JPH11332226A - Synchronous commutation dc-dc converter - Google Patents

Synchronous commutation dc-dc converter

Info

Publication number
JPH11332226A
JPH11332226A JP10127662A JP12766298A JPH11332226A JP H11332226 A JPH11332226 A JP H11332226A JP 10127662 A JP10127662 A JP 10127662A JP 12766298 A JP12766298 A JP 12766298A JP H11332226 A JPH11332226 A JP H11332226A
Authority
JP
Japan
Prior art keywords
synchronous rectification
voltage
switching element
mos
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10127662A
Other languages
Japanese (ja)
Other versions
JP4210803B2 (en
Inventor
Hiroshi Usui
浩 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP12766298A priority Critical patent/JP4210803B2/en
Publication of JPH11332226A publication Critical patent/JPH11332226A/en
Application granted granted Critical
Publication of JP4210803B2 publication Critical patent/JP4210803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve efficiency by controlling for optimum performance a switching element for synchronous commutation of a synchronous commutation DC-DC converter. SOLUTION: In this synchronous commutation DC-DC converter, a voltage which occurs in the secondary windings 2b of a transformer 2 when a MOS-FET 3 changes from an 'on' state into an 'off' state is detected as a voltage V3 which occurs across the connection points of voltage detecting resistors 21, 22. At the time t0 when the voltage level of this detected signal V3 is changed over, a MOS-FET4 for synchronous commutation is changed over from the 'off' state to the 'on' state. Also, the voltage drop of the current flowing in the MOS-FET4 for the synchronous commutation is detected as the difference of voltages V1 , V2 to be inputted into each of non-inverted and inverted input terminals of a comparator 12 inside a synchronous commutation control circuit 14. At the time t3 when the voltage level of the output signal V4 of the comparator 12 is changed over, the MOS-FET4 for synchronous commutation is changed over from the 'on' state to the 'off' state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は同期整流型DC−D
Cコンバータ、特に同期整流用スイッチング素子を最適
に制御して効率の向上を図った同期整流型DC−DCコ
ンバータに関するものである。
The present invention relates to a synchronous rectification type DC-D.
The present invention relates to a synchronous rectification type DC-DC converter in which a C converter, particularly a synchronous rectification switching element is optimally controlled to improve efficiency.

【0002】[0002]

