JPH11339933A - Expansion graphite flat heating element and its manufacture - Google Patents

Expansion graphite flat heating element and its manufacture

Info

Publication number
JPH11339933A
JPH11339933A JP16139498A JP16139498A JPH11339933A JP H11339933 A JPH11339933 A JP H11339933A JP 16139498 A JP16139498 A JP 16139498A JP 16139498 A JP16139498 A JP 16139498A JP H11339933 A JPH11339933 A JP H11339933A
Authority
JP
Japan
Prior art keywords
heating element
expanded graphite
binder
graphite
expansion graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16139498A
Other languages
Japanese (ja)
Inventor
Sachio Matsui
松井幸智男
Shinya Kawakami
川上▲しん▼也
Takeshi Hirohata
健 広畑
Sadataka Tamura
田村貞隆
Taichi Nishiura
西浦太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KARU KK
eTec Co Ltd
Osaka Prefecture
Original Assignee
NIPPON KARU KK
eTec Co Ltd
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KARU KK, eTec Co Ltd, Osaka Prefecture filed Critical NIPPON KARU KK
Priority to JP16139498A priority Critical patent/JPH11339933A/en
Publication of JPH11339933A publication Critical patent/JPH11339933A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flexible and lightweight heating element having no concentrated heated portion, capable of constantly heating a wide face and excellent in heat diffusion efficiency by using a specific quantity of expansion graphite powder and/or pulverized material and a specific quantity of a binder. SOLUTION: A binder 0.5 pts.wt. or above is added to expansion graphite powder and/or expansion graphite pulverized material 100 pts.wt. so that the binder is sprinkled over only the portion kept in point contact with the wall face of the expansion graphite having a micro cell structure, and the mixture is uniformly mixed and dispersed to obtain a molding composition. Not only the expansion graphite obtained from natural graphite or artificial graphite but also the expansion graphite refined with expansion graphite wastes can be used. Various synthetic resins, natural resins, coal, petroleum pich or tar can be used for the binder, and a material having a high residual carbon ratio after it is burned is desirous. The obtained expansion graphite composition is molded and/or baked at the prescribed temperature and pressure to form a heating element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は床、壁、パネル等の各種
暖房用の発熱体およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element for heating various kinds of floors, walls, panels and the like, and a method for producing the same.

【0002】[0002]

【従来技術】 床および/または壁暖房用発熱体とし
て、従来はガス等で湯を沸かしこれをパイプで循環させ
る方法が公知および公用である。しかしながらこの方法
では湯を沸かすため熱効率の点で問題があり、加えて湯
を循環させるための新たなエネルギーが必要になり、経
済的に高価なものとなっている。
2. Description of the Related Art As a heating element for heating a floor and / or a wall, a method of boiling hot water with a gas or the like and circulating the same through a pipe is conventionally known and used. However, this method has a problem in terms of thermal efficiency due to boiling of hot water, and additionally requires new energy for circulating the hot water, which is economically expensive.

【0003】電気的発熱体を用いたものとしてはニクロ
ム線が最も一般的であるが、長期間の使用で断線は避け
られない。
[0003] Nichrome wires are most commonly used as electric heaters, but disconnection is inevitable in long-term use.

【0004】軽くて適度の電気的抵抗値を持つ炭素繊維
は電気的発熱体として優れているが、通電時に各モノフ
ィラメント間に電位差、熱勾配および静電気が生じケバ
立ちや断線の原因となっている。
Although carbon fibers having a light and moderate electric resistance value are excellent as an electric heating element, a potential difference, a thermal gradient and static electricity are generated between the monofilaments at the time of energization, which causes fluffing and disconnection. .

【0005】このような線状発熱体を絶縁性パネルに張
り付け通電して面状発熱体として使用している。この場
合の面状発熱体は加熱部分が線の部分に集中するため熱
拡散の点で問題がある。すなわち、線に近い部分のみが
高温となる。このため熱拡散効率を上げるため種々工夫
がされているが、まだ満足する段階に至っていない。熱
拡散効率を向上させるため炭素板やニクロム板にスリッ
ト(切れ目)を入れて発熱板を作製して大面積化し、熱
拡散効率を上げる方法が考えられるが、これらの多くは
脆性材料で、重量も重く使い難いのが現状である。ま
た、ニクロム板の場合、電気抵抗値が低く、発熱体とし
て使用するためには距離を長くする必要があり、使用が
制限される。また、発熱体として使用される炭素板の多
くが黒鉛塊から切削加工して得るため大面積のものは作
製し難い。そのため黒鉛粒子をタール、ピッチ等の粘結
剤で練ってこれを成形焼成して炭素板を作製する方法が
あるが、この場合一次元方向の収縮率が約20%、体積
収縮率では50%ほどになり、寸法安定性が得られない
ため、二次加工が必要となり、経済的な面からもコスト
が高くなる等の問題がある。
[0005] Such a linear heating element is attached to an insulating panel and is energized to be used as a sheet heating element. In this case, the planar heating element has a problem in terms of heat diffusion because the heating portion is concentrated on the line portion. That is, only the portion near the line has a high temperature. For this reason, various attempts have been made to increase the heat diffusion efficiency, but they have not yet reached a satisfactory stage. In order to improve the heat diffusion efficiency, there is a method of making a heating plate by making slits (cuts) in the carbon plate or nichrome plate to increase the area and increase the heat diffusion efficiency. However, most of these are brittle materials, At present, it is heavy and difficult to use. Further, in the case of a nichrome plate, the electric resistance value is low, and it is necessary to lengthen the distance in order to use it as a heating element, which limits the use. In addition, since many carbon plates used as heating elements are obtained by cutting from a mass of graphite, it is difficult to produce a large-area carbon plate. Therefore, there is a method in which graphite particles are kneaded with a binder such as tar or pitch and formed and fired to produce a carbon plate. In this case, the one-dimensional shrinkage rate is about 20%, and the volume shrinkage rate is 50%. In this case, dimensional stability cannot be obtained, so that secondary processing is required, and there is a problem that the cost is increased from an economical viewpoint.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した従来
技術の問題点を解決乃至大幅に軽減するものであって、
面全体が発熱体のため集中加熱部分がなく広い面で一定
加熱が可能な技術を提供することを主な目的とする。
SUMMARY OF THE INVENTION The present invention solves or greatly reduces the above-mentioned problems of the prior art.
A main object of the present invention is to provide a technology capable of performing constant heating on a wide surface without a centralized heating portion because the entire surface is a heating element.

【0007】さらに本発明は熱拡散効率に優れた発熱体
を得る技術を提供することをも目的とする。
Another object of the present invention is to provide a technique for obtaining a heating element having excellent heat diffusion efficiency.

