JPH1169658A - Self-controlled optical generation regulating method and system - Google Patents

Self-controlled optical generation regulating method and system

Info

Publication number
JPH1169658A
JPH1169658A JP9229144A JP22914497A JPH1169658A JP H1169658 A JPH1169658 A JP H1169658A JP 9229144 A JP9229144 A JP 9229144A JP 22914497 A JP22914497 A JP 22914497A JP H1169658 A JPH1169658 A JP H1169658A
Authority
JP
Japan
Prior art keywords
power
power storage
self
power generation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9229144A
Other languages
Japanese (ja)
Inventor
Yosuke Nozaki
洋介 野崎
Takashi Yamashita
隆司 山下
Nobuhiro Matsuzaki
信博 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9229144A priority Critical patent/JPH1169658A/en
Publication of JPH1169658A publication Critical patent/JPH1169658A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To improve safety with high efficiency, small size and light weight at low cost, by jointly using two of an electric dipole layer capacitor and a lead storage battery as a chemical cell having large electric storage capacity, and controlling an electric storage device so as to reduce the burden of the lead storage battery, in which performance is deteriorated by repeating charge and discharge, in the electric storage device. SOLUTION: A control circuit 212 detects the generated current and generated voltage of a solar cell 10, and charges power Ws generated in the solar cell 10 to an electric dipole layer capacitor 310. A control circuit 222 detects the quantity of charge Qe stored in the electric dipole layer capacitor 310 and the quantity of charge Qp stored in a lead storage battery 320, and a voltage regulation circuit 40 is supplied with power by the generated power Ws of the solar cell 10 and the discharge of the electric dipole layer capacitor 310. Output voltage is detected while a charge-discharge current is also monitored in the detection of the quantity of elecricity storage Qp in the lead storage battery 320. Accordingly, the generation efficiency of the system is improved, and the capacity of the solar cell can be miniaturized and the cost of the system reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、商用電力系統等他
の電源と連系することなく太陽電池等で発生した電力の
みで負荷及び電力変換装置等に電力を供給する自立型光
発電制御方法及びその実施に直接使用するシステムに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-contained photovoltaic power generation control method for supplying power to a load, a power converter, and the like using only power generated by a solar cell or the like without being connected to another power source such as a commercial power system. And a system used directly for its implementation.

【0002】[0002]

【従来の技術】従来の自立型太陽電池発電システムのブ
ロック図を図4に示す。従来装置は、太陽電池10、過
充電保護回路20、蓄電池30、電圧安定化回路40、
負荷50からなり、過充電保護回路20は主回路21、
制御回路22から構成される。
2. Description of the Related Art FIG. 4 shows a block diagram of a conventional self-contained solar cell power generation system. The conventional device includes a solar cell 10, an overcharge protection circuit 20, a storage battery 30, a voltage stabilization circuit 40,
The overcharge protection circuit 20 includes a main circuit 21,
It comprises a control circuit 22.

【0003】従来装置の動作は以下の通りである。太陽
電池10の発電電力は、過充電保護回路20を介して電
圧安定化回路40及び蓄電池30に供給される。電圧安
定化回路40は入力された電力が負荷50の所望の電圧
に変換し、負荷50に電力を供給する。また、負荷50
の消費電力が太陽電池10の発電電力よりも小さい場合
は蓄電池30の入力電圧は上昇し、蓄電池30は充電さ
れる。
The operation of the conventional device is as follows. The power generated by the solar cell 10 is supplied to the voltage stabilizing circuit 40 and the storage battery 30 via the overcharge protection circuit 20. The voltage stabilizing circuit 40 converts the input power into a desired voltage of the load 50 and supplies the load 50 with power. In addition, load 50
Is smaller than the power generated by the solar cell 10, the input voltage of the storage battery 30 increases, and the storage battery 30 is charged.

【0004】負荷50の消費電力が太陽電池10の発電
電力より大きい場合は蓄電池30の入力電圧は低下し、
蓄電池30の放電が行われ、負荷に供給する電力に充て
られる。また、過充電保護回路20は蓄電池30の充電
量を検出し、蓄電池30の充電量が定格容量を上回った
時には、太陽電池10からの電力の供給を停止する。
When the power consumption of the load 50 is larger than the power generated by the solar cell 10, the input voltage of the storage battery 30 decreases,
The storage battery 30 is discharged, and is used for power to be supplied to the load. Further, the overcharge protection circuit 20 detects the charge amount of the storage battery 30 and stops the supply of power from the solar cell 10 when the charge amount of the storage battery 30 exceeds the rated capacity.

【0005】上記の構成を用いることにより、太陽電池
10の発電電力を一時的に蓄電池30に蓄えることがで
き、夜間及び日照が少ない場合には蓄電池30に蓄えら
れた電力を放電することにより、常時負荷50に電力を
供給することができる。また、蓄電池30の過充電を防
止できる。
[0005] By using the above configuration, the power generated by the solar cell 10 can be temporarily stored in the storage battery 30, and by discharging the power stored in the storage battery 30 at night or when there is little sunshine, Power can always be supplied to the load 50. Also, overcharging of the storage battery 30 can be prevented.

【0006】[0006]

【発明が解決しようとする課題】従来装置の自立型太陽
電池発電システムでは、過充電保護回路20の機能は蓄
電池30の過充電を防止する機能のみであり、太陽電池
10の出力電圧は蓄電池30の電圧に支配される。しか
しながら、太陽電池が最大効率で動作するときの出力電
圧は日射条件、温度条件等により変化するため、従来の
構成では常時太陽電池10を最大効率で動作させること
が不可能で、システムの効率が低下するという問題があ
る。
In the self-contained solar cell power generation system of the conventional device, the function of the overcharge protection circuit 20 is only to prevent the overcharge of the storage battery 30, and the output voltage of the solar cell 10 is Is governed by the voltage of However, since the output voltage when the solar cell operates at the maximum efficiency changes depending on the solar radiation condition, the temperature condition, and the like, it is impossible to always operate the solar cell 10 at the maximum efficiency with the conventional configuration, and the system efficiency is reduced. There is a problem of lowering.

【0007】従来装置の自立型太陽電池発電システムの
動作波形を図5に示す。従来装置の自立型太陽電池発電
システムでは、太陽電池10の発電電力が負荷50の消
費電力より大きい場合には差分を蓄電池30に充電し、
太陽電池10の発電電力が負荷50の消費電力よりも小
さい場合には不足分を蓄電池30の放電によって賄う。
従って、蓄電池30は常時充放電が繰り返される。
FIG. 5 shows operation waveforms of the self-standing solar cell power generation system of the conventional apparatus. In the self-contained solar cell power generation system of the conventional apparatus, when the generated power of the solar cell 10 is larger than the power consumption of the load 50, the difference is charged to the storage battery 30,
When the power generated by the solar cell 10 is smaller than the power consumption of the load 50, the shortage is covered by the discharge of the storage battery 30.
Therefore, the charge and discharge of the storage battery 30 are constantly repeated.

【0008】しかしながら、従来、蓄電池30として主
に用いられている鉛蓄電池等の化学電池は、充放電を繰
り返すことにより性能が劣化し、数千回の充放電回数で
所望の蓄電特性を得られなくなる場合が多い。従って、
電池の交換等の保守が必要で、システムの運用コストが
高くなる問題がある。また、短い周期の天候変動等によ
り太陽電池10の発電電力が急激に変化した場合には、
充放電電流の急激な変動を余儀なくされる。
However, the performance of a chemical battery such as a lead-acid battery, which is conventionally mainly used as the storage battery 30, is degraded by repeated charging and discharging, and a desired storage characteristic can be obtained with thousands of charging and discharging times. Often disappears. Therefore,
There is a problem that maintenance such as replacement of batteries is required, and the operation cost of the system is increased. Also, when the power generated by the solar cell 10 changes rapidly due to short-period weather fluctuations, etc.,
A sudden change in the charging / discharging current is inevitable.

【0009】しかも、鉛蓄電池等の化学電池に対して急
速な充放電を行った場合、充放電効率が低下するととも
に、発熱等を伴う場合もあり、システムの効率低下や安
全性の欠如等の問題が生じる。このような問題を解決す
るため、従来のシステムでは、搭載する蓄電池の容量を
十分に大きくし、蓄電池容量当たりの充放電電流の割合
を小さくする手段が適用されているが、この場合にはシ
ステム重量の増加、大型化、価格の上昇等の問題が生じ
る。
In addition, when a chemical battery such as a lead storage battery is rapidly charged / discharged, the charge / discharge efficiency is reduced, and heat may be generated in some cases, resulting in reduced efficiency of the system and lack of safety. Problems arise. In order to solve such a problem, in the conventional system, means for increasing the capacity of the mounted storage battery and reducing the ratio of the charge / discharge current per storage battery capacity is applied. Problems such as an increase in weight, an increase in size, and an increase in price arise.

【0010】ここにおいて、本発明の解決すべき主要な
目的は次の通りである。即ち、本発明の第1の目的は、
高効率、小型、軽量、安価で安全性の高い自立型光発電
制御方法及びシステムを提供せんとするものである。
Here, the main objects to be solved by the present invention are as follows. That is, the first object of the present invention is to
It is an object of the present invention to provide a self-contained photovoltaic power generation control method and system with high efficiency, small size, light weight, low cost and high safety.

【0011】本発明の第2の目的は、化学電池の欠点を
補完する為、化学電池に加え急速な繰り返し充放電劣化
や充放電損失の少ない蓄電装置を併用した自立型光発電
制御方法及びシステムを提供せんとするものである。
A second object of the present invention is to provide a self-contained photovoltaic power generation control method and system that uses a power storage device with rapid repetitive charge / discharge deterioration and low charge / discharge loss in addition to a chemical battery in order to supplement the disadvantages of a chemical battery. Is to be provided.

