is +1.

よって、一次巻線11に流れる電流60の波形60′の
値は、巻線12の巻数が巻線11の巻数の0.149倍
であるので、−0,149Iになる。
Therefore, the value of the waveform 60' of the current 60 flowing through the primary winding 11 is -0,149I because the number of turns of the winding 12 is 0.149 times the number of turns of the winding 11.

同図にCで示す区間では、波形50′の値が+1で波形
40′の値がOとなるので、波形60′の値は十〇、1
49Iとなる。
In the section indicated by C in the figure, the value of waveform 50' is +1 and the value of waveform 40' is O, so the value of waveform 60' is 10, 1.
It becomes 49I.

Eで示す区間では、波形40′の値が一工で波形50′
の値が0であるので、波形60′の値は+〇、149I
となる。
In the section indicated by E, the value of waveform 40' changes to waveform 50' in one step.
Since the value of is 0, the value of waveform 60' is +〇, 149I
becomes.

Gで示す区間では、波形40′の値が0で波形50′の
値が=■となるので波形60′の値は−0,149Iと
なる。
In the section indicated by G, the value of the waveform 40' is 0 and the value of the waveform 50' is =■, so the value of the waveform 60' is -0,149I.

BとFで示す区間では、波形40′と50′の値が等し
く、十■と一■であり、巻線12と13の電流40と5
0による起磁力が相殺するので、波形60′の値は0と
なる。
In the sections indicated by B and F, the values of waveforms 40' and 50' are equal, 1 and 1, and the currents of windings 12 and 13 are 40 and 5.
Since the magnetomotive force due to zero cancels out, the value of waveform 60' becomes zero.

Dで示す区間では、波形40′と50′の値が共に0で
あるので、波形60′の値も0となる。
In the section indicated by D, the values of waveforms 40' and 50' are both 0, so the value of waveform 60' is also 0.

同様にして、巻線21の電流61と巻線31の電流62
の波形は、第3図に61と62′で示すように、60′
と位相が120°づれたものになる。
Similarly, the current 61 in the winding 21 and the current 62 in the winding 31
The waveform of 60' is shown as 61 and 62' in FIG.
The phase is shifted by 120°.

端子10から流入する電流70は、電流40と50と6
2の和から61を差引いたものになるので、その波形7
0′は、第3図に示すように波形40′と50′と62
′の和から61′を差引いたものになる。
The current 70 flowing from the terminal 10 is the current 40, 50, and 6.
Since it is the sum of 2 minus 61, the waveform 7
0' is the waveform 40', 50' and 62 as shown in FIG.
It is obtained by subtracting 61' from the sum of '.

この70′の波形をフーリエ級数に展開すると、第5お
よび第7高調波成分を含まないものになっている。
When this 70' waveform is expanded into a Fourier series, it does not contain the fifth and seventh harmonic components.

この場合、相間リアクトルは、2組の3相電源が電気的
に独立でないため、5,6で示すように必ず2個必要で
ある。
In this case, since the two sets of three-phase power supplies are not electrically independent, two interphase reactors are always required as shown by 5 and 6.

たとえば、相間リアクトル・6を省くと、サイリスタ1
6仁端子14−巻線12−巻線13一端子15−サイリ
スク17′を通る環流が生じて、満足な動作ができない
For example, if interphase reactor 6 is omitted, thyristor 1
Circulation occurs through the six terminals 14, the winding 12, the winding 13, the terminal 15, and the cylinder 17', making it impossible to operate satisfactorily.

この場合、相間リアクトルは、2組の3相電源が電気的
に独立している公知の回路に比してやや大きくなる。
In this case, the interphase reactor becomes slightly larger than in a known circuit in which two sets of three-phase power supplies are electrically independent.

しかしながら、第3図の波形60′。61’、62’か
られかるように、変圧器の一次巻線電流60,61,6
2の大きさが非常に小さいので、これらの巻線の容量(
(巻線電圧の実効値)×(電流の実効値))を計算する
と非常に小さくなる。
However, waveform 60' of FIG. As can be seen from 61' and 62', the primary winding currents of the transformer 60, 61, 6
Since the magnitude of 2 is very small, the capacitance of these windings (
If you calculate (effective value of winding voltage) x (effective value of current)), it will be very small.

また、二次巻線12.13などの巻数従って電圧が小さ
いので、これらの巻線の容量も小さくなる。
Furthermore, since the number of turns and thus the voltage of the secondary windings 12, 13, etc. are small, the capacitance of these windings is also small.