【0008】また、本発明は従来の黒鉛板と比べてフレ
キシブルで軽い発熱体の技術を提供することをも目的と
する。
Another object of the present invention is to provide a technology for a heating element that is more flexible and lighter than a conventional graphite plate.

【0009】さらにまた本発明は、従来の発熱体よりも
経済効率に優れた発熱体の技術を提供することをも目的
とする。
Still another object of the present invention is to provide a technology of a heating element which is more economical than a conventional heating element.

【0010】[0010]

【課題を解決するための手段】本発明者は上記の問題点
を解決するために炭素材料の中で軽量のものとして膨張
黒鉛粉末および/または粉砕物を使用することによりそ
の目的を達成し得ることを見出した。
In order to solve the above problems, the present inventor can achieve the object by using expanded graphite powder and / or pulverized material as a lightweight carbon material. I found that.

【0011】従来の膨張黒鉛板の作製技術では厚さ1mm
以上のものは作製不可能である。1mm以下の従来の膨張
黒鉛板は強度が弱く、使用が限られる。1mm以上の厚み
を持たせるため本発明ではバインダーを用いるが、この
場合ミクロセル構造を有する膨張黒鉛の壁面に点接触す
る部分のみバインダーが存在するように混合物の約0.
5%(本稿明細書の以下の記載において「%」および
「部」とあるのは、それぞれ「重量%」および「重量
部」を意味する。)以上のバインダーを用いて成形す
る。(このようにして作製したものを以下の記載で成形
体または板状にしたものを成形板と称す。)
According to the conventional technology for manufacturing an expanded graphite plate, the thickness is 1 mm.
The above cannot be manufactured. A conventional expanded graphite plate of 1 mm or less has low strength and its use is limited. In the present invention, a binder is used in order to have a thickness of 1 mm or more. In this case, about 0.1% of the mixture is used so that the binder is present only at a point contact with the wall surface of the expanded graphite having a microcell structure.
Molding is performed using a binder of 5% or more (“%” and “parts” in the following description of the specification mean “% by weight” and “parts by weight”, respectively). (The thus-prepared product is referred to as a molded product or a plate in the following description.)

【0012】これを焼成すれば、焼成による収縮率が小
さく(例えばバインダー量10%における1000℃焼
成品の収縮率は0.42%)、寸法精度の高い炭素ー炭
素複合材が得られる。(このようにして作製したものを
以下の記載で焼成体または焼成板と称す。)これら成形
体および/または焼成体にスリットを入れることによ
り、電気の流れる経路を変化させ、その方向性を決め
る。すなわちスリットの入れ方で電気抵抗値を変化させ
るものである。
When this is fired, a carbon-carbon composite material having a small shrinkage due to firing (eg, a shrinkage of a product fired at 1000 ° C. at a binder amount of 10% of 0.42%) and high dimensional accuracy can be obtained. (The thus-prepared product is referred to as a fired body or a fired plate in the following description.) By slitting the formed body and / or the fired body, the path through which electricity flows is changed, and the directionality is determined. . That is, the electric resistance value is changed by inserting the slit.

【0013】発明者のこの様な少量のバインダーでも膨
張黒鉛板を任意の形状に成形でき、かつ焼成後の収縮率
の非常に小さな炭素ー炭素複合材から発熱体を作製する
ことは、従来技術である切削加工法により炭素発熱体を
作製する方法からは到底予測しがたいことである。
It has been known in the art that a heating element can be formed from a carbon-carbon composite material which can form an expanded graphite plate into an arbitrary shape with such a small amount of binder and has a very small shrinkage after firing. However, it is difficult to predict from the method of manufacturing the carbon heating element by the cutting method.

【0014】すなわち本発明は下記の膨張黒鉛系の組成
物からの成形体およびこれを焼成した焼成体から面状発
熱体およびそれらの製造方法を提供するものである; 1.膨張黒鉛粉末および/または膨張黒鉛粉砕物100
重量部とバインダー0.5重量部以上とからなることを
特徴とする膨張黒鉛系組成物よりなる面状発熱体。 2.膨張黒鉛粉末および/または膨張黒鉛粉砕物100
重量部とバインダー0.5重量部以上とからなることを
特徴とする膨張黒鉛系面状発熱体。 3.膨張黒鉛粉末および/または膨張黒鉛粉砕物100
重量部とバインダー0.5重量部以上とを均一に混合し
た後 、この混合物を成形して得ることを特徴とする請
求項2に記載の膨張黒鉛系面状発熱体の製造方法。 4.膨張黒鉛粉末および/または膨張黒鉛粉砕物100
重量部とバインダー0.5重量部以上とからなることを
特徴とする膨張黒鉛系成形体を焼成して得られる膨張黒
鉛系面状発熱体。 5.膨張黒鉛粉末および/または膨張黒鉛粉砕物100
重量部とバインダー0.5重量部以上とを均一に混合し
た後 、この混合物を成形し、焼成することを特徴とす
る請求項4に記載の膨張黒鉛系面状発熱体の製造方法。 6.請求項2または請求項4に記載の膨張黒鉛系発熱体
とからなることを特徴とする壁暖房用発熱体 7.請求項2または請求項4に記載の膨張黒鉛系発熱体
とからなることを特徴とする壁暖房用発熱体の製造方
法。 8.請求項2または請求項4に記載の膨張黒鉛系発熱体
とからなることを特徴とする床暖房用発熱体 9.請求項2または請求項4に記載の膨張黒鉛系発熱体
とからなることを特徴とする床暖房用発熱体の製造方
法。 10.請求項2または請求項4に記載の膨張黒鉛系発熱
体とからなることを特徴とするパネル暖房用発熱体 11.請求項2または請求項4に記載の膨張黒鉛系発熱
体とからなることを特徴とするパネル暖房用発熱体の製
造方法。
That is, the present invention provides a molded article from the following expanded graphite-based composition, and a sheet heating element from a fired article obtained by firing the same, and a method for producing the same. Expanded graphite powder and / or pulverized expanded graphite 100
A sheet heating element comprising an expanded graphite-based composition, comprising at least one part by weight and at least 0.5 part by weight of a binder. 2. Expanded graphite powder and / or pulverized expanded graphite 100
An expanded graphite-based sheet heating element comprising at least 0.5 parts by weight of a binder and 0.5 parts by weight of a binder. 3. Expanded graphite powder and / or pulverized expanded graphite 100
3. The method for producing an expanded graphite-based sheet heating element according to claim 2, wherein the mixture is obtained by uniformly mixing parts by weight and 0.5 parts by weight or more of a binder, and then molding the mixture. 4. Expanded graphite powder and / or pulverized expanded graphite 100
An expanded graphite-based sheet heating element obtained by firing an expanded graphite-based molded article, comprising at least one part by weight and at least 0.5 part by weight of a binder. 5. Expanded graphite powder and / or pulverized expanded graphite 100
5. The method for producing an expanded graphite-based sheet heating element according to claim 4, wherein after uniformly mixing parts by weight and 0.5 parts by weight or more of the binder, the mixture is molded and fired. 6. 6. A heating element for wall heating, comprising the expanded graphite-based heating element according to claim 2 or 4. A method for manufacturing a heating element for wall heating, comprising the expanded graphite-based heating element according to claim 2 or 4. 8. 8. A heating element for floor heating, comprising the expanded graphite heating element according to claim 2 or 4. A method for manufacturing a heating element for floor heating, comprising the expanded graphite-based heating element according to claim 2. 10. 10. A heating element for panel heating, comprising the expanded graphite-based heating element according to claim 2 or 4. A method for manufacturing a heating element for panel heating, comprising the expanded graphite-based heating element according to claim 2.