【0012】本発明の第3の目的は、光電発電電力の変
化に対処する最適追従制御された自立型光発電制御方法
及びシステムを提供せんとするものである。
A third object of the present invention is to provide a self-sustained photovoltaic power generation control method and system with optimal follow-up control for coping with a change in photoelectric power.

【0013】本発明の第4の目的は、給電条件を規定し
た基本的三つの動作モードの選択実行の繰り返し処理に
より運転操業する自立型光発電制御方法及びシステムを
提供せんとするものである。
A fourth object of the present invention is to provide a self-contained photovoltaic power generation control method and system which operate by repeating the selection and execution of three basic operation modes in which power supply conditions are defined.

【0014】本発明のその他の目的は、明細書、図面、
特に、特許請求の範囲の各請求項の記載から自ずと明か
となろう。
Other objects of the present invention are as follows:
In particular, it will be obvious from the description of each claim in the claims.

【0015】[0015]

【課題を解決するための手段】本発明は、前記課題を解
決するに当り、光電手段たる太陽電池と蓄電手段たる蓄
電装置を備え、昼夜の変化や天候の急変で太陽電池の発
電能力が落ちたときに、蓄電装置から電力を供給する制
御方法及びシステムにおいて、蓄電装置として急速充放
電が可能な電気二重層コンデンサと蓄電容量の大きい化
学電池たる鉛蓄電池の二つを併用し、天候の急変等の急
速充放電を前記電気二重層コンデンサに行わせ、充放電
の繰り返しで性能劣化する鉛蓄電池の負担を減らす制御
方法を講じ、その結果、システムトータルの小型化、軽
量化、低コスト化を計る。
In order to solve the above-mentioned problems, the present invention comprises a solar cell as a photoelectric device and a power storage device as a power storage device, and the power generation capacity of the solar cell is reduced due to day / night changes or sudden changes in weather. In the control method and system for supplying power from the power storage device, when the power storage device is used in combination with an electric double layer capacitor capable of rapid charging and discharging and a lead storage battery which is a chemical battery having a large storage capacity, the weather suddenly changes. The electric double layer capacitor is subjected to rapid charge / discharge such as the above, and a control method for reducing the load on the lead storage battery whose performance is deteriorated by repeated charge / discharge is taken. As a result, the total system size, weight and cost are reduced. measure.

【0016】その為、本発明では、太陽電池に直列に第
1の制御変換手段たる第一のコンバータを接続し、当該
第一のコンバータに太陽電池の発電電圧、発電電流を操
作する機能を付加することにより、太陽電池が常時最大
発電効率で動作するように制御する。また、第一のコン
バータの出力に電気二重層コンデンサ等の充放電回数に
よる蓄電特性の劣化が少なく、急速充放電時の充放電損
失の少ない蓄電装置を第一の蓄電装置として接続し、昼
夜の変化、天候の急変等に起因する充放電を担わせる。
また、当該第一の蓄電装置の出力に第二のコンバータと
鉛蓄電池等の自己放電の少ない化学電池を直列に接続
し、天候不順等により第一の蓄電装置の充電量が減少し
た場合には第二の蓄電装置から負荷に電力を供給する。
さらに、天侯が回復し、太陽電池の発電電力量が増加
し、第一の蓄電装置の蓄電量が増加した場合には、第二
のコンバータにより、第二の蓄電装置を定電流充電す
る。
Therefore, in the present invention, a function of operating a power generation voltage and a power generation current of a solar cell is added to the solar cell by connecting a first converter as a first control conversion means in series with the solar cell. By doing so, control is performed so that the solar cell always operates at the maximum power generation efficiency. In addition, the output of the first converter is connected to a power storage device with little deterioration in power storage characteristics due to the number of times of charging / discharging of the electric double layer capacitor or the like and a small charge / discharge loss at the time of rapid charging / discharging as the first power storage device. It is responsible for charging and discharging caused by changes and sudden changes in weather.
In addition, when a second converter and a chemical battery with less self-discharge such as a lead storage battery are connected in series to the output of the first power storage device, and the amount of charge of the first power storage device decreases due to irregular weather or the like, Power is supplied from the second power storage device to the load.
Further, when the weather recovers, the amount of power generated by the solar battery increases, and the amount of power stored in the first power storage device increases, the second converter performs constant-current charging of the second power storage device.

【0017】さらに、具体的詳細に述べれば、本発明
が、当該課題解決のため、次に列挙する上位概念から下
位概念に亙る新規な特徴的構成手法及び手段を採用する
ことにより、前記目的を達成する。
More specifically, in order to solve the problem, the present invention adopts a novel characteristic configuration method and means ranging from a superordinate concept to a subordinate concept, which are enumerated below, to achieve the above object. To achieve.

【0018】即ち、本発明方法の第1の特徴は、光電手
段による発電電力を一時的に蓄えることにより照射光の
停弱変化に対しても負荷に電力を継続的に自立供給する
に当り、充放・蓄電特性の異なる二つの蓄電手段を用い
て前記負荷に対し片方による放電間にもう片方の充電を
行って前記蓄電手段の相互補完により、前記光電手段の
発電効率と小容量化及び前記蓄電手段の小容量化と耐久
性とを合せ高めてなる自立型光発電制御方法の構成採用
にある。
That is, the first feature of the method of the present invention is that the power generated by the photoelectric means is temporarily stored so that the power is continuously and independently supplied to the load even when the irradiation light is weakened. By using two power storage means having different charging / discharging / storage characteristics, the load is charged by the other during discharge by one and the other is complemented by the power storage means. An object of the present invention is to adopt a configuration of a self-contained photovoltaic power generation control method in which the capacity of a power storage means is reduced and the durability is improved.

【0019】本発明方法の第2の特徴は、前記本発明方
法の第1の特徴における光電手段が、太陽電池、フォト
セル等光エネルギーを電気エネルギーに変換する総ての
素子を含んでなる自立型光発電制御方法の構成採用にあ
る。
According to a second aspect of the method of the present invention, the photoelectric means in the first aspect of the method of the present invention is a self-supporting device comprising all elements for converting light energy into electric energy, such as a solar cell and a photocell. The present invention lies in the adoption of the configuration of the photovoltaic power generation control method.

【0020】本発明方法の第3の特徴は、前記本発明方
法の第1又は第2の特徴における充放・蓄電特性の異な
る二つの蓄電手段が、一方は、急速充放電時の損失が少
なく、許容充放電サイクル数が多く、蓄電容量が小さい
第1の蓄電手段を、他方は、その逆の急速充放電時の損
失が多く、許容充放電サイクル数や自己放電が少なく、
蓄電容量が大きい第2の蓄電手段をそれぞれ採用してな
る自立型光発電制御方法の構成採用にある。
A third feature of the method of the present invention is that two storage means having different charging / discharging / storage characteristics in the first or second feature of the method of the present invention, one of which has a small loss at the time of rapid charging / discharging. The first power storage means having a large number of allowable charge / discharge cycles and a small storage capacity is used. On the other hand, the loss at the time of rapid charge / discharge is large, and the number of allowable charge / discharge cycles and self-discharge are small.
The present invention resides in the configuration of a self-contained photovoltaic power generation control method that employs second power storage means having a large power storage capacity.

【0021】本発明方法の第4の特徴は、前記本発明方
法の第3の特徴における第1の蓄電手段が、光電手段の
発電効率を常時最大とし当該第1の蓄電手段の定格電流
値以上の供給を停止する電流ポンプ機能を有する第1の
制御変換手段を介して前記光電手段側に配置接続してな
る自立型光発電制御方法の構成採用にある。
According to a fourth aspect of the method of the present invention, the first power storage means in the third aspect of the present invention always sets the power generation efficiency of the photoelectric means to the maximum and equals or exceeds the rated current value of the first power storage means. The present invention is configured to adopt a configuration of a self-contained photovoltaic power generation control method which is arranged and connected to the photoelectric device side via a first control conversion device having a current pump function for stopping supply of the photovoltaic device.

【0022】本発明方法の第5の特徴は、前記本発明方
法の第3又は第4の特徴における第2の蓄電手段が、第
1の制御変換手段の出力に接続して、第1の蓄電手段の
出力停止指令値を下回った時、電流の供給を停止し、か
つ出力開始指令値を上回った時、電流の供給を再開する
電流ゲート機能を有する第2の制御変換手段の出力かつ
負荷側に配置接続してなる自立型光発電制御方法の構成
採用にある。
According to a fifth feature of the method of the present invention, the second power storage means in the third or fourth feature of the method of the present invention is connected to the output of the first control and conversion means, and The output of the second control conversion means having a current gate function for stopping supply of current when the output stop command value falls below the output stop command value and restarting the current supply when the output start command value is exceeded. The configuration of a self-contained photovoltaic power generation control method arranged and connected to

【0023】本発明方法の第6の特徴は、前記本発明方
法の第5の特徴における出力停止指令値と出力開始指令
値が、出力停止指令値<出力開始指令値の条件を維持し
てなる自立型光発電制御方法の構成採用にある。
A sixth feature of the method of the present invention is that the output stop command value and the output start command value in the fifth feature of the method of the present invention maintain the condition of output stop command value <output start command value. The present invention resides in adopting a configuration of a self-supporting photovoltaic power generation control method.