【従来の技術】低出力電圧のDC−DCコンバータの出
力整流回路には従来から一般にショットキ・バリア・ダ
イオード(SBD)等のダイオード整流器が使用されて
いるが、ダイオード整流器のオフセット電圧のために導
通時の電力損失が大きくなり、効率低下の原因となって
いる。このため、出力整流回路に導通時の電気抵抗が低
くかつオフセット電圧のないMOS-FET等のスイッ
チング素子を同期整流器として使用して、効率の改善を
図った同期整流型DC−DCコンバータが提案されてい
る。例えば、図3に示す同期整流型DC−DCコンバー
タは、バッテリ又はコンデンサ入力型整流回路等の直流
電源1と、直流電源1の両端に直列接続されたトランス
2の1次巻線2a及び主スイッチング素子としてのMO
S-FET3と、トランス2の1次巻線2aと逆極性で磁
気結合される2次巻線2bと直列に接続された同期整流
用スイッチング素子としての同期整流用MOS-FET
4と、トランス2の2次巻線2b及び同期整流用MOS-
FET4の直列回路の両端に接続された平滑回路として
の平滑コンデンサ5とを備えている。図3において、4
aは同期整流用MOS-FET4のドレイン−ソース間に
存在する寄生ダイオードを示し、等価的に同期整流用M
OS-FET4のドレイン−ソース端子間に並列に接続
される。トランス2の2次巻線2bの両端には抵抗6〜
9が接続され、抵抗6、7の接続点がダイオード10を
介して同期整流用MOS-FET4のドレイン端子に接
続され、抵抗8、9の接続点がダイオード11を介して
同期整流用MOS-FET4のソース端子に接続されて
いる。抵抗6、7の接続点の電圧V1及び抵抗8、9の
接続点の電圧V2はそれぞれコンパレータ12の反転入
力端子及び非反転入力端子に入力されて比較され、コン
パレータ12の比較出力端子からパルス信号が出力され
る。コンパレータ12の出力信号はプルアップ用抵抗1
3を介して同期整流用MOS-FET4のゲート端子に
同期整流制御信号VG2として付与され、同期整流用MO
S-FET4がオン・オフ動作される。即ち、抵抗6〜
9及びダイオード10、11及びコンパレータ12及び
プルアップ用抵抗13は同期整流用MOS-FET4の
同期整流制御回路14を構成する。
2. Description of the Related Art A diode rectifier such as a Schottky barrier diode (SBD) is generally used in an output rectifier circuit of a low output voltage DC-DC converter. The power loss at the time increases, which causes a reduction in efficiency. For this reason, a synchronous rectification type DC-DC converter has been proposed in which an efficiency is improved by using a switching element such as a MOS-FET having a low electric resistance when conducting to an output rectifier circuit and having no offset voltage as a synchronous rectifier. ing. For example, the synchronous rectification type DC-DC converter shown in FIG. 3 includes a DC power supply 1 such as a battery or a capacitor input type rectifier circuit, a primary winding 2 a of a transformer 2 connected in series to both ends of the DC power supply 1, and main switching. MO as an element
Synchronous rectification MOS-FET as a synchronous rectification switching element connected in series with an S-FET 3 and a secondary winding 2b magnetically coupled to the primary winding 2a of the transformer 2 with the opposite polarity.
4, the secondary winding 2b of the transformer 2 and the MOS-
And a smoothing capacitor 5 as a smoothing circuit connected to both ends of the series circuit of the FET 4. In FIG. 3, 4
a indicates a parasitic diode existing between the drain and the source of the synchronous rectification MOS-FET 4, and
It is connected in parallel between the drain and source terminals of OS-FET4. A resistor 6 to both ends of the secondary winding 2b of the transformer 2
9 is connected, the connection point between the resistors 6 and 7 is connected to the drain terminal of the synchronous rectification MOS-FET 4 via the diode 10, and the connection point between the resistors 8 and 9 is connected via the diode 11 to the synchronous rectification MOS-FET 4 Connected to the source terminal. The voltage V 1 at the connection point of the resistors 6 and 7 and the voltage V 2 at the connection point of the resistors 8 and 9 are input to the inverting input terminal and the non-inverting input terminal of the comparator 12 and compared. A pulse signal is output. The output signal of the comparator 12 is a pull-up resistor 1
3 is assigned as a synchronous rectification control signal V G2 to the gate terminal of the synchronous rectification MOS-FET 4 via a synchronous rectification MO
The S-FET 4 is turned on and off. That is, the resistance 6 ~
9, the diodes 10 and 11, the comparator 12 and the pull-up resistor 13 constitute a synchronous rectification control circuit 14 of the synchronous rectification MOS-FET 4.

【0003】また、平滑コンデンサ5の両端とMOS-
FET3のゲート端子との間には、平滑コンデンサ5の
両端に接続される負荷15に供給される直流出力電圧V
Oに応じてMOS-FET3のゲート端子に付与する制御
パルス信号VG1のパルス幅を制御することによりMOS
-FET3のオン・オフ期間を制御する定電圧制御回路
16が設けられている。定電圧制御回路16は、出力電
圧値を規定する基準電圧VRを発生する基準電源17
と、直流出力電圧VO及び基準電源17の基準電圧VR
比較してその差分に応じた電圧を出力する誤差増幅器1
8と、誤差増幅器18の出力により駆動される発光部1
9a及び発光部19aの光出力に応じて自身に流れる電流
を制御する受光部19bからなるフォトカプラ19と、
MOS-FET3のゲート端子に付与する制御パルス信
号VG1のパルス幅をフォトカプラ19の受光部19bに
流れる電流に応じて制御するPWM変調回路20とから
構成されている。PWM変調回路20は、フォトカプラ
19の発光部19aの光出力が増加して受光部19bに流
れる電流が増加し、受光部19bのコレクタ−エミッタ
間の電圧が低下するときに制御パルス信号VG1のパルス
幅を狭める動作をし、フォトカプラ19の発光部19a
の光出力が減少して受光部19bに流れる電流が減少
し、受光部19bのコレクタ−エミッタ間の電圧が上昇
するときに制御パルス信号VG1のパルス幅を広げる動作
をする。
Further, both ends of the smoothing capacitor 5 and the MOS-
Between the gate terminal of the FET 3 and the DC output voltage V supplied to the load 15 connected to both ends of the smoothing capacitor 5
By controlling the pulse width of the control pulse signal V G1 applied to the gate terminal of the MOS-FET 3 according to O , the MOS
-A constant voltage control circuit 16 for controlling the ON / OFF period of the FET 3 is provided. Constant voltage control circuit 16, a reference power source 17 for generating a reference voltage V R which defines the output voltage value
And an error amplifier 1 that compares the DC output voltage V O and the reference voltage V R of the reference power supply 17 and outputs a voltage corresponding to the difference.
8 and the light emitting unit 1 driven by the output of the error amplifier 18
A photocoupler 19 including a light receiving unit 19b that controls a current flowing through the light emitting unit 9a according to the light output of the light emitting unit 9a and the light emitting unit 19a;
The PWM modulation circuit 20 controls the pulse width of the control pulse signal V G1 applied to the gate terminal of the MOS-FET 3 according to the current flowing through the light receiving portion 19b of the photocoupler 19. The PWM modulation circuit 20 controls the control pulse signal V G1 when the light output of the light emitting portion 19a of the photocoupler 19 increases, the current flowing in the light receiving portion 19b increases, and the voltage between the collector and the emitter of the light receiving portion 19b decreases. The light emitting portion 19a of the photocoupler 19
Of the light output is reduced by reducing the current flowing through the light receiving portion 19b is, the collector of the light receiving portion 19b - emitter voltage to an operation to widen the pulse width of the control pulse signal V G1 when raised.