【0015】[0015]

【発明の実施の形態】本発明においては、膨張黒鉛粉末
および/または膨張黒鉛粉砕物100部に対し、バイン
ダーとしてタール、ピッチ、芳香環を主体とする分子構
造を持つ樹脂類などを0.5〜20部を加え、均一に混
合分散させて成形用組成物を得る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, 100 parts of expanded graphite powder and / or pulverized expanded graphite are mixed with 0.5% of a resin having a molecular structure mainly composed of tar, pitch and aromatic ring as a binder. -20 parts are added, and the mixture is uniformly mixed and dispersed to obtain a molding composition.

【0016】本発明においては、膨張黒鉛として、天然
黒鉛、キッシュ黒鉛、鱗状黒鉛、人造黒鉛など結晶構造
の発達した黒鉛の層間に濃硫酸、濃硝酸などにより処理
して黒鉛層間化合物を合成し、これを水洗し、加熱して
製造する公知の技術により得られた膨張黒鉛のみなら
ず、例えば自動車用エンジンガスケット製造時に出てく
る膨張黒鉛系廃棄物を精製したものを使用することもで
きる。本明細書において、膨張黒鉛とは、これらの材料
の少なくとも1種および/またはこれらを組み合わせて
使用することを意味する。
In the present invention, a graphite intercalation compound is synthesized by treating concentrated graphite, concentrated nitric acid, etc. between layers of graphite having a crystal structure such as natural graphite, quiche graphite, scale graphite, artificial graphite, etc., as expanded graphite. Not only expanded graphite obtained by a known technique of washing with water and heating to produce the same but also, for example, refined expanded graphite waste generated during the production of an engine gasket for an automobile can be used. In the present specification, expanded graphite means that at least one of these materials and / or a combination thereof is used.

【0017】本発明で使用する膨張黒鉛の性状は特に限
定されるものでなく、通常嵩密度0.004〜0.30
g/cm3程度であり、嵩密度が大きく、粒度が小さい
ほど、できた膨張黒鉛板の密度が高いものが得られる。
また逆に嵩密度が小さく、粒度が大きいほど、できた膨
張黒鉛板の密度が小さく軽量のものが得られる
The properties of the expanded graphite used in the present invention are not particularly limited, and usually have a bulk density of 0.004 to 0.30.
g / cm 3 , the larger the bulk density and the smaller the particle size, the higher the density of the resulting expanded graphite plate.
Conversely, the smaller the bulk density and the larger the particle size, the lower the density of the expanded graphite plate formed and the lighter the weight.

【0018】本発明で用いるバインダーとしては、特に
限定されるものではないが、例えば、各種合成樹脂類
(例えば、フェノール樹脂、フラン樹脂、ポリイミド樹
脂等)、天然樹脂類(例えば松ヤニ等)、石炭・石油系
ピッチ、タールなどが例示され、焼成後に残炭率が高い
ものが望ましい。
The binder used in the present invention is not particularly limited. For example, various kinds of synthetic resins (for example, phenol resin, furan resin, polyimide resin, etc.), natural resins (for example, pine resin), Coal / petroleum pitch, tar and the like are exemplified, and those having a high residual coal ratio after firing are desirable.

【0019】バインダーとしては粉末状、液状、どちら
でも使用することができる。バインダーは膨張黒鉛に均
一に混合分散し、得られた組成物の成形時に加熱・加圧
下に良好な流動性を示すことが望ましい。また用いるバ
インダーを有機溶媒に溶解または希釈若しくは分散させ
た状態で、膨張黒鉛中に分散混合することも可能であ
る。このような使用方法は均一混合が促進されるととも
に両者のなじみも良くなる。
As the binder, either powdery or liquid can be used. It is desirable that the binder is uniformly mixed and dispersed in the expanded graphite, and exhibits good fluidity under heat and pressure during molding of the obtained composition. It is also possible to disperse and mix the binder used in the expanded graphite in a state of being dissolved, diluted or dispersed in an organic solvent. Such a use method promotes uniform mixing and improves compatibility between the two.

【0020】本発明による膨張黒鉛組成物からなる発熱
体は上記の膨張黒鉛成形用組成物を所定の温度および圧
力で成形および/またはこれを焼成することにより、製
造される。(本明細書で発熱体と称呼する場合は膨張黒
鉛成形体またはこれを焼成した焼成体を示す。)成形条
件としては組成物中の膨張黒鉛とバインダーの性状、配
合割合、配合状態、発熱体の具体的用途などにより変わ
りるので特に限定するものではないが、通常温度80〜
200℃程度、より好ましくは140〜170℃、圧力
2〜20MPa程度、より好ましくは8〜15MPa程
度である。
The heating element made of the expanded graphite composition according to the present invention is produced by molding the above-mentioned composition for molding expanded graphite at a predetermined temperature and pressure and / or firing it. (When referred to as a heating element in this specification, it indicates an expanded graphite molded article or a fired article obtained by firing the same.) The molding conditions include the properties of the expanded graphite and the binder in the composition, the mixing ratio, the mixing state, and the heating element. It is not particularly limited because it varies depending on the specific application of the normal temperature, but usually the temperature is 80 to
The temperature is about 200 ° C., more preferably 140 to 170 ° C., and the pressure is about 2 to 20 MPa, more preferably about 8 to 15 MPa.

【0021】本発明による膨張黒鉛系面状発熱体は特に
限定するわけではないが、発熱体表面温度が250℃以
下ならば特に膨張黒鉛成形体を焼成しなくてもそのまま
で使用できる。発熱体表面温度が250℃以上では焼成
したものを用いる方が好ましく、使用温度以上に予め熱
処理若しくは焼成するのが望ましい。
The expanded graphite sheet heating element according to the present invention is not particularly limited. However, if the heating element surface temperature is 250 ° C. or less, the expanded graphite molded article can be used as it is without firing. When the surface temperature of the heating element is 250 ° C. or higher, it is preferable to use a fired one, and it is desirable to heat-treat or bake in advance to a temperature higher than the use temperature.