【0024】本発明方法の第7の特徴は、前記本発明方
法の第4、第5又は第6の特徴における第1の制御変換
手段による光電手段の発電効率の最大化が、当該光電手
段の発電電流としての入力電流と発電電力を検出し、当
該入力電流と発電電力の増減関係により当該入力電流を
操作し、当該発電電力が最大となるよう追従制御を行っ
て達成してなる自立型光発電制御方法の構成採用にあ
る。
A seventh feature of the method of the present invention is that maximization of the power generation efficiency of the photoelectric means by the first control conversion means in the fourth, fifth or sixth feature of the method of the present invention, An autonomous light that is achieved by detecting the input current and the generated power as the generated current, operating the input current according to the increase / decrease relationship between the input current and the generated power, and performing tracking control so that the generated power is maximized. It lies in the adoption of the configuration of the power generation control method.

【0025】本発明方法の第8の特徴は、第1の制御変
換手段の電流供給の停止が、第1の蓄電手段の蓄電量が
出力停止指令値を下回った後、当該出力停止指令値より
大きい出力開始指令値を上回る迄の期間持続されてなる
自立型光発電制御方法の構成採用にある。
An eighth feature of the method according to the present invention is that the stop of the current supply of the first control conversion means is performed after the amount of power stored in the first power storage means falls below the output stop command value. The present invention resides in adopting a configuration of a self-sustained photovoltaic power generation control method that is maintained for a period until a large output start command value is exceeded.

【0026】本発明方法の第9の特徴は、前記本発明方
法の第3、第4、第5、第6、第7又は第8の特徴にお
ける第2の蓄電手段の充電が、当該第2の蓄電手段の蓄
電量が定格容量指令値より大きい場合は浮動充電である
自立型光発電制御方法の構成採用にある。
According to a ninth feature of the method of the present invention, the charging of the second power storage means in the third, fourth, fifth, sixth, seventh or eighth feature of the method of the present invention is the same as that of the second method. In the case where the storage amount of the power storage means is larger than the rated capacity command value, the configuration of the self-sustained photovoltaic power generation control method of floating charging is employed.

【0027】本発明方法の第10の特徴は、前記本発明
方法の第3、第4、第5、第6、第7又は第8の特徴に
おける第2の蓄電手段の充電が、当該第2の蓄電手段の
蓄電量が定格容量指令値より小さい場合は定電流充電で
ある自立型光発電制御方法の構成採用にある。
A tenth feature of the method of the present invention is that the charging of the second power storage means in the third, fourth, fifth, sixth, seventh or eighth feature of the method of the present invention is the same as that of the second method. In the case where the amount of power stored in the power storage means is smaller than the rated capacity command value, the configuration of the self-contained photovoltaic power generation control method that is constant current charging is employed.

【0028】本発明方法の第11の特徴は、第2の制御
変換手段が、電流の供給の動作出力状態では、光電手段
と第1の蓄電手段による負荷給電と第2の蓄電手段の浮
動充電が行われる動作モード1と、前記光電手段と前記
第1の蓄電手段による負荷給電と前記第2の蓄電手段の
定電流充電が行われる動作モード2とを保有し、電流の
供給の出力停止状態では、前記第2の蓄電手段による負
荷給電が行われる動作モード3を保有して、前記第1の
蓄電手段の蓄電量の出力停止指令値と出力開始指令値に
対する大小関係及び前記第2の蓄電手段の蓄電量の定格
容量に対する大小関係の取り合せにより前記動作モード
1と前記動作モード2と前記動作モード3の選択実行を
制御してなる自立型光発電制御方法の構成採用にある。
According to an eleventh feature of the method of the present invention, when the second control conversion means is in an operation output state of current supply, load supply by the photoelectric means and the first power storage means and floating charging of the second power storage means are performed. Is performed, and an operation mode 2 in which load supply by the photoelectric device and the first power storage device and constant current charging of the second power storage device are performed, and the output of current supply is stopped. In operation mode 3, in which the second power storage means performs load power supply, the magnitude relationship between the output stop command value and the output start command value of the amount of power stored in the first power storage means and the second power storage A self-contained photovoltaic power generation control method is provided in which the selection of the operation mode 1, the operation mode 2, and the operation mode 3 is controlled by matching the magnitude relationship between the charged amount of the means and the rated capacity.

【0029】本発明方法の第12の特徴は、前記本発明
方法の第11の特徴における第2の制御変換手段による
動作モード1,動作モード2,動作モード3の選択実行
が、始動当初は前記動作モード3を選択実行するステッ
プ1(ST1)と、当該動作モード3の状態下で、第1
の蓄電手段の蓄電量(Qe)>出力開始指令値(Q
2)、であるかどうかを常時比較判断し、noである限
り前記動作モード3を維持するとともに、yesの場合
は次のステップ3(ST3)に進めるステップ2(ST
2)と、第2の蓄電手段の蓄電量(Qp)>当該第2の
蓄電手段の定格容量Qc、であるかどうかを比較判断す
るステップ3(ST3)と、当該ステップ3(ST3)
の判断がyesの場合は、前記動作モード1を選択実行
するステップ4(ST4)と、当該ステップ3(ST
3)の判断がnoの場合は前記動作モード2を選択実行
するステップ5(ST5)と、当該動作モード1又は当
該動作モード2の状態下で、前記第1の蓄電手段の蓄電
量(Qe)>当該第1の蓄電手段の出力停止指令値(Q
1)、であるかどうかを常時比較判断し、yesである
限り前記ステップ3(ST3)と前記動作モード1選択
実行ステップ4(ST4)又は前記動作モード2選択実
行ステップ5(ST5)のループを繰り返すとともに、
noの場合は前記動作モード3選択実行ステップ1(S
T1)に戻るステップ6(ST6)とを、順次踏むよう
制御されてなる自立型光発電制御方法の構成採用にあ
る。
A twelfth feature of the method of the present invention is that, in the eleventh feature of the above-described method of the present invention, the selection and execution of the operation mode 1, the operation mode 2, and the operation mode 3 by the second control conversion means are performed at the beginning of the start. Step 1 (ST1) of selecting and executing the operation mode 3;
Power storage means (Qe)> output start command value (Q
2), it is always determined whether or not the operation mode is maintained. As long as the determination is no, the operation mode 3 is maintained. If the determination is yes, the process proceeds to the next step 3 (ST3).
2) and step 3 (ST3) for comparing and judging whether or not the storage amount (Qp) of the second power storage means> the rated capacity Qc of the second power storage means, and the step 3 (ST3)
Is YES, step 4 (ST4) for selecting and executing the operation mode 1 and step 3 (ST4)
If the determination in 3) is no, step 5 (ST5) of selectively executing the operation mode 2 and the amount of power (Qe) stored in the first power storage means in the state of the operation mode 1 or the operation mode 2 > The output stop command value (Q
1), it is always determined whether or not it is. As long as yes, the loop of the step 3 (ST3) and the operation mode 1 selection execution step 4 (ST4) or the operation mode 2 selection execution step 5 (ST5) is executed. Again,
If no, the operation mode 3 selection execution step 1 (S
Step 6 (ST6), which returns to T1), is to adopt a configuration of a self-contained photovoltaic power generation control method which is controlled so as to be stepped sequentially.

【0030】本発明方法の第13の特徴は、前記本発明
方法の第5、第6、第7、第8、第9、第10、第11
又は第12の特徴における第1の制御変換手段と第2制
御変換手段が、制御機能を備えたコンバータである自立
型光発電制御方法の構成採用にある。
A thirteenth feature of the method of the present invention is that the fifth, sixth, seventh, eighth, ninth, tenth and eleventh aspects of the method of the present invention are described.
Alternatively, the first control conversion means and the second control conversion means in the twelfth aspect are configured to adopt a self-contained photovoltaic power generation control method which is a converter having a control function.

【0031】本発明方法の第14の特徴は、前記本発明
方法の第3、第4、第5、第6、第7、第8、第9、第
10、第11、第12又は第13の特徴における第1の
蓄電手段が、電気二重層コンデンサである自立型光発電
制御方法の構成採用にある。
A fourteenth feature of the method of the present invention is that the method of the present invention is the third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth or thirteenth. The first feature of the present invention resides in the adoption of a self-standing photovoltaic power generation control method in which the first power storage means is an electric double layer capacitor.

【0032】本発明方法の第15の特徴は、前記本発明
方法の第3、第4、第5、第6、第7、第8、第9、第
10、第11、第12、第13又は第14の特徴におけ
る第2の蓄電手段が、鉛蓄電池又はトリクル用途のニッ
ケルカドニウム電池である自立型光発電制御方法の構成
採用にある。
A fifteenth feature of the method of the present invention is that the third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth and thirteenth aspects of the method of the present invention are described. Alternatively, the second power storage means in the fourteenth feature is in adopting a configuration of a self-supporting photovoltaic power generation control method in which a lead storage battery or a nickel cadmium battery for trickle use is used.