【0004】図3に示す同期整流型DC−DCコンバー
タの主回路の動作は次の通りである。定電圧制御回路1
6内のPWM変調回路20から図4(B)に示す制御パル
ス信号VG1が付与され、時刻t0においてMOS-FET
3がオン状態からオフ状態になると、MOS-FET3
のドレイン−ソース間の電圧VDS1が図4(A)に示すよ
うに直流電源1の直流入力電圧Eに等しくなる。このと
き、トランス2の2次巻線2bに逆起電力が発生して同
期整流用MOS-FET4の寄生ダイオード4aが順バイ
アスされ、2次側回路に図4(C)に示す電流I0が流れ
てその最大値I0PからVS/LS(VS:2次巻線2bの電
圧、LS:2次巻線2bのインダクタンス)の比率で徐々
に減少して行く。2次側回路に流れる電流I0により、
同期整流制御回路14内の抵抗6、7及び抵抗8、9の
それぞれの接続点に図4(D)に示す電圧V1、V2が発生
し、これらの各電圧V1、V2は時刻t2において同電位
となる。図4(D)に示す各電圧V1、V2は、コンパレー
タ12の反転入力端子及び非反転入力端子にそれぞれ入
力され、時刻t1においてコンパレータ12からプルア
ップ用抵抗13を介して同期整流用MOS-FET4の
ゲート端子に付与される同期整流制御信号VG2が図4
(E)に示すように高レベルとなる。これにより、同期整
流用MOS-FET4がオン状態となり、トランス2の
2次巻線2bから同期整流用MOS-FET4及び平滑コ
ンデンサ5を介して負荷15に直流出力が供給される。
時刻t3において、図4(C)に示すように2次側回路に
流れる電流I0が0になり、コンパレータ12の反転入
力端子及び非反転入力端子にそれぞれ入力される電圧V
1、V2が図4(D)に示すようになると、コンパレータ1
2からプルアップ用抵抗13を介して同期整流用MOS
-FET4のゲート端子に付与される同期整流制御信号
G2が図4(E)に示すように高レベルから低レベルとな
り、同期整流用MOS-FET4がオフ状態となる。こ
のとき、同期整流用MOS-FET4のオン期間中に充
電された平滑コンデンサ5の電荷が負荷15に供給され
る。また、MOS-FET3のドレイン−ソース間の電
圧VDS1が図4(A)に示すように直流入力電圧Eから減
少して行き、時刻t4において図4(B)に示すようにM
OS-FET3のゲート端子に付与される制御パルス信
号VG1が低レベルから高レベルとなり、MOS-FET
3がオフ状態からオン状態となると、MOS-FET3
のドレイン−ソース間の電圧VDS1が図4(A)に示すよ
うに0Vとなる。
The operation of the main circuit of the synchronous rectification type DC-DC converter shown in FIG. 3 is as follows. Constant voltage control circuit 1
The control pulse signal V G1 shown in FIG. 4B is given from the PWM modulation circuit 20 in the MOS-FET 6 at time t 0 .
When the switch 3 is turned off from the on state, the MOS-FET 3
The voltage V DS1 between the drain and the source becomes equal to the DC input voltage E of the DC power supply 1 as shown in FIG. At this time, a back electromotive force is generated in the secondary winding 2b of the transformer 2 and the parasitic diode 4a of the synchronous rectification MOS-FET 4 is forward-biased, and the current I 0 shown in FIG. After flowing, the current gradually decreases from the maximum value I 0P at a ratio of V S / L S (V S : voltage of the secondary winding 2b, L S : inductance of the secondary winding 2b). Due to the current I 0 flowing through the secondary circuit,
Voltages V 1 and V 2 shown in FIG. 4D are generated at respective connection points of the resistors 6 and 7 and the resistors 8 and 9 in the synchronous rectification control circuit 14, and these voltages V 1 and V 2 are time the same potential in t 2. Figure 4 (D) each voltage shown in V 1, V 2 are input to the inverting input terminal and non-inverting input terminal of the comparator 12, the synchronous rectification from the comparator 12 through a pull-up resistor 13 at time t 1 The synchronous rectification control signal V G2 applied to the gate terminal of the MOS-FET 4 is shown in FIG.
It becomes a high level as shown in FIG. As a result, the synchronous rectification MOS-FET 4 is turned on, and a DC output is supplied from the secondary winding 2 b of the transformer 2 to the load 15 via the synchronous rectification MOS-FET 4 and the smoothing capacitor 5.
At time t 3 , as shown in FIG. 4C, the current I 0 flowing through the secondary side circuit becomes 0, and the voltage V input to the inverting input terminal and the non-inverting input terminal of the comparator 12 respectively.
When V 1 and V 2 become as shown in FIG.
2 through a pull-up resistor 13 and a synchronous rectification MOS
The synchronous rectification control signal V G2 applied to the gate terminal of the FET 4 changes from the high level to the low level as shown in FIG. 4E, and the synchronous rectification MOS-FET 4 is turned off. At this time, the charge of the smoothing capacitor 5 charged during the ON period of the synchronous rectification MOS-FET 4 is supplied to the load 15. Further, MOS-FET 3 drain - as shown voltage V DS1 between source gradually decreases from the DC input voltage E as shown in FIG. 4 (A), at time t 4 in FIG. 4 (B) M
The control pulse signal V G1 applied to the gate terminal of the OS-FET 3 changes from a low level to a high level,
When the MOS transistor 3 changes from the OFF state to the ON state, the MOS-FET 3
It becomes 0V voltage V DS1 between the source as shown in FIG. 4 (A) - the drain.