【0022】本発明による膨張黒鉛組成物からなる発熱
体は、電気の流れる経路として成形後にスリットを入れ
ても良いし、成形時にスリットの入った形に成形するこ
ともできる。
The heating element made of the expanded graphite composition according to the present invention may be provided with a slit after molding as a path through which electricity flows, or may be formed into a shape with a slit at the time of molding.

【0023】本発明による膨張黒鉛成形物からなる発熱
体の比抵抗は室温下で、バインダー量0.5〜20%で
は2.84〜4.14×10-5Ωmであり、これを非酸
化雰囲気下で1000℃まで焼成したものは0.9〜
1.1×10-5Ωmとなる。
The heating element made of the expanded graphite molded article according to the present invention has a specific resistance at room temperature of 2.84 to 4.14 × 10 −5 Ωm with a binder amount of 0.5 to 20%, which is not oxidized. 0.9 to 1000 ° C fired in an atmosphere
1.1 × 10 −5 Ωm.

【0024】一般に発熱体として用いられているニクロ
ムの比抵抗は0.95〜1×10-6Ωmであり、本発明
による膨張黒鉛成形体およびその焼成体は製法にもよる
が、ニクロムの約10〜50倍の比抵抗を有する。
The specific resistance of nichrome, which is generally used as a heating element, is 0.95 to 1 × 10 −6 Ωm. It has a specific resistance of 10 to 50 times.

【0025】本発明による膨張黒鉛板から面状発熱体を
作製する場合は、スリットの入れ方および板の厚みによ
り抵抗値を変化させることが可能である。すなわち、小
型で抵抗値の高い面状発熱体を得る場合はスリット間の
幅を細く、電流の流れる経路を長く、板の厚みを薄くす
れば良い。逆に大型の抵抗値の低い面状発熱体を得る場
合はスリット間の幅を広く、電流の流れる経路を短く、
板の厚みを厚くする。
In the case of producing a sheet heating element from the expanded graphite plate according to the present invention, it is possible to change the resistance value by changing the slits and the thickness of the plate. That is, when a small-sized planar heating element having a high resistance value is obtained, the width between the slits may be reduced, the length of the current flow path may be increased, and the thickness of the plate may be reduced. Conversely, when obtaining a large planar heating element with a low resistance value, the width between the slits should be wide, and the current path should be short.
Increase the thickness of the board.

【0026】本発明による膨張黒鉛系面状発熱体から壁
用発熱体を設計する場合は、膨張黒鉛板を多数使用する
ので、各膨張黒鉛板を電気回路的に直列に使用するとき
はスリットの数を少なくし、総抵抗値を所定の値にす
る。各膨張黒鉛板を電気回路的に並列に使用する場合は
一枚あたりの膨張黒鉛板のスリットの数を加減して所定
の抵抗値にすればよい。床用およびパネル用発熱体も同
様な考え方で設計できる。またこの場合、膨張黒鉛系発
熱体の片面に断熱材若しくは反射板等を使用することに
より暖房および経済的効率を向上させることができる。
When designing a wall heating element from the expanded graphite based sheet heating element according to the present invention, a large number of expanded graphite plates are used. The number is reduced and the total resistance value is set to a predetermined value. When the expanded graphite plates are used in parallel in an electric circuit, the number of slits of one expanded graphite plate may be adjusted to a predetermined resistance value. Heating elements for floors and panels can be designed in a similar way. In this case, by using a heat insulating material or a reflector on one side of the expanded graphite heating element, heating and economic efficiency can be improved.

【0027】本発明による膨張黒鉛系面状発熱体はその
ままでも使用可能であるが、特に限定するわけではない
が、耐熱性の布(例えばガラス繊維製の布)の袋に入れ
たり、耐熱性のフィルムで被覆することも可能である。
また、低温使用の発熱体の場合、例えば発熱体表面温度
200℃以下で使用するときは、成形樹脂中にインサー
トした発熱体もできる。これら発熱体のスリット間にほ
こり等で電気回路が短絡する場合は、スリット間に耐熱
性の絶縁物をはさむことにより、短絡を防止できる。
The expanded graphite-based sheet heating element according to the present invention can be used as it is, but is not limited thereto, but may be put in a bag of heat-resistant cloth (for example, a glass fiber cloth) or heat-resistant. It is also possible to coat with a film.
In the case of a heating element used at a low temperature, for example, when used at a heating element surface temperature of 200 ° C. or lower, a heating element inserted in a molding resin can be used. When the electric circuit is short-circuited due to dust or the like between the slits of these heating elements, a short circuit can be prevented by inserting a heat-resistant insulator between the slits.

【0028】[0028]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明らかにする。 実施例1 膨張黒鉛粉砕物(18メッシュアンダー)100部に対
し、200メッシュアンダーのノボラックタイプのフェ
ノール樹脂(フロー30mm、ゲルタイム55秒、オル
ト/パラ配向比=55/45)1部を加え、均一に混合
して膨張黒鉛組成物を得た。
The following examples are provided to further clarify the features of the present invention. Example 1 To 100 parts of pulverized expanded graphite (18 mesh under), 1 part of 200 mesh under novolak type phenol resin (flow 30 mm, gel time 55 seconds, ortho / para orientation ratio = 55/45) was added, and the mixture was homogenized. To obtain an expanded graphite composition.

【0029】次いで得られた膨張黒鉛組成物をホットプ
レスを用いて、160℃、10MPaで2分間成形した
後、成形体の嵩密度および真密度から全気孔率を計算し
た。また上記の成形体として400mm×300mm×
2mm板を作製し(以下膨張黒鉛成形板と称す。)40
0mm側を横とし、300mm側を縦とし、膨張黒鉛成
形板の幅が10mmとなるように、長さ290mm、幅
3mmのスリットを縦に上下交互に入れた。このように
スリットを入れた膨張黒鉛成形板の端に銅製電極を挟み
込み、電極とした。この電極に温度コントローラー(フ
ルテック社製FTー1000)をつなぎ、膨張黒鉛成形
板からなる発熱体中央部を赤外線熱電対で測定しながら
所定の温度に保持した。このときの当該発熱体表面の全
体部分の温度分散はサーモビュー(日本電気三栄社製:
6T62,測定温度:−40〜2000℃,センサー:
Hg,Cd,Teタイプ, 波長:8〜13μm)で温
度のばらつきを観察した。また、当該発熱体のみかけの
電気抵抗値はテスターで測定した。
Next, the obtained expanded graphite composition was molded using a hot press at 160 ° C. and 10 MPa for 2 minutes, and the total porosity was calculated from the bulk density and true density of the molded product. In addition, 400 mm x 300 mm x
A 2 mm plate is produced (hereinafter referred to as an expanded graphite molded plate) 40
The 0 mm side is set to be horizontal, the 300 mm side is set to be vertical, and slits having a length of 290 mm and a width of 3 mm are vertically and alternately formed so that the expanded graphite molded plate has a width of 10 mm. A copper electrode was sandwiched between the ends of the expanded graphite molded plate having the slits as described above to form an electrode. A temperature controller (FT-1000, manufactured by Fultech) was connected to the electrode, and the center of the heating element made of the expanded graphite molded plate was maintained at a predetermined temperature while being measured with an infrared thermocouple. At this time, the temperature dispersion of the entire surface of the heating element surface was measured using a thermoview (manufactured by NEC Corporation,
6T62, measurement temperature: -40 to 2000 ° C, sensor:
Temperature variations were observed for Hg, Cd, Te types, wavelength: 8 to 13 μm). The apparent electric resistance value of the heating element was measured with a tester.