【0033】本発明システムの第1の特徴は、光電素子
群と負荷とを接続する給電路に充放電分岐路により当該
光電素子群の発電電力を一時的に蓄える蓄電装置を接続
して照射光の停弱変化に対しても前記負荷に電力を供給
し続ける自立型光発電制御システムにおいて、前記蓄電
装置として充放・蓄電特性の異なる相互補完的な二つの
第1乃至第2の蓄電装置を別々の前記充放電分岐路を通
してそれぞれ接続する一方、前記光電素子群と前記第1
の蓄電装置間の前記給電路に、当該光電素子群の最大発
電効率化と当該第1の蓄電装置の定格電流以上の給電を
ストップする電流ポンプ機能とを制御変換する第1のコ
ンバータを介挿し、他方、前記第1の蓄電装置と前記第
2の蓄電装置間の給電路に、当該第1蓄電装置の蓄電量
と当該第2の蓄電装置の蓄電量の各設定条件で給電を停
止又は始動する電流ゲート機能を制御変換する第2のコ
ンバータを介挿する自立型光発電制御システムの構成採
用にある。
A first feature of the system according to the present invention is that a power storage device for temporarily storing the generated power of the photoelectric element group is connected to a power supply path connecting the photoelectric element group and a load by a charging / discharging branch to irradiate light. In a self-contained photovoltaic power generation control system that continues to supply power to the load even when the power supply changes, two mutually complementary first and second power storage devices having different charging / discharging / storage characteristics are used as the power storage device. Each of them is connected through a separate one of the charge / discharge branches, while the photoelectric element group and the first
A first converter for controlling and converting the maximum power generation efficiency of the photoelectric element group and the current pump function for stopping the supply of current equal to or higher than the rated current of the first power storage device to the power supply path between the power storage devices. On the other hand, power supply to the power supply path between the first power storage device and the second power storage device is stopped or started under the respective setting conditions of the power storage amount of the first power storage device and the power storage amount of the second power storage device. The present invention is to adopt a configuration of a self-contained photovoltaic power generation control system in which a second converter for controlling and converting a current gating function is inserted.

【0034】本発明システムの第2の特徴は、前記本発
明システムの第1の特徴における光電素子が、太陽電
池、フォトセル等の光エネルギーを電気エネルギーに変
換する総ての素子を含んでなる自立型光発電制御システ
ムの構成採用にある。
According to a second feature of the system of the present invention, the photoelectric device in the first feature of the system of the present invention includes all elements for converting light energy into electric energy, such as a solar cell and a photocell. It consists in adopting the configuration of a self-supporting photovoltaic power generation control system.

【0035】本発明システムの第3の特徴は、前記本発
明システムの第1又は第2の特徴における第1の蓄電装
置が、急速充放電時の損失が少なく、許容充放電サイク
ル数が多く、蓄電容量の小さな充放電特性を有してなる
自立型光発電制御システムの構成採用にある。
A third feature of the present invention system is that the first power storage device according to the first or second feature of the present invention system has a small loss during rapid charge and discharge, a large number of allowable charge and discharge cycles, An object of the present invention is to adopt a self-contained photovoltaic power generation control system having charge / discharge characteristics with a small storage capacity.

【0036】本発明システムの第4の特徴は、前記本発
明システムの第1、第2又は第3の特徴における第1の
蓄電装置が、電気二重層コンデンサである自立型光発電
制御システムの構成採用にある。
A fourth feature of the system of the present invention is that the first power storage device according to the first, second or third feature of the present system is a self-contained photovoltaic power generation control system in which the first power storage device is an electric double layer capacitor. In hiring.

【0037】本発明システムの第5の特徴は、前記本発
明システムの第1、第2、第3又は第4の特徴における
第2の蓄電装置が、急速充放電時の損失が多く、許容充
放電サイクル数や自己放電が少なく、蓄電容量の大きな
充放電特性を有してなる自立型光発電制御システムの構
成採用にある。
A fifth feature of the system of the present invention is that the second power storage device according to the first, second, third or fourth feature of the present system has a large loss at the time of rapid charging and discharging, An object of the present invention is to adopt a configuration of a self-contained photovoltaic power generation control system having a small number of discharge cycles and a small self-discharge, and having charge / discharge characteristics with a large storage capacity.

【0038】本発明システムの第6の特徴は、前記本発
明システムの第1、第2、第3、第4又は第5の特徴に
おける第2の蓄電装置が、鉛蓄電池又はトリクル用途の
ニッケルカドニウム電池である自立型光発電制御システ
ムの構成採用にある。
A sixth feature of the present invention system is that the second power storage device in the first, second, third, fourth or fifth feature of the present invention system is a lead storage battery or nickel cadmium for trickle use. The present invention resides in adoption of a configuration of a self-contained photovoltaic power generation control system which is a battery.

【0039】本発明システムの第7の特徴は、前記本発
明システムの第1、第2、第3、第4、第5又は第6の
特徴における第1のコンバータが、光電素子群の発電電
流たる入力電流と発電電圧をそれぞれ検出する電流計及
び電圧計と、入力した当該入力電流と積算発電電力との
増減関係を演算処理して当該発電電力が最大となるよう
制御信号を発する制御回路と、当該制御信号を入力し、
前記入力電流を微少変動操作する電流ポンプ回路と、で
構成し前記光電素子群の最大電力追従制御機能を備えて
なる自立型光発電制御システムの構成採用にある。
A seventh feature of the system of the present invention is that the first converter according to the first, second, third, fourth, fifth or sixth feature of the present system is characterized in that the first converter generates the current generated by the photoelectric element group. An ammeter and a voltmeter that respectively detect the input current and the generated voltage, and a control circuit that performs an arithmetic process on an increase / decrease relationship between the input current and the integrated generated power to generate a control signal so that the generated power is maximized. , Input the control signal,
A self-contained photovoltaic power generation control system comprising a current pump circuit for slightly varying the input current and having a maximum power tracking control function for the photoelectric element group.

【0040】本発明システムの第8の特徴は、前記本発
明システムの第7の特徴における制御回路の制御信号
が、発電電流の増減とその時の発電電力の増減の積が正
の場合は、発電電流を微増し、積が負の場合は発電電流
を微減する制御信号である自立型光発電制御システムの
構成採用にある。
An eighth feature of the system of the present invention is that, when the control signal of the control circuit in the seventh feature of the present system is positive when the product of the increase or decrease of the generated current and the increase or decrease of the generated power at that time is positive. The present invention resides in the configuration of a self-contained photovoltaic power generation control system which is a control signal for slightly increasing the current and, when the product is negative, slightly reducing the generated current.

【0041】本発明システムの第9の特徴は、前記本発
明システムの第1、第2、第3、第4、第5、第6、第
7又は第8の特徴における第2のコンバータが、第1の
蓄電装置の蓄電量と、第2の蓄電装置の蓄電量及び充放
電電流とを、それぞれ常時検出するための電流計及び電
圧計と、当該検出入力した前記各蓄電量を演算処理し、
それぞれ動作モード1乃至3に対応する各設定条件に基
づいた制御信号を発する制御回路と、当該制御信号を入
力し給電の停止又は始動を操作する主回路と、で構成
し、前記動作モード1乃至3の選択実行を展開する機能
を備えてなる自立型光発電制御システムの構成採用にあ
る。
A ninth feature of the present invention system is that the second converter in the first, second, third, fourth, fifth, sixth, seventh or eighth feature of the present invention system is as follows. An ammeter and a voltmeter for constantly detecting the charged amount of the first power storage device and the charged amount and the charging / discharging current of the second power storage device, and calculating and processing the detected and input charged amounts. ,
A control circuit for issuing a control signal based on each set condition corresponding to each of the operation modes 1 to 3; and a main circuit for inputting the control signal and operating to stop or start the power supply. 3 is to adopt a configuration of a self-contained photovoltaic power generation control system having a function of developing the selection execution.

【0042】本発明システムの第10の特徴は、前記本
発明システムの第1、第2、第3、第4、第5、第6、
第7、第8又は第9の特徴における負荷が、電圧安定化
回路を前置接続してなる自立型光発電制御システムの構
成採用にある。
A tenth feature of the system of the present invention is that the first, second, third, fourth, fifth, sixth, and sixth aspects of the system of the present invention are described.
The load according to the seventh, eighth, or ninth feature resides in adopting a configuration of a self-contained photovoltaic power generation control system in which a voltage stabilizing circuit is connected in front.

【0043】本発明システムの第11の特徴は、前記本
発明システムの第7、第8、第9又は第10の特徴にお
ける電流ポンプ回路が、その主回路に昇降圧形チョッパ
又は昇圧形チョッパを用いてなる自立型光発電制御シス
テムの構成採用にある。
An eleventh feature of the system of the present invention resides in that the current pump circuit according to the seventh, eighth, ninth or tenth feature of the system of the present invention comprises a step-up / step-down chopper or a step-up chopper in a main circuit thereof. The present invention resides in adopting the configuration of the self-contained photovoltaic power generation control system used.

【0044】[0044]

【発明の実施の形態】本発明の実施の形態をその方法例
及びシステム例につき図面を参照して詳説する。本実施
形態例では、光電手段としての光電素子につき専ら太陽
電池を採用した場合を説明するもこれに限定されず、他
の光電素子、即ち、フォトセル等の様な光エネルギーを
電気エネルギーに変換する総ての素子を採用することも
出来ることは言うまでもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings with respect to an example of a method and an example of a system. In the present embodiment, a case where a solar cell is exclusively used for the photoelectric element as the photoelectric means will be described. However, the present invention is not limited to this, and other photoelectric elements, that is, light energy such as a photocell is converted into electric energy. Needless to say, all the elements can be adopted.

【0045】(システム例)本システム例の自立型光発
電制御システムのブロック図を図1に示す。なお、図4
に示す前記従来例と同一電気回路及び素子は同一符号を
付して説明の重複を避けた。
(System Example) FIG. 1 shows a block diagram of a self-contained photovoltaic power generation control system of this system example. FIG.
The same reference numerals are given to the same electric circuits and elements as those of the conventional example shown in FIG.