このように、通常の単巻変圧器におけると同様に変圧器
巻線の容量が小さくなるので、変圧器容量をその全巻線
の容量の総知の半分で表わすと、負荷容量〔(負荷8の
電圧)×(負荷電流)〕の約18%となる。
In this way, the capacity of the transformer windings decreases as in a normal autotransformer, so if the transformer capacity is expressed as half of the total capacity of all the windings, the load capacity [(load 8 voltage)×(load current)] is approximately 18%.

2組の3相電源が電気的に独立している公知の回路の変
圧器容量は負荷容量の約103%となる。
The transformer capacity of a known circuit in which two sets of three-phase power supplies are electrically independent is approximately 103% of the load capacity.

すなわち、本方式のパルス数12整流回路では変圧器容
量を著しく小さくできる。
That is, in the 12-pulse rectifier circuit of this system, the transformer capacity can be significantly reduced.

3相変圧器を、第4図の2′で示すような単巻変圧器原
理の接続にしても、全く同じような動作をさせることが
できるが、この場合には、第1図の場合に比して3相変
圧器の接続がやや複雑となるばかりでなく、変圧器容量
もやや大きくなる。
If the three-phase transformer is connected using the autotransformer principle as shown at 2' in Figure 4, it can operate in exactly the same way as in Figure 1. In comparison, not only is the connection of the three-phase transformer a little more complicated, but the transformer capacity is also a little larger.

他にもいろいろな変圧器接続が考えられるが、何れも第
1図に比してその容量が大きくなる。
Various other transformer connections are conceivable, but all of them have a larger capacity than the one shown in FIG.

しかしながら、直流電圧を適当に選ぶために、別の接続
が適当な場合も考えられる。
However, it is conceivable that other connections may be suitable in order to suitably choose the DC voltage.

第1図において、負荷8を直流電源とし、3相交流電源
1を3相同期電動機とすれば、いわゆる無整流子電動機
回路が構成され、第3図の70′のような波形の良好な
相電流によって運転されることになる。
In Fig. 1, if the load 8 is a DC power supply and the 3-phase AC power supply 1 is a 3-phase synchronous motor, a so-called commutatorless motor circuit is constructed, and a good phase waveform like 70' in Fig. 3 is formed. It will be driven by electric current.

以上述べたように、本発明の回路構成による整流回路に
より、パルス数12整流回路の3相交流電源の電流およ
び3相無整流子電動機回路の電動機電流より、安価に低
次の高調波成分を除くことができる。
As described above, the rectifier circuit having the circuit configuration of the present invention can reduce lower harmonic components at a lower cost than the current of the three-phase AC power supply of the 12-pulse rectifier circuit and the motor current of the three-phase non-commutator motor circuit. Can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を適用するために、3相交流電源1
より、単巻変圧器原理の接続をした3相変圧器2を介し
て、2個の相間リアクトル5,6および平滑リアクトル
7を介して負荷8に直流電力を供給する2組の3相ブリ
ッジ整流回路3,4に、電力を供給する場合の接続を示
す。 11.12.13などは変圧器の巻線を示し、第2図は
、端子10.14.15などの起電力の位相関係を示す
。 第3図は各部の電流波形を示すものであり、40′と5
0′は巻線12と13の電流波形を、60′は巻線11
の、70′は端子10の電流波形を示す。 第4図は、変圧器の別の構成による接続例を示す0
FIG. 1 shows a three-phase AC power source 1 for applying the present invention.
Two sets of three-phase bridge rectifiers supply DC power to a load 8 via two interphase reactors 5, 6 and a smoothing reactor 7 through a three-phase transformer 2 connected according to the autotransformer principle. Connections for supplying power to circuits 3 and 4 are shown. 11, 12, 13, etc. indicate the windings of the transformer, and FIG. 2 shows the phase relationship of the electromotive forces at terminals 10, 14, 15, etc. Figure 3 shows the current waveforms at each part, 40' and 5.
0' is the current waveform of windings 12 and 13, and 60' is the current waveform of winding 11.
, 70' indicates the current waveform of the terminal 10. FIG. 4 shows an example of a connection using another configuration of the transformer.

Claims (1)