【0030】曲げ試験は、20mm×10mm×4mm
の試験片を調製し、曲げスパン10mm、試験速度2m
m/minで行った。本実施例および以下の実施例なら
びに比較例により得られた結果を後の表1および表2に
示す。
The bending test was performed with a size of 20 mm × 10 mm × 4 mm
Is prepared, the bending span is 10 mm, and the test speed is 2 m.
m / min. The results obtained by this example, the following examples and comparative examples are shown in Tables 1 and 2 below.

【0031】実施例2 ノボラックタイプのフェノール樹脂の使用量を3部とす
る以外は実施例1と同様にして組成物の調製と各種の試
験を行った。
Example 2 A composition was prepared and various tests were carried out in the same manner as in Example 1 except that the amount of the novolak type phenol resin was changed to 3 parts.

【0032】実施例3 ノボラックタイプのフェノール樹脂の使用量を5部とす
る以外は実施例1と同様にして組成物の調製と各種の試
験を行った。
Example 3 A composition was prepared and various tests were conducted in the same manner as in Example 1 except that the amount of the novolak type phenol resin was changed to 5 parts.

【0033】実施例4 ノボラックタイプのフェノール樹脂の使用量を7部とす
る以外は実施例1と同様にして組成物の調製と各種の試
験を行った。
Example 4 A composition was prepared and various tests were carried out in the same manner as in Example 1 except that the amount of the novolak type phenol resin was changed to 7 parts.

【0034】実施例5 ノボラックタイプのフェノール樹脂の使用量を10部と
する以外は実施例1と同様にして組成物の調製と各種の
試験を行った。
Example 5 A composition was prepared and various tests were carried out in the same manner as in Example 1 except that the amount of the novolak type phenol resin used was changed to 10 parts.

【0035】実施例6 実施例1と同様にして得られた成形体をアルゴンガス雰
囲気下で、室温から1000℃まで24時間かけて焼成
し、焼成体を得た。得られた焼成体について、実施例1
と同様にして各種の試験を行った。
Example 6 A molded body obtained in the same manner as in Example 1 was fired from room temperature to 1000 ° C. for 24 hours in an argon gas atmosphere to obtain a fired body. About the obtained fired body, Example 1
Various tests were performed in the same manner as described above.

【0036】実施例7 実施例2と同様にして得られた成形体を用いる以外は実
施例6と同様にして焼成し、各種の試験を行った。
Example 7 A sinter was performed in the same manner as in Example 6 except that a molded article obtained in the same manner as in Example 2 was used, and various tests were performed.

【0037】実施例8 実施例3と同様にして得られた成形体を用いる以外は実
施例6と同様にして焼成し、各種の試験を行った。
Example 8 The same procedure as in Example 6 was repeated except that the molded product obtained in Example 3 was used, and firing was performed, and various tests were performed.

【0038】実施例9 実施例4と同様にして得られた成形体を用いる以外は実
施例6と同様にして焼成し、各種の試験を行った。
Example 9 A sinter was performed in the same manner as in Example 6 except that the molded body obtained in the same manner as in Example 4 was used, and various tests were performed.

【0039】実施例10 実施例5と同様にして得られた成形体を用いる以外は実
施例6と同様にして焼成し、各種の試験を行った。
Example 10 Except for using the molded body obtained in the same manner as in Example 5, firing was performed in the same manner as in Example 6, and various tests were performed.

【0040】実施例11 実施例5と同じ組成の膨張黒鉛成形板1035mm×1
035mm×2mmを作製し、膨張黒鉛成形板の幅が1
25mmとなるように、長さ910mm、幅5mmのス
リットを上下交互に入れ、この板を8枚用意した。厚さ
8mmのベニア板で囲った縦横3m×3m、高さ2mの
部屋を準備し、2枚を一組とした膨張黒鉛成形板を一つ
の壁の内側中心に固定し、四面の壁に同様にして合計8
枚のスリットを入れた膨張黒鉛成形板を並べた。それぞ
れスリットを入れた膨張黒鉛成形板の端を銅製電極で挟
み込み電気的に直列に接続した。温度コントローラー
(フルテック社製FT−1000)および電源を接続
し、一つの壁面のスリットを入れた膨張黒鉛成形板(膨
張黒鉛発熱体)の中央部を赤外線熱電対で測定し、1分
間に1℃の昇温速度で60℃まで上昇させてこの温度を
保持させた。部屋の床の中央部1m正方形の角部4ケ所
と部屋の天井の中央部1m正方形の角部4ケ所にベニア
板に100mm垂直となるようにK熱電対を取り付け、
最初に40℃になったときに、他の3ヶ所の温度の中で
最も低温の部分の40℃に対する温度差を床部と天井部
でそれぞれ測定した。なおこの時の最初の室温は15℃
であった。
Example 11 An expanded graphite molded plate having the same composition as in Example 5 was 1035 mm × 1
035 mm x 2 mm, and the expanded graphite molded plate has a width of 1
Slits having a length of 910 mm and a width of 5 mm were alternately inserted up and down so as to be 25 mm, and eight plates were prepared. Prepare a 3m × 3m × 2m high room surrounded by an 8mm thick veneer plate, fix the expanded graphite molded plate as a set of two at the center of the inside of one wall, and apply the same method to the four walls 8 in total
Expanded graphite molded plates having slits were arranged. The ends of the expanded graphite molded plates each having a slit were sandwiched between copper electrodes and electrically connected in series. A temperature controller (FT-1000 manufactured by Fultech) and a power supply were connected, and the center of an expanded graphite molded plate (expanded graphite heating element) having a slit on one wall was measured with an infrared thermocouple, and measured at 1 ° C. per minute. The temperature was raised to 60 ° C. at the temperature rising rate, and this temperature was maintained. Attach K thermocouples to the four corners of the 1m square in the center of the floor of the room and the four corners of the 1m square in the center of the room so as to be perpendicular to the veneer board by 100mm.
When the temperature reached 40 ° C. for the first time, the temperature difference between the lowest temperature portion of the other three temperatures and 40 ° C. was measured at the floor and the ceiling, respectively. The first room temperature was 15 ° C
Met.