【0046】本システム例は、太陽電池10、コンバー
タ210、コンバータ220、電気二重層コンデンサ3
10、鉛蓄電池320、電圧安定化回路40、負荷50
からなり、コンバータ210は電流ポンプ回路211及
び制御回路212から構成され、さらに、コンバータ2
20は主回路221及び制御回路222から構成され、
給電路αと充放電分岐路β,γにより有機的に相互接続
される。図中、213は電流計、214は電圧計、22
3、224は電圧計、225は電流計である。
This system example includes a solar cell 10, a converter 210, a converter 220, and an electric double layer capacitor 3.
10, lead storage battery 320, voltage stabilization circuit 40, load 50
The converter 210 includes a current pump circuit 211 and a control circuit 212.
20 comprises a main circuit 221 and a control circuit 222,
The power supply path α and the charge / discharge branch paths β, γ are organically interconnected. In the figure, 213 is an ammeter, 214 is a voltmeter, 22
3, 224 are voltmeters and 225 is an ammeter.

【0047】(方法例)当該システム例に適用する本実
施形態の方法例を図面につき説明する。図2は前記シス
テム例の太陽電池10の発電電力Wsと電気二重層コン
デンサ310の蓄電量Qeと鉛蓄電池320の蓄電量Q
pのそれぞれの動作波形図、図3(a)は前記システム
例におけるコンバータ220の主回路221の動作モー
ド表、図3(b)は同・動作フローチャートである。
(Method Example) A method example of the present embodiment applied to the system example will be described with reference to the drawings. FIG. 2 shows the generated power Ws of the solar cell 10, the storage amount Qe of the electric double layer capacitor 310, and the storage amount Q of the lead storage battery 320 in the system example.
3 (a) is an operation mode table of the main circuit 221 of the converter 220 in the system example, and FIG. 3 (b) is an operation flowchart thereof.

【0048】コンバータ210内の制御回路212は、
太陽電池10の発電電流、発電電圧を電流計213と電
圧計214とでそれぞれ検出して発電電力Wsを演算
し、例えば電流ポンプ回路211により発電電流を微小
変化させ、発電電流の増減とその時の発電電力Wsの増
減の積が正の場合は発電電流を微増、積が負の場合は発
電電流を微減する等一般的な太陽電池10の最大電力追
従アルゴリズムを用いて電流ポンプ回路211を制御
し、太陽電池10で生じた電力Wsを電気二重層コンデ
ンサ310に充電する。但し、電気二重膚コンデンサ3
10の蓄電容量Qeが定格容量に達した場合には、一定
期間電流ポンプ回路211を停止する。
The control circuit 212 in the converter 210
The generated current and the generated voltage of the solar cell 10 are respectively detected by the ammeter 213 and the voltmeter 214 to calculate the generated power Ws. For example, the generated current is minutely changed by, for example, the current pump circuit 211, and the generated current is increased and decreased, and When the product of increase and decrease of the generated power Ws is positive, the generated current is slightly increased, and when the product is negative, the generated current is slightly reduced. Then, the electric double layer capacitor 310 is charged with the electric power Ws generated by the solar cell 10. However, electric double-layer capacitor 3
When the storage capacity Qe of 10 reaches the rated capacity, the current pump circuit 211 is stopped for a certain period.

【0049】コンバータ220内の制御回路222は、
電気二重層コンデンサ310に蓄えられている充電量Q
eと鉛蓄電池320に蓄えられている充電量Qpを電圧
計223,224でそれぞれ検出し、図2及び図3
(a)に示すよう、蓄電量Qeが出力停止指令値Q1よ
りも大きく、蓄電量Qpが鉛蓄電池320の定格容量指
令値Qcよりも大きい場合には太陽電池10の発電電力
Ws及び電気二重層コンデンサ310の放電により給電
路αを通し電圧安定化回路40に電力を供給する。
The control circuit 222 in the converter 220
Charge amount Q stored in electric double layer capacitor 310
e and the charge amount Qp stored in the lead storage battery 320 are detected by the voltmeters 223 and 224, respectively, and FIG.
As shown in (a), when the charged amount Qe is larger than the output stop command value Q1 and the charged amount Qp is larger than the rated capacity command value Qc of the lead storage battery 320, the generated power Ws of the solar cell 10 and the electric double layer Electric power is supplied to the voltage stabilizing circuit 40 through the power supply line α by discharging the capacitor 310.

【0050】そして、鉛蓄電池320の浮動充電を行う
動作モード1で、動作モード1の条件から蓄電量Qeが
減少し蓄電量Qeが出力停止指令値Q1を下回った場合
には、主回路221を停止し、蓄電池320の放電によ
り充放電分岐路γから給電路αを介し電圧安定化回路4
0に電力を供給する動作モード3で、動作モード3の条
件から蓄電量Qeが再び増加し、出力開始指令値Q2を
上回った場合には、太陽電池10の発電電力Ws及び電
気二重層コンデンサ310の放電により給電路α及び充
放電分岐路βを介し電圧安定化回路40に電力を供給す
る。
In the operation mode 1 in which the lead storage battery 320 is floatingly charged, when the storage amount Qe decreases from the condition of the operation mode 1 and the storage amount Qe falls below the output stop command value Q1, the main circuit 221 is activated. The voltage stabilizing circuit 4 is stopped by discharging the storage battery 320 from the charge / discharge branch path γ via the power supply path α.
In operation mode 3 for supplying power to 0, the power storage amount Qe increases again under the conditions of operation mode 3 and exceeds the output start command value Q2, so that the generated power Ws of the solar cell 10 and the electric double layer capacitor 310 Supplies power to the voltage stabilizing circuit 40 via the power supply path α and the charge / discharge branch path β.

【0051】同時に、鉛蓄電池320の定電流充電を行
う動作モード2で、蓄電量Qpが増加し定格容量Qcを
上回った場合には、再び動作モード1でそれぞれ主回路
221が動作するように出力電圧制御を行う。ここで、
動作モード2で動作中に天候等の変化により太陽電池1
0の発電電力Wsが減少した場合にも定電流充電動作が
できるように出力停止指令値Q1<出力開始指令値Q2
と設定する。電圧安定化回路40は入力された電力を負
荷50の所望の電圧に変換し、負荷50に電力Woを供
給する。
At the same time, in the operation mode 2 in which the lead storage battery 320 is charged at a constant current, when the charged amount Qp increases and exceeds the rated capacity Qc, the output is performed so that the main circuit 221 operates in the operation mode 1 again. Perform voltage control. here,
During operation in the operation mode 2, the solar cell 1
The output stop command value Q1 <the output start command value Q2 so that the constant current charging operation can be performed even when the generated power Ws of 0 decreases.
Set as The voltage stabilizing circuit 40 converts the input power to a desired voltage of the load 50 and supplies the load 50 with power Wo.

【0052】ここで図3(a)を参照して図3(b)の
動作フローチャートを説明する。本システム例の始動当
初は、動作モード3を選択実行するステップ1(ST
1)と、当該動作モード3の状態下で、電気二重層コン
デンサ310の蓄電量Qe>出力開始指令値Q2、であ
るかどうかを常時比較判断し、noである限り動作モー
ド3を維持するとともに、yesの場合は次のステップ
3(ST3)に進めるステップ2(ST2)と、鉛蓄電
池320の蓄電量Qp>鉛蓄電池320の定格容量Q
c、であるかどうかを比較判断するステップ3(ST
3)と、当該ステップ3(ST3)の判断がyesの場
合は動作モード1を選択実行するステップ4(ST4)
と、ステップ3(ST3)の判断が、noの場合は動作
モード2を選択実行するステップ5(ST5)と、動作
モード1又は動作モード2の状態下で、電気二重層コン
デンサ310の蓄電量Qe>電気二重層コンデンサ31
0の出力停止指令値Q1、であるかどうかを常時比較判
断し、yesである限り、ステップ3(ST3)と動作
モード1選択実行ステップ4(ST4)又は前記動作モ
ード2選択実行ステップ5(ST5)のループを繰り返
すとともに、noの場合は動作モード3選択実行ステッ
プ1(ST1)に戻るステップ6(ST6)とを、順次
踏んで実行手順を制御処理される。
The operation flowchart of FIG. 3B will now be described with reference to FIG. At the beginning of the start of the present system example, step 1 (ST) in which the operation mode 3 is selected and executed.
1) and in the operation mode 3, it is always determined whether or not the storage amount Qe of the electric double layer capacitor 310> the output start command value Q2, and the operation mode 3 is maintained as long as no. If yes, step 2 (ST2) proceeds to the next step 3 (ST3) and the amount of charge Qp of the lead storage battery 320> the rated capacity Q of the lead storage battery 320
Step 3 (ST) for comparing and determining whether
3), and if the determination in step 3 (ST3) is yes, step 4 (ST4) of selecting and executing operation mode 1
When the determination in step 3 (ST3) is no, step 5 (ST5) of selecting and executing operation mode 2 and in the state of operation mode 1 or operation mode 2, the amount of charge Qe of electric double layer capacitor 310 > Electric Double Layer Capacitor 31
It is always determined whether or not the output stop command value Q1 is 0, and as long as the answer is yes, the step 3 (ST3) and the operation mode 1 selection execution step 4 (ST4) or the operation mode 2 selection execution step 5 (ST5) ) Is repeated, and in the case of no, step 6 (ST6), which returns to operation mode 3 selection execution step 1 (ST1), is sequentially performed to control the execution procedure.