【特許請求の範囲】 13相交流電源に接続する一次巻線が三角結線または星
形結線の3相変圧器の各相に一次巻線に対して所定の巻
数比を持つ2個の二次巻線を設け。 一次3相端子のおのおのに、各端子の星形電圧に対して
一次巻線が三角結線の場合には位相が90゜進んだ電圧
と遅れた電圧を発生する2個の二次巻線の各一端を、一
次巻線が星形結線の場合には位相が120°進んだ電圧
と遅れた電圧を発生する2個の二次巻線の各一端を接続
し、二次巻線の他端の合計6個の端子に電圧の大きさが
等しく位相角が30°づれた2組の3相交流電圧を発生
せしめ、この2組の3相端子を正負両極に相間リアクト
ルを設けて並列接続した2組の3相ブリッジ整流回路に
接続することを特徴とする単巻変圧器原理の接続による
パルス数12整流回路。
[Claims] Two secondary windings having a predetermined turns ratio with respect to the primary winding in each phase of a three-phase transformer whose primary winding is connected to a 13-phase AC power supply and whose primary winding is triangularly or star-connected. Set a line. For each of the primary three-phase terminals, if the primary winding is connected in a triangular configuration, each of the two secondary windings generates a voltage with a phase lead of 90° and a voltage with a phase lag of 90° relative to the star voltage at each terminal. If the primary winding is star-shaped, connect one end of each of the two secondary windings that generate a voltage with a phase lead of 120° and a voltage with a phase lag of 120°, and connect the other end of the secondary winding with the Two sets of three-phase AC voltages with equal voltage magnitude and a phase angle of 30 degrees are generated at a total of six terminals, and these two sets of three-phase terminals are connected in parallel by providing interphase reactors at both the positive and negative poles. A 12-pulse rectifier circuit based on the autotransformer principle, characterized in that it is connected to a set of three-phase bridge rectifier circuits.
JP49060533A 1974-05-28 1974-05-28 Tanmakihen Atsukigenrino Setsuzoku Niyoru 12 Sousei Riyu Cairo Expired JPS5821504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49060533A JPS5821504B2 (en) 1974-05-28 1974-05-28 Tanmakihen Atsukigenrino Setsuzoku Niyoru 12 Sousei Riyu Cairo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49060533A JPS5821504B2 (en) 1974-05-28 1974-05-28 Tanmakihen Atsukigenrino Setsuzoku Niyoru 12 Sousei Riyu Cairo

Publications (2)

Publication Number Publication Date
JPS50151337A JPS50151337A (en) 1975-12-05
JPS5821504B2 true JPS5821504B2 (en) 1983-04-30

Family

ID=13145030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49060533A Expired JPS5821504B2 (en) 1974-05-28 1974-05-28 Tanmakihen Atsukigenrino Setsuzoku Niyoru 12 Sousei Riyu Cairo

Country Status (1)

Country Link
JP (1) JPS5821504B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187531A (en) * 1983-03-31 1984-10-24 株式会社 寺岡精工 Labelling mechanism
JPS6121329A (en) * 1984-06-29 1986-01-30 本田技研工業株式会社 Automatic labeller
JPS6328096Y2 (en) * 1984-08-10 1988-07-29
JPH0117939B2 (en) * 1984-09-11 1989-04-03 Sato Co Ltd

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615140U (en) * 1992-07-17 1994-02-25 財団法人熊本テクノポリス財団 Educational microcomputer board with trace function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615140U (en) * 1992-07-17 1994-02-25 財団法人熊本テクノポリス財団 Educational microcomputer board with trace function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187531A (en) * 1983-03-31 1984-10-24 株式会社 寺岡精工 Labelling mechanism
JPS6121329A (en) * 1984-06-29 1986-01-30 本田技研工業株式会社 Automatic labeller
JPS6328096Y2 (en) * 1984-08-10 1988-07-29
JPH0117939B2 (en) * 1984-09-11 1989-04-03 Sato Co Ltd

Also Published As

Publication number Publication date
JPS50151337A (en) 1975-12-05

Similar Documents

Publication Publication Date Title
US4084220A (en) Power converter
KR900012414A (en) VSCF Starter / Generator System and Its Operation Method
CN215815555U (en) Multiphase autotransformer and rectifier system
RU2005101629A (en) MOTOR WINDING
JPS611270A (en) Load wiring method with inverter
JPH0124032B2 (en)
JPS5821504B2 (en) Tanmakihen Atsukigenrino Setsuzoku Niyoru 12 Sousei Riyu Cairo
US4723202A (en) Converter-fed AC machine without damper winding
JP2008278714A (en) Rectifier circuit
JP4153719B2 (en) Variable speed drive
CN112820523A (en) Multiphase autotransformer and rectifier system
JP4395669B2 (en) Three-phase rectifier
JP2001298956A (en) Induction heating power supply
JPH10337042A (en) Inverter device
JPH0746847A (en) Three-phase rectifier
JPS59127575A (en) Single-phase/3-phase converter circuit
EP4344036A1 (en) Active filter pre-charging for a converter with active filter cells
Ghatak et al. Comparative analysis of parallel operation of two three phase systems with and without Interphase transformer
JPS5822582A (en) Cycloconverter
SU1464279A1 (en) Electric drive
SU1257771A1 (en) Rectifier generator
JPS60245471A (en) Inverter device
JP3171488B2 (en) Transformer for cyclo converter
Gandhi Thyristorised Control of Induction Motor
JP2753900B2 (en) Multi-phase inverter device