【0041】実施例12 実施例11と同じ部屋および膨張黒鉛成形板の発熱体を
作製し、床に4枚、互いに接触しないようにガラス布で
絶縁させて床の中央部に敷き詰めた。実施例11と同様
に電気的に直列に接続し、温度コントローラーをつない
だ。この上に厚さ4mmのベニア板を敷いた。赤外線熱
電対は発熱体中央部分を4mmのベニア板の上から測定
し、この表面温度を60℃に保持した。実施例11と同
様に部屋の床の中央部1m正方形の角部4ケ所にK熱電
対を垂直に100mmになるよう取り付け、最初に40
℃になったときに、他の3点部分の温度の中で最も低温
の部分の40℃に対する温度差を測定した。他の条件は
実施例11と同様にして行った。
Example 12 The same heating element as that of Example 11 and an extruded graphite molded plate were produced, and four sheets were placed on the floor and insulated with a glass cloth so as not to contact with each other, and were laid all over the center of the floor. As in Example 11, they were electrically connected in series, and a temperature controller was connected. A 4 mm-thick veneer plate was spread on this. The infrared thermocouple was measured at the center of the heating element from above a 4 mm veneer plate, and the surface temperature was maintained at 60 ° C. As in the case of Example 11, K thermocouples were vertically mounted at 100 mm at four corners of a 1 m square at the center of the floor of the room.
When the temperature reached ° C, the temperature difference of the lowest temperature portion from the other three points with respect to 40 ° C was measured. Other conditions were the same as in Example 11.

【0042】実施例13 実施例10と同じ組成の膨張黒鉛焼成板400mm×3
00mm×2mmを作製し、400mm側を横とし、3
00mm側を縦とし、膨張黒鉛焼成板の幅が20mmと
なるように、長さ280mm、幅5mmのスリットを縦
に上下交互に入れて発熱体とした。実施例1と同様に温
度コントローラーおよび赤外線熱電対をつなぎ、この発
熱体中央部を400℃に保った。このパネル発熱体から
500mm離れた場所に500mm×500mm×10
mmのカオウール板を両者平行に立て、その4端にK熱
電対を取り付け、最初に100℃になったときに他の3
端の中で最も低温部分の100℃に対する温度差を測定
した。
Example 13 An expanded graphite fired plate 400 mm × 3 having the same composition as in Example 10
00mm x 2mm, 400mm side horizontal, 3mm
The heat generating element was formed by vertically and alternately vertically inserting slits having a length of 280 mm and a width of 5 mm so that the 00 mm side was vertical and the expanded graphite fired plate had a width of 20 mm. A temperature controller and an infrared thermocouple were connected in the same manner as in Example 1, and the center of the heating element was kept at 400 ° C. 500mm × 500mm × 10 at a place 500mm away from this panel heating element
mm kao wool plates are set up in parallel to each other, and K thermocouples are attached to the four ends thereof.
The temperature difference of the lowest temperature portion at 100 ° C. was measured.

【0043】比較例1 直径約1mmのニクロム線を実施例1〜10の見かけの
電気抵抗値に近くなるよう約12mを400mm×30
0mm×1mmの雲母板に30cmの長さで、40列に
蛇行した形で貼り付け、列の間隔を1cmにし、実施例
1と同様にして温度コントローラーをつなぎ、赤外線熱
電対は板の中央部のニクロム部分を測定して所定の温度
に達したときの面全体の温度のバラツキを調べ最大温度
差として計算した。
COMPARATIVE EXAMPLE 1 A nichrome wire having a diameter of about 1 mm was immersed in about 12 m to 400 mm × 30 so as to be close to the apparent electric resistance of Examples 1 to 10.
It is stuck on a mica board of 0 mm x 1 mm in a length of 30 cm and meandering in 40 rows, the interval between rows is 1 cm, a temperature controller is connected in the same manner as in Example 1, and the infrared thermocouple is placed at the center of the board. The Nichrome portion was measured and the temperature variation of the entire surface when the temperature reached a predetermined temperature was examined and calculated as the maximum temperature difference.

【0044】比較例2 1035mm×1035mm×2mmの雲母板に4mm
×2mm×1mmのニクロム板8mを125mm間隔に
して蛇行して貼り付けたものを面状発熱体とし実施例1
1と同様8枚用意して同様に評価した。ただし、表面温
度は赤外線熱電対を用い、測定個所として壁面中央部の
ニクロム板上の温度を測定した。
Comparative Example 2 A mica plate of 1035 mm × 1035 mm × 2 mm was 4 mm thick.
Example 1 A sheet-like heating element was formed by sticking a 8 mm × 2 mm × 1 mm nichrome plate meandering at an interval of 125 mm.
Eight sheets were prepared in the same manner as 1 and evaluated in the same manner. However, the surface temperature was measured using an infrared thermocouple on the nichrome plate at the center of the wall surface as a measurement point.

【0045】比較例3 比較例2で用いた雲母板面状発熱体を使う他は実施例1
2と同様に行った。
Comparative Example 3 Example 1 was repeated except that the mica plate surface heating element used in Comparative Example 2 was used.
Performed similarly to 2.

【0046】比較例4 直径約1mmのニクロム線を約6mを400mm×30
0mm×1mmの雲母板に30cmの長さで、20列に
蛇行した形で貼り付け、列の間隔を2cmにする他は実
施例13と同様に行った。
Comparative Example 4 About 6 m of a nichrome wire having a diameter of about 1 mm was
A mica plate of 0 mm × 1 mm was attached in a meandering manner in 20 rows with a length of 30 cm, and the procedure was the same as in Example 13 except that the spacing between the rows was 2 cm.

【0047】比較例5 平均粒径40μmの黒鉛粒子50部を顆粒状コールター
ルピツチ50部とよく混合した後、ニーダーを用いて2
00℃で混熱した。これを80℃のホットプレスを用い
て100mm×100mm×6mmに成形した。次いで
アルゴンガス雰囲気下で1000℃まで240時間かけ
て焼成した。これを実施例1と同様の条件となるよう試
験片を切削加工し曲げ試験を行った。
Comparative Example 5 50 parts of graphite particles having an average particle diameter of 40 μm were mixed well with 50 parts of granular coal tar pitch, and then mixed with a kneader.
Heat was mixed at 00 ° C. This was formed into a size of 100 mm × 100 mm × 6 mm using a hot press at 80 ° C. Then, it was fired in an argon gas atmosphere to 1000 ° C. over 240 hours. A test piece was cut and subjected to a bending test under the same conditions as in Example 1.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】注:表2中の実施例13および比較例4の
データはそれぞれ4点測定したとき、1点が100℃に
なったとき最低温度が87℃(実施例13)、68℃
(比較例4)であることを示している。
Note: The data of Example 13 and Comparative Example 4 in Table 2 were measured at four points, and when one point reached 100 ° C., the minimum temperature was 87 ° C. (Example 13) and 68 ° C.
(Comparative Example 4).