【0053】本実施形態例おいて、電流ポンプ回路21
1の主回路には、既存の昇降圧形チョッパ、昇圧形チョ
ッパ等入力電圧に比較して出力電圧を高めることが可能
で、所望の電流を電気二重層コンデンサ310に供給で
きる回路方式を適用することが望ましい。電気二重層コ
ンデンサ310の蓄電量Qeの検出は電気二重層コンデ
ンサ310の出力電圧を検出することにより容易に行え
る。鉛蓄電池320の蓄電量Qpの検出は、出力電圧の
検出を行うとともに、充放電電流も監視し、積算電力も
加味して行うことにより、制度の高い制御が可能とな
る。
In this embodiment, the current pump circuit 21
The first main circuit employs a circuit system capable of increasing the output voltage as compared with an input voltage such as an existing step-up / step-down chopper or step-up chopper and supplying a desired current to the electric double layer capacitor 310. It is desirable. The amount of charge Qe of the electric double layer capacitor 310 can be easily detected by detecting the output voltage of the electric double layer capacitor 310. The detection of the charged amount Qp of the lead storage battery 320 is performed by detecting the output voltage, monitoring the charge / discharge current, and taking into account the integrated power, thereby enabling highly accurate control.

【0054】[0054]

【発明の効果】本発明では、太陽電池が常時最大発電効
率で動作するため、システムの発電効率が高くなり、太
陽電池の容量を小さくすることができ、システム価格の
低減が可能である。また、太陽電池の出力電力の変動に
起因する充放電は電気二重層コンデンサに担わせるた
め、充放電効率が高く、システム効率を高めることがで
きるとともに、充放電時の発熱等も少ないため安全なシ
ステムを構築することができる。
According to the present invention, since the solar cell always operates at the maximum power generation efficiency, the power generation efficiency of the system is increased, the capacity of the solar cell can be reduced, and the system price can be reduced. In addition, charge and discharge caused by fluctuations in the output power of the solar cell are assigned to the electric double-layer capacitor, so that the charge and discharge efficiency is high and the system efficiency can be increased. A system can be built.

【0055】さらに、鉛蓄電池等の化学電池は天候が不
順な場合のみに充放電することから、充放電回数を減ら
すことができ、蓄電池の寿命を長くすることが可能で蓄
電池交換等の保守に要するコストが低減できる。また、
鉛蓄電池の負担が小さいため、電池の小容量化が可能で
小型、軽量、安価なシステム構築することができる。
Further, since a chemical battery such as a lead storage battery is charged and discharged only when the weather is irregular, the number of times of charging and discharging can be reduced, the life of the storage battery can be extended, and maintenance such as replacement of the storage battery can be performed. The required cost can be reduced. Also,
Since the burden on the lead storage battery is small, the capacity of the battery can be reduced, and a compact, lightweight, and inexpensive system can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示すシステム例のブロッ
ク構成図である。
FIG. 1 is a block diagram illustrating an example of a system according to an embodiment of the present invention.

【図2】同上における太陽電池の発電電力と電気二重層
コンデンサの蓄電量と鉛蓄電池の蓄電量のそれぞれの動
作波形図である。
FIG. 2 is an operation waveform diagram of each of the generated power of a solar cell, the amount of electric power stored in an electric double-layer capacitor, and the amount of electric power stored in a lead storage battery in the above battery.

【図3】(a)は同上におけるコンバータの主回路の動
作モード1〜3チャート、(b)は動作モード1〜3の
選択実行のフローチャートである。
3A is a chart showing operation modes 1 to 3 of the main circuit of the converter in the above embodiment, and FIG. 3B is a flowchart of selecting and executing operation modes 1 to 3;

【図4】従来システム例のブロック構成図である。FIG. 4 is a block diagram of a conventional system example.

【図5】同上における太陽電池の発電電力と鉛蓄電池の
蓄電量との動作波形図である。
FIG. 5 is an operation waveform diagram of the generated power of the solar cell and the amount of stored power of the lead storage battery in the same as above.

【符号の説明】[Explanation of symbols]

10…太陽電池 20…過充電保護回路 21…主回路 22…制御回路 30…蓄電池 40…電圧安定化回路 50…負荷 210…コンバータ 220…コンバータ 211…電流ポンプ回路 212…制御回路 213…電流計 214…電圧計 221…主回路 222…制御回路 223…電圧計 224…電圧計 225…電流計 310…電気二重層コンデンサ 320…鉛蓄電池 α…給電路 β,γ…充放電分岐路 Q1…電気二重層コンデンサ310の出力停止指令値 Q2…電気二重層コンデンサ310の出力開始指令値 Qc…鉛蓄電池320の定格容量 Qe…電気二重層コンデンサ310の蓄電量 Qp…鉛蓄電池320の蓄電量 Wo…負荷50の消費電力 Ws…太陽電池10の発電電力 DESCRIPTION OF SYMBOLS 10 ... Solar battery 20 ... Overcharge protection circuit 21 ... Main circuit 22 ... Control circuit 30 ... Storage battery 40 ... Voltage stabilization circuit 50 ... Load 210 ... Converter 220 ... Converter 211 ... Current pump circuit 212 ... Control circuit 213 ... Ammeter 214 ... voltmeter 221 ... main circuit 222 ... control circuit 223 ... voltmeter 224 ... voltmeter 225 ... ammeter 310 ... electric double layer capacitor 320 ... lead storage battery α ... power supply path β, γ ... charge and discharge branch path Q1 ... electric double layer Output stop command value of capacitor 310 Q2: Output start command value of electric double layer capacitor 310 Qc: Rated capacity of lead storage battery 320 Qe: Charge amount of electric double layer capacitor 310 Qp: Charge amount of lead storage battery 320 Wo: Load 50 Power consumption Ws ... Power generated by solar cell 10

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H01G 9/155 H01G 9/00 301Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // H01G 9/155 H01G 9/00 301Z

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】光電手段による発電電力を一時的に蓄える
ことにより照射光の停弱変化に対しても負荷に電力を継
続的に自立供給するに当り、 充放・蓄電特性の異なる二つの蓄電手段を用いて前記負
荷に対し片方による放電間にもう片方の充電を行って前
記蓄電手段の相互補完により、前記光電手段の発電効率
と小容量化及び前記蓄電手段の小容量化と耐久性とを合
せ高めた、 ことを特徴とする自立型光発電制御方法。
The present invention relates to a method of temporarily storing power generated by photoelectric means to continuously and independently supply power to a load in response to a change in the intensity of irradiation light. By means of the means, the other is charged to the load while the other is discharged, and the power storage means is complemented by each other, thereby reducing the power generation efficiency and capacity of the photoelectric means and reducing the capacity and durability of the power storage means. A self-contained photovoltaic power generation control method characterized in that:
【請求項2】光電手段は、 太陽電池、フォトセル等光エネルギーを電気エネルギー
に変換する総ての素子を含む、 ことを特徴とする請求項1に記載の自立型光発電制御方
法。
2. The self-contained photovoltaic power generation control method according to claim 1, wherein the photoelectric means includes all elements for converting light energy into electric energy, such as a solar cell or a photocell.
【請求項3】充放・蓄電特性の異なる二つの蓄電手段
は、 一方は、急速充放電時の損失が少なく、許容充放電サイ
クル数が多く、蓄電容量が小さい第1の蓄電手段を、他
方は、その逆の急速充放電時の損失が多く、許容充放電
サイクル数や自己放電が少なく、蓄電容量が大きい第2
の蓄電手段をそれぞれ採用する、 ことを特徴とする請求項1又は2に記載の自立型光発電
制御方法。
3. Two storage means having different charge / discharge / storage characteristics are: a first storage means having a small loss during rapid charge / discharge, a large number of allowable charge / discharge cycles, and a small storage capacity; On the other hand, the second method has a large loss at the time of rapid charge and discharge, a small number of allowable charge and discharge cycles and a small self-discharge, and a large storage capacity.
The independent photovoltaic power generation control method according to claim 1 or 2, wherein each of the power storage means is adopted.
【請求項4】第1の蓄電手段は、 光電手段の発電効率を常時最大とし当該第1の蓄電手段
の定格電流値以上の供給を停止する電流ポンプ機能を有
する第1の制御変換手段を介して前記光電手段側に配置
接続する、 ことを特徴とする請求項3に記載の自立型光発電制御方
法。
4. The first power storage means is provided via a first control conversion means having a current pump function for always maximizing the power generation efficiency of the photoelectric means and stopping supply of the first power storage means having a rated current value or more. The self-contained photovoltaic power generation control method according to claim 3, wherein the photovoltaic means is arranged and connected to the photoelectric device side.
【請求項5】第2の蓄電手段は、 第1の制御変換手段の出力に接続して、第1の蓄電手段
の出力停止指令値を下回った時、電流の供給を停止し、
かつ出力開始指令値を上回った時、電流の供給を再開す
る電流ゲート機能を有する第2の制御変換手段の出力か
つ負荷側に配置接続する、 ことを特徴とする請求項3又は4に記載の自立型光発電
制御方法。
5. The second power storage means is connected to the output of the first control conversion means, and stops supplying current when the output stop command value of the first power storage means falls below,
The output of the second control conversion means having a current gate function for restarting the supply of the current when the output start command value is exceeded, and is arranged and connected to the load side. Independent photovoltaic power generation control method.
【請求項6】出力停止指令値と出力開始指令値は、 出力停止指令値<出力開始指令値の条件を維持する、 ことを特徴とする請求項5に記載の自立型光発電制御方
法。
6. The autonomous photovoltaic power generation control method according to claim 5, wherein the output stop command value and the output start command value maintain a condition of output stop command value <output start command value.
【請求項7】第1の制御変換手段による光電手段の発電
効率の最大化は、 当該光電手段の発電電流としての入力電流と発電電力を
検出し、 当該入力電流と発電電力の増減関係により当該入力電流
を操作し、 当該発電電力が最大となるよう追従制御を行って達成す
る、 ことを特徴とする請求項4、5又は6に記載の自立型光
発電制御方法。
7. Maximizing the power generation efficiency of the photoelectric means by the first control conversion means includes detecting an input current and a generated power as a generated current of the photoelectric means, and detecting the input current and the generated power by an increase / decrease relationship between the input current and the generated power. 7. The self-contained photovoltaic power generation control method according to claim 4, wherein the input current is manipulated and the tracking control is performed so that the generated power is maximized.
【請求項8】第1の制御変換手段の電流供給の停止は、 第1の蓄電手段の蓄電量が出力停止指令値を下回った
後、 当該出力停止指令値より大きい出力開始指令値を上回る
迄の期間持続される、ことを特徴とする請求項4、5、
6又は7に記載の自立型光発電制御方法。
8. The current control of the first control conversion means is stopped until the amount of power stored in the first power storage means falls below the output stop command value and then exceeds the output start command value larger than the output stop command value. 4. The method according to claim 4, wherein
8. The self-supporting photovoltaic power generation control method according to 6 or 7.
【請求項9】第2の蓄電手段の充電は、 当該第2の蓄電手段の蓄電量が定格容量指令値より大き
い場合は浮動充電である、 ことを特徴とする請求項3、4、5、6、7又は8に記
載の自立型光発電制御方法。
9. The method according to claim 3, wherein the charging of the second power storage means is a floating charge when the amount of power stored in the second power storage means is larger than the rated capacity command value. 9. The independent photovoltaic power generation control method according to 6, 7, or 8.
【請求項10】第2の蓄電手段の充電は、 当該第2の蓄電手段の蓄電量が定格容量指令値より小さ
い場合は定電流充電である、 ことを特徴とする請求項3、4、5、6、7又は8に記
載の自立型光発電制御方法。
10. The method according to claim 3, wherein the charging of the second power storage means is constant current charging when the amount of power stored in the second power storage means is smaller than the rated capacity command value. , 6, 7 or 8.
【請求項11】第2の制御変換手段は、 電流の供給の動作出力状態では、光電手段と第1の蓄電
手段による負荷給電と第2の蓄電手段の浮動充電が行わ
れる動作モード1と、前記光電手段と前記第1の蓄電手
段による負荷給電と前記第2の蓄電手段の定電流充電が
行われる動作モード2とを保有し、 電流の供給の出力停止状態では、前記第2の蓄電手段に
よる負荷給電が行われる動作モード3を保有して、 前記第1の蓄電手段の蓄電量の出力停止指令値と出力開
始指令値に対する大小関係及び前記第2の蓄電手段の蓄
電量の定格容量に対する大小関係の取り合せにより前記
動作モード1と前記動作モード2と前記動作モード3の
選択実行を制御する、 ことを特徴とする請求項5、6、7、8、9又は10に
記載の自立型光発電制御方法。
11. An operation mode 1 in which, in an operation output state of current supply, load power is supplied by a photoelectric device and a first power storage device, and floating charging of the second power storage device is performed, The power storage device has an operation mode 2 in which the photoelectric device and the first power storage device perform load power supply and constant current charging of the second power storage device. Operating mode 3 in which the load power is supplied by the first power storage means, and the magnitude relation between the output stop command value and the output start command value of the power storage amount of the first power storage means and the rated capacity of the power storage amount of the second power storage means 11. The self-supporting light according to claim 5, wherein selection of the operation mode 1, the operation mode 2, and the operation mode 3 is controlled by a combination of magnitude relations. Power generation control method.
【請求項12】第2の制御変換手段による動作モード
1,動作モード2,動作モード3の選択実行は、 始動当初は前記動作モード3を選択実行するステップ1
(ST1)と、 当該動作モード3の状態下で、第1の蓄電手段の蓄電量
(Qe)>出力開始指令値(Q2)、であるかどうかを
常時比較判断し、noである限り前記動作モード3を維
持するとともに、yesの場合は次のステップ3(ST
3)に進めるステップ2(ST2)と、 第2の蓄電手段の蓄電量(Qp)>当該第2の蓄電手段
の定格容量Qc、であるかどうかを比較判断するステッ
プ3(ST3)と、 当該ステップ3(ST3)の判断がyesの場合は、前
記動作モード1を選択実行するステップ4(ST4)
と、 当該ステップ3(ST3)の判断がnoの場合は前記動
作モード2を選択実行するステップ5(ST5)と、 当該動作モード1又は当該動作モード2の状態下で、前
記第1の蓄電手段の蓄電量(Qe)>当該第1の蓄電手
段の出力停止指令値(Q1)、であるかどうかを常時比
較判断し、yesである限り前記ステップ3(ST3)
と前記動作モード1選択実行ステップ4(ST4)又は
前記動作モード2選択実行ステップ5(ST5)のルー
プを繰り返すとともに、noの場合は前記動作モード3
選択実行ステップ1(ST1)に戻るステップ6(ST
6)とを、 順次踏むよう制御される、 ことを特徴とする請求項11に記載の自立型光発電制御
方法。
12. An operation mode 1, an operation mode 2, and an operation mode 3 are selected and executed by the second control conversion means.
(ST1), and in the operation mode 3, whether or not the power storage amount (Qe) of the first power storage means> the output start command value (Q2) is constantly compared and determined. Mode 3 is maintained, and if yes, the next step 3 (ST
Step 2 (ST2) for proceeding to 3), and Step 3 (ST3) for comparing and judging whether or not the charged amount (Qp) of the second power storage means> the rated capacity Qc of the second power storage means. If the determination in step 3 (ST3) is yes, the operation mode 1 is selected and executed. Step 4 (ST4)
Step 5 (ST5) of selecting and executing the operation mode 2 when the determination in Step 3 (ST3) is no; and in the operation mode 1 or the operation mode 2, the first power storage unit It is always determined whether or not the storage amount (Qe)> the output stop command value (Q1) of the first power storage means, and as long as yes, the above step 3 (ST3)
And the loop of the operation mode 1 selection execution step 4 (ST4) or the operation mode 2 selection execution step 5 (ST5) is repeated, and if no, the operation mode 3
Step 6 (ST) returning to selection execution step 1 (ST1)
The method according to claim 11, wherein the control is performed so that steps (6) and (5) are sequentially performed.
【請求項13】第1の制御変換手段と第2制御変換手段
は、 制御機能を備えたコンバータである、 ことを特徴とする請求項5、6、7、8、9、10、1
1又は12に記載の自立型光発電制御方法。
13. The method according to claim 5, wherein the first control conversion means and the second control conversion means are converters having a control function.
13. The independent photovoltaic power generation control method according to 1 or 12.
【請求項14】第1の蓄電手段は、 電気二重層コンデンサである、 ことを特徴とする請求項3、4、5、6、7、8、9、
10、11、12又は13に記載の自立型光発電制御方
法。
14. The method according to claim 3, wherein the first power storage means is an electric double layer capacitor.
14. The self-supporting photovoltaic power generation control method according to 10, 11, 12, or 13.
【請求項15】第2の蓄電手段は、 鉛蓄電池又はトリクル用途のニッケルカドニウム電池で
ある、 ことを特徴とする請求項3、4、5、6、7、8、9、
10、11、12、13又は14に記載の自立型光発電
制御方法。
15. The battery according to claim 3, wherein the second power storage means is a lead storage battery or a nickel cadmium battery for trickle use.
The self-supporting photovoltaic power generation control method according to 10, 11, 12, 13, or 14.
【請求項16】光電素子群と負荷とを接続する給電路に
充放電分岐路により当該光電素子群の発電電力を一時的
に蓄える蓄電装置を接続して照射光の停弱変化に対して
も前記負荷に電力を供給し続ける自立型光発電制御シス
テムにおいて、 前記蓄電装置として充放・蓄電特性の異なる相互補完的
な二つの第1乃至第2の蓄電装置を別々の前記充放電分
岐路を通してそれぞれ接続する一方、 前記光電素子群と前記第1の蓄電装置間の前記給電路
に、当該光電素子群の最大発電効率化と当該第1の蓄電
装置の定格電流以上の給電をストップする電流ポンプ機
能とを制御変換する第1のコンバータを介挿し、 他方、前記第1の蓄電装置と前記第2の蓄電装置間の給
電路に、当該第1蓄電装置の蓄電量と当該第2の蓄電装
置の蓄電量の各設定条件で給電を停止又は始動する電流
ゲート機能を制御変換する第2のコンバータを介挿す
る、 ことを特徴とする自立型光発電制御システム。
16. A power storage device for temporarily storing the generated power of the photoelectric element group is connected to a power supply path connecting the photoelectric element group and the load by a charging / discharging branch path, so that a change in the intensity of irradiation light can be reduced. In a self-contained photovoltaic power generation control system that continues to supply power to the load, two mutually complementary first and second power storage devices having different charging / discharging / storage characteristics are used as the power storage devices through the separate charge / discharge branches. A current pump that, while being connected to each other, supplies the power supply path between the photoelectric element group and the first power storage device with a maximum power generation efficiency of the photoelectric element group and stops supplying power equal to or higher than the rated current of the first power storage device. A first converter for controlling and converting the function is interposed. On the other hand, the power storage amount of the first power storage device and the second power storage device are provided in a power supply path between the first power storage device and the second power storage device. Under each setting condition of Second converter interposing, freestanding photovoltaic control system and controls converting the current gate function of stopping or starting the electric.
【請求項17】光電素子は、 太陽電池、フォトセル等の光エネルギーを電気エネルギ
ーに変換する総ての素子を含む、 ことを特徴とする請求項16に記載の自立型光発電制御
システム。
17. The self-contained photovoltaic power generation control system according to claim 16, wherein the photoelectric element includes all elements such as a solar cell and a photocell that convert light energy into electric energy.
【請求項18】第1の蓄電装置は、 急速充放電時の損失が少なく、許容充放電サイクル数が
多く、 蓄電容量の小さな充放電特性を有する、 ことを特徴とする請求項16又は17に記載の自立型光
発電制御システム。
18. The power storage device according to claim 16, wherein the first power storage device has charge / discharge characteristics in which the loss during rapid charge / discharge is small, the number of allowable charge / discharge cycles is large, and the storage capacity is small. A self-contained photovoltaic power generation control system as described.
【請求項19】第1の蓄電装置は、 電気二重層コンデンサである、 ことを特徴とする請求項16、17又は18に記載の自
立型光発電制御システム。
19. The self-contained photovoltaic power generation control system according to claim 16, wherein the first power storage device is an electric double layer capacitor.
【請求項20】第2の蓄電装置は、 急速充放電時の損失が多く、許容充放電サイクル数や自
己放電が少なく、蓄電容量の大きな充放電特性を有す
る、 ことを特徴とする請求項16、17、18又は19に記
載の自立型光発電制御システム。
20. The power storage device according to claim 16, wherein the second power storage device has a large charge and discharge loss during rapid charge and discharge, a small number of allowable charge and discharge cycles and a small self-discharge, and a charge and discharge characteristic with a large storage capacity. , 17, 18 or 19.
【請求項21】第2の蓄電装置は、 鉛蓄電池又はトリクル用途のニッケルカドニウム電池で
ある、 ことを特徴とする請求項16、17、18、19又は2
0に記載の自立型光発電制御システム。
21. The battery according to claim 16, wherein the second power storage device is a lead storage battery or a nickel cadmium battery for trickle use.
0. The self-supporting photovoltaic power generation control system according to 0.
【請求項22】第1のコンバータは、 光電素子群の発電電流たる入力電流と発電電圧をそれぞ
れ検出する電流計及び電圧計と、 入力した当該入力電流と積算発電電力との増減関係を演
算処理して当該発電電力が最大となるよう制御信号を発
する制御回路と、 当該制御信号を入力し、前記入力電流を微少変動操作す
る電流ポンプ回路と、で構成し前記光電素子群の最大電
力追従制御機能を備える、 ことを特徴とする請求項16、17、18、19、20
又は21に記載の自立型光発電制御システム。
22. A first converter comprising: an ammeter and a voltmeter for respectively detecting an input current and a generated voltage, which are generated currents of a photoelectric element group; and calculating an increase / decrease relationship between the input current and the integrated generated power. A control circuit for generating a control signal so that the generated power is maximized; and a current pump circuit for inputting the control signal and performing a minute change operation on the input current, the maximum power follow-up control of the photoelectric element group. It has a function, The function of Claim 16, 17, 18, 19, 20 characterized by the above-mentioned.
Or a self-contained photovoltaic power generation control system according to 21.
【請求項23】制御回路の制御信号は、 発電電流の増減とその時の発電電力の増減の積が正の場
合は、発電電流を微増し、積が負の場合は発電電流を微
減する制御信号である、 ことを特徴とする請求項22に記載の自立型光発電制御
システム。
23. A control signal of the control circuit, wherein a control signal for slightly increasing the generated current when the product of the increase and decrease of the generated current and the increase and decrease of the generated power at that time is positive, and for slightly reducing the generated current when the product is negative. The self-contained photovoltaic power generation control system according to claim 22, wherein:
【請求項24】第2のコンバータは、 第1の蓄電装置の蓄電量と、第2の蓄電装置の蓄電量及
び充放電電流とを、それぞれ常時検出するための電流計
及び電圧計と、 当該検出入力した前記各蓄電量を演算処理し、それぞれ
動作モード1乃至3に対応する各設定条件に基づいた制
御信号を発する制御回路と、 当該制御信号を入力し給電の停止又は始動を操作する主
回路と、で構成し、 前記動作モード1乃至3の選択実行を展開する機能を備
える、 ことを特徴とする請求項16、17、18、19、2
0、21、22又は23に記載の自立型光発電制御シス
テム。
24. A second converter, comprising: an ammeter and a voltmeter for constantly detecting the charged amount of the first power storage device and the charged amount and the charging / discharging current of the second power storage device; A control circuit that performs arithmetic processing on the detected and input storage amounts and issues control signals based on the respective setting conditions corresponding to the operation modes 1 to 3; and a main circuit that receives the control signals and operates to stop or start power supply. And a circuit for developing the selected execution of the operation modes 1 to 3. 18. The circuit according to claim 17, further comprising:
24. The self-contained photovoltaic power generation control system according to 0, 21, 22 or 23.
【請求項25】負荷は、電圧安定化回路を前置接続す
る、 ことを特徴とする請求項16、17、18、19、2
0、21、22、23又は24に記載の自立型光発電制
御システム。
25. The load according to claim 16, wherein the voltage stabilizing circuit is connected in front of the load.
25. The self-supporting photovoltaic power generation control system according to 0, 21, 22, 23 or 24.
【請求項26】電流ポンプ回路は、 その主回路に昇降圧形チョッパ又は昇圧形チョッパを用
いる、 ことを特徴とする請求項22、23、24又は25に記
載の自立型光発電制御システム。
26. The self-contained photovoltaic power generation control system according to claim 22, wherein the current pump circuit uses a step-up / step-down chopper or a step-up chopper for a main circuit thereof.
JP9229144A 1997-08-26 1997-08-26 Self-controlled optical generation regulating method and system Pending JPH1169658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9229144A JPH1169658A (en) 1997-08-26 1997-08-26 Self-controlled optical generation regulating method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9229144A JPH1169658A (en) 1997-08-26 1997-08-26 Self-controlled optical generation regulating method and system