【0051】[0051]

【発明の効果】本発明による膨張黒鉛系面状発熱体は、
バインダーの量が少なくても成形が可能で、できた成形
体およびその焼成体は開気孔と閉気孔を多く含む多孔体
のため従来の炭素材料よりも軽量である。本発明による
膨張黒鉛系成形体を焼成した面状発熱体は、従来の炭素
材料よりも焼成収縮率が小さく寸法安定性に優れる。こ
のため二次加工がほとんど不要である。
The expanded graphite sheet heating element according to the present invention comprises:
Molding is possible even with a small amount of binder, and the formed body and its fired body are lighter than conventional carbon materials because of the porous body having many open pores and closed pores. The planar heating element obtained by sintering the expanded graphite-based molded article according to the present invention has a smaller sintering shrinkage ratio than a conventional carbon material and has excellent dimensional stability. Therefore, secondary processing is almost unnecessary.

【0052】本発明による膨張黒鉛の成形体および/ま
たは焼成体からなる面状発熱体は、従来の炭素材料のた
わみ率が1%以下に対し、5%以上あり、可とう性に優
れる。
The sheet heating element made of the expanded graphite molded article and / or fired article according to the present invention has a flexibility of 5% or more compared to 1% or less of the conventional carbon material, and is excellent in flexibility.

【0053】従来のニクロム線のような線状発熱体を絶
縁板に貼り付けた面状発熱体では発熱体自身は非常に高
い温度になり、発熱体以外の部分との温度差が大きく、
局部加熱となるが、本発明による膨張黒鉛系面状発熱体
では、面全体が発熱体であるため、温度分散性に優れ、
従来品よりも低温で十分な暖房効率が得られる。本発明
による膨張黒鉛系面状発熱体では、これと接する木板等
の有機物の板に対して150℃以下では焦げ目が着かな
いが、従来のニクロム線のような線状発熱体からなる面
状発熱体では面全体が60℃以下でも、これと接する木
板等の有機物の板に対して焦げ目が観察された。
In the case of a conventional planar heating element in which a linear heating element such as a nichrome wire is adhered to an insulating plate, the heating element itself has a very high temperature, and the temperature difference from portions other than the heating element is large.
Although it becomes local heating, the expanded graphite-based sheet heating element according to the present invention is excellent in temperature dispersibility because the entire surface is a heating element,
Sufficient heating efficiency can be obtained at a lower temperature than conventional products. In the expanded graphite-based sheet heating element according to the present invention, an organic plate such as a wooden board in contact with the sheet is not browned at a temperature of 150 ° C. or less, but a sheet heating element made of a linear heating element such as a conventional nichrome wire. Even when the entire surface of the body was 60 ° C. or less, scorching was observed on an organic material plate such as a wooden plate in contact therewith.

【0054】以上を要約すれば、本発明で得られる膨張
黒鉛系面状発熱体は、従来のニクロム線や炭素繊維のよ
うな線状発熱体を絶縁板に貼り付けて面状発熱体とした
ものに比べて、熱拡散効率が高く、局部加熱を伴わない
ので火災等の危険が少なく、従来品よりも低温で十分な
体感温度を持つ暖房化が可能となる。
In summary, the expanded graphite-based sheet heating element obtained by the present invention is a sheet heating element obtained by attaching a conventional line heating element such as a nichrome wire or carbon fiber to an insulating plate. Compared with conventional products, the heat diffusion efficiency is high, and there is no danger of fire or the like because local heating is not involved.

フロントページの続き (72)発明者 川上▲しん▼也 大阪府大阪市平野区平野本町3丁目3番32 号 日本カル株式会社内 (72)発明者 広畑 健 大阪府河内長野市美加の台1−35−3 (72)発明者 田村貞隆 大阪府豊中市南桜塚3ー6ー13ー305 (72)発明者 西浦太一 大阪府大阪市平野区平野本町3丁目3番32 号 日本カル株式会社内Continuation of the front page (72) Inventor Kawakami Shin-Shiya 3-3-32 Hirano Honcho, Hirano-ku, Osaka-shi, Japan Inside Nippon Cal Co., Ltd. (72) Inventor Takeshi Ken Hirohata Mikadai, Kawachinagano-shi, Osaka 1-35- 3 (72) Inventor Sadataka Tamura 3-6-13-305 Minamisakurazuka, Toyonaka City, Osaka (72) Inventor Taichi Nishiura 3-32, Hirano Honcho, Hirano-ku, Osaka, Japan Inside Nippon Cal Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項 1】膨張黒鉛粉末および/または膨張黒鉛粉
砕物100重量部とバインダー0.5重量部以上とから
なることを特徴とする膨張黒鉛系組成物よりなる面状発
熱体。
1. A sheet heating element comprising an expanded graphite composition, comprising 100 parts by weight of an expanded graphite powder and / or a pulverized expanded graphite and 0.5 parts by weight or more of a binder.
【請求項 2】膨張黒鉛粉末および/または膨張黒鉛粉
砕物100重量部とバインダー0.5重量部以上とから
なることを特徴とする膨張黒鉛系面状発熱体。
2. An expanded graphite-based sheet heating element comprising 100 parts by weight of an expanded graphite powder and / or pulverized expanded graphite and 0.5 parts by weight or more of a binder.
【請求項 3】膨張黒鉛粉末および/または膨張黒鉛粉
砕物100重量部とバインダー0.5重量部以上とを均
一に混合した後 、この混合物を成形して得ることを特
徴とする請求項2に記載の膨張黒鉛系面状発熱体の製造
方法。
3. The method according to claim 2, wherein 100 parts by weight of the expanded graphite powder and / or the pulverized expanded graphite and 0.5 parts by weight or more of the binder are uniformly mixed, and then the mixture is molded. A method for producing the expanded graphite-based sheet heating element according to the above.
【請求項 4】膨張黒鉛粉末および/または膨張黒鉛粉
砕物100重量部とバインダー0.5重量部以上とから
なることを特徴とする膨張黒鉛系成形体を焼成して得ら
れる膨張黒鉛系面状発熱体。
4. An expanded graphite surface obtained by firing an expanded graphite molded body comprising 100 parts by weight of an expanded graphite powder and / or pulverized expanded graphite and 0.5 parts by weight or more of a binder. Heating element.
【請求項 5】膨張黒鉛粉末および/または膨張黒鉛粉
砕物100重量部とバインダー0.5重量部以上とを均
一に混合した後 、この混合物を成形し、焼成すること
を特徴とする請求項4に記載の膨張黒鉛系面状発熱体の
製造方法。
5. The method according to claim 4, wherein 100 parts by weight of the expanded graphite powder and / or pulverized expanded graphite and 0.5 parts by weight or more of the binder are uniformly mixed, and then the mixture is molded and fired. 3. The method for producing an expanded graphite-based sheet heating element according to item 1.
【請求項 6】請求項2または請求項4に記載の膨張黒
鉛系発熱体とからなることを特徴とする壁暖房用発熱体
6. A heating element for wall heating, comprising the expanded graphite-based heating element according to claim 2 or 4.
【請求項 7】請求項2または請求項4に記載の膨張黒
鉛系発熱体とからなることを特徴とする壁暖房用発熱体
の製造方法。
7. A method of manufacturing a heating element for wall heating, comprising the expanded graphite heating element according to claim 2 or 4.
【請求項 8】請求項2または請求項4に記載の膨張黒
鉛系発熱体とからなることを特徴とする床暖房用発熱体
8. A heating element for floor heating, comprising the expanded graphite heating element according to claim 2 or 4.
【請求項 9】請求項2または請求項4に記載の膨張黒
鉛系発熱体とからなることを特徴とする床暖房用発熱体
の製造方法。
9. A method for manufacturing a heating element for floor heating, comprising the expanded graphite heating element according to claim 2 or 4.
【請求項10】請求項2または請求項4に記載の膨張黒
鉛系発熱体とからなることを特徴とするパネル暖房用発
熱体
10. A heating element for panel heating, comprising: the expanded graphite-based heating element according to claim 2 or 4.
【請求項11】請求項2または請求項4に記載の膨張黒
鉛系発熱体とからなることを特徴とするパネル暖房用発
熱体の製造方法。
11. A method for manufacturing a heating element for panel heating, comprising the expanded graphite-based heating element according to claim 2 or 4.
JP16139498A 1998-05-25 1998-05-25 Expansion graphite flat heating element and its manufacture Pending JPH11339933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16139498A JPH11339933A (en) 1998-05-25 1998-05-25 Expansion graphite flat heating element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16139498A JPH11339933A (en) 1998-05-25 1998-05-25 Expansion graphite flat heating element and its manufacture