Publications (1)

Publication Number Publication Date
JPH1169658A true JPH1169658A (en) 1999-03-09

Family

ID=16887465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9229144A Pending JPH1169658A (en) 1997-08-26 1997-08-26 Self-controlled optical generation regulating method and system

Country Status (1)

Country Link
JP (1) JPH1169658A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079623A1 (en) * 2006-01-12 2007-07-19 Solar Focus Technology Co., Ltd A portable solar power supply system and its applying device
JP2013240253A (en) * 2012-05-17 2013-11-28 Tateyama Kagaku Kogyo Kk Solar cell system
WO2014030478A1 (en) * 2012-08-22 2014-02-27 シャープ株式会社 Power supply device, solar system, electric system, and vehicle
JPWO2013030952A1 (en) * 2011-08-30 2015-03-23 株式会社日立製作所 Grid stabilization system
JP2020530251A (en) * 2017-07-31 2020-10-15 ソムフィ アクティヴィテス エスアー Conformity test method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007079623A1 (en) * 2006-01-12 2007-07-19 Solar Focus Technology Co., Ltd A portable solar power supply system and its applying device
JP2009523318A (en) * 2006-01-12 2009-06-18 宇太光▲電▼科技股▲分▼有限公司 Portable solar energy electricity supply system and its configuration
US8018098B2 (en) 2006-01-12 2011-09-13 Solar Focus Technology Co., Ltd. Portable solar power supply system and its applying device
JPWO2013030952A1 (en) * 2011-08-30 2015-03-23 株式会社日立製作所 Grid stabilization system
US9618953B2 (en) 2011-08-30 2017-04-11 Hitachi, Ltd. System stabilization system
JP2013240253A (en) * 2012-05-17 2013-11-28 Tateyama Kagaku Kogyo Kk Solar cell system
WO2014030478A1 (en) * 2012-08-22 2014-02-27 シャープ株式会社 Power supply device, solar system, electric system, and vehicle
US9525305B2 (en) 2012-08-22 2016-12-20 Sharp Kabushiki Kaisha Electric system and vehicle
JP2020530251A (en) * 2017-07-31 2020-10-15 ソムフィ アクティヴィテス エスアー Conformity test method
US11967931B2 (en) 2017-07-31 2024-04-23 Somfy Activites Sa Method for testing compatibility

Similar Documents

Publication Publication Date Title
US7786716B2 (en) Nanosatellite solar cell regulator
US8866465B2 (en) Nanosatellite photovoltaic regulator
US10396590B2 (en) Variable power energy harvesting system
US20080036440A1 (en) Systems and Methods for Providing Maximum Photovoltaic Peak Power Tracking
JP5175451B2 (en) Power supply system
US8629647B2 (en) Battery charger apparatus and method for a photovoltaic system
US20080258675A1 (en) Multimode power module
US20100244573A1 (en) Hybrid power delivery system and method
JPS6154820A (en) Dc/ac converter of photogenerator system
KR20010044490A (en) Apparatus for Generating of Electric Power by Solar Energy
CN102195312A (en) A battery system
JP3529660B2 (en) Independent photovoltaic power generation system and power generation method
JP2013042627A (en) Dc power supply control device and dc power supply control method
WO2011058405A1 (en) Power distribution system
US8937402B2 (en) Converter circuit and electronic system comprising such a circuit
KR20150033971A (en) Photovoltaics System, apparatus and method for operating of storage battery
JP2002058174A (en) Independent solar generation system and its control method
JP2013099207A (en) Control apparatus and control method
JPH1169658A (en) Self-controlled optical generation regulating method and system
US9257861B2 (en) Control apparatus and control method
CN115622134B (en) MPPT scheduling control method of photovoltaic power generation system
CN116316767A (en) Network side power management control method and device for optical storage system
US20210066940A1 (en) Photovoltaic apparatus
JP2003208913A (en) Power controller, power generating system and control method of power controller
JPH0511428B2 (en)