Publications (1)

Publication Number Publication Date
JPH11339933A true JPH11339933A (en) 1999-12-10

Family

ID=15734268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16139498A Pending JPH11339933A (en) 1998-05-25 1998-05-25 Expansion graphite flat heating element and its manufacture

Country Status (1)

Country Link
JP (1) JPH11339933A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261439A (en) * 2000-03-23 2001-09-26 Nippon Karu Kk Carbonaceous foamed body and its production process
CN100455146C (en) * 2005-09-20 2009-01-21 中国江南航天工业集团江南工业贸易公司 Carbon material electrical heating membrane and preparing method
KR101599790B1 (en) * 2014-10-13 2016-03-07 청운대학교산학협력단 Expanded graphite, manufacture method of a plane heating panel using mud, the plane heating panel and bed using the same
JP2016528912A (en) * 2013-08-28 2016-09-23 アール・ジエイ・レイノルズ・タバコ・カンパニー Carbon conductive substrates for electronic smoking articles
CN106131983A (en) * 2016-08-10 2016-11-16 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
CN106211380A (en) * 2016-08-10 2016-12-07 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
CN109068413A (en) * 2018-07-20 2018-12-21 江苏三六石墨烯科技有限公司 The preparation method of graphite composite film, the graphite composite film being obtained by this method and its application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261439A (en) * 2000-03-23 2001-09-26 Nippon Karu Kk Carbonaceous foamed body and its production process
CN100455146C (en) * 2005-09-20 2009-01-21 中国江南航天工业集团江南工业贸易公司 Carbon material electrical heating membrane and preparing method
JP2016528912A (en) * 2013-08-28 2016-09-23 アール・ジエイ・レイノルズ・タバコ・カンパニー Carbon conductive substrates for electronic smoking articles
KR101599790B1 (en) * 2014-10-13 2016-03-07 청운대학교산학협력단 Expanded graphite, manufacture method of a plane heating panel using mud, the plane heating panel and bed using the same
CN106131983A (en) * 2016-08-10 2016-11-16 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
CN106211380A (en) * 2016-08-10 2016-12-07 陈庚 A kind of for hotting mask and preparation method thereof and heating plant
CN109068413A (en) * 2018-07-20 2018-12-21 江苏三六石墨烯科技有限公司 The preparation method of graphite composite film, the graphite composite film being obtained by this method and its application

Similar Documents

Publication Publication Date Title
JP3785422B2 (en) Hot air heater
CN104909798B (en) A kind of silicon carbide fibre lightweight high temperature insulating material and preparation method thereof
CN104661752B (en) Composite material, electrode film and process for producing same, electrode terminal and process for producing same, base and process for producing same, and bonding material and process for producing base by bonding components with bonding material
JPS63153388A (en) Heat treating furnace
KR20130116632A (en) Composite insulation board comprising opacifier and method for producing it
JPH11339933A (en) Expansion graphite flat heating element and its manufacture
CN107141803A (en) The preparation method of carbon fiber carbon nano-tube array/silicones heat-conductive composite material
CN107013967A (en) A kind of high-precision multi-zone temperature control system and method
CN101150891B (en) Nano carbon crystal material and its method for making electric heating plate
EP2815195B1 (en) Heat treatment device
CN108504095A (en) A kind of preparation method of novel high heat-conductivity conducting graphite composite film
CN1906973A (en) Hot air heater
CN112888095B (en) Inorganic composite electrothermal film material, preparation method and application
KR102254883B1 (en) Plane type heating element
JP2015071519A (en) POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY
JP2685370B2 (en) Ceramics heater
CN113105657A (en) High-orientation and high-power graphene heating film and preparation method and application thereof
JPS59141170A (en) Electrode substrate for fuel cell and manufacturing method thereof
KR101734472B1 (en) Microwave heating element using silicon carbide fibers and heating device thereof
JP2955127B2 (en) Ceramic heater
JP2712527B2 (en) Heating device for infrared radiation
RU2702431C1 (en) Carbon heat-distributing plate for production of ceiling and wall heating and air conditioning systems
KR101801366B1 (en) Heater using carbon sheet and the manufacturing method of the same
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
FR2264791A1 (en) Composite material contg silicon carbide particles - contacting one another and bonded by sintered glass ceramic

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040730

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD03 Notification of appointment of power of attorney

Effective date: 20040730

Free format text: JAPANESE INTERMEDIATE CODE: A7423