【0005】また、図3に示す同期整流型DC−DCコ
ンバータの定電圧制御動作は次の通りである。例えば、
負荷15が軽負荷状態となり直流出力電圧VOが上昇す
ると、誤差増幅器18の出力電圧が増加してフォトカプ
ラ19の発光部19aの光出力が増加する。これに従っ
て、フォトカプラ19の受光部19bに流れる電流が増
加し、受光部19bのコレクタ−エミッタ間の電圧が低
下する。これにより、PWM変調回路20からMOS-
FET3のゲート端子に付与される制御パルス信号VG1
のパルス幅が狭くなり、MOS-FET3のオン期間が
短くなるので直流出力電圧VOが低下する。前記とは逆
に、負荷15が過負荷状態となり直流出力電圧VOが低
下すると、誤差増幅器18の出力電圧が減少してフォト
カプラ19の発光部19aの光出力が減少する。これに
従って、フォトカプラ19の受光部19bに流れる電流
が減少し、受光部19bのコレクタ−エミッタ間の電圧
が上昇する。これにより、PWM変調回路20からMO
S-FET3のゲート端子に付与される制御パルス信号
G1のパルス幅が広くなり、MOS-FET3のオン期
間が長くなるので直流出力電圧VOが上昇する。以上の
動作により、図3に示す同期整流型DC−DCコンバー
タの直流出力電圧VOが一定値に制御され、負荷15に
定電圧の直流出力が供給される。
[0005] The constant voltage control operation of the synchronous rectification type DC-DC converter shown in FIG. 3 is as follows. For example,
When the load 15 is in a light load state and the DC output voltage V O increases, the output voltage of the error amplifier 18 increases and the light output of the light emitting portion 19a of the photocoupler 19 increases. Accordingly, the current flowing through the light receiving portion 19b of the photocoupler 19 increases, and the voltage between the collector and the emitter of the light receiving portion 19b decreases. As a result, the MOS-
Control pulse signal V G1 applied to the gate terminal of FET3
Becomes narrower, and the ON period of the MOS-FET 3 becomes shorter, so that the DC output voltage V O decreases. Conversely, when the load 15 is overloaded and the DC output voltage V O decreases, the output voltage of the error amplifier 18 decreases and the light output of the light emitting portion 19a of the photocoupler 19 decreases. Accordingly, the current flowing through the light receiving portion 19b of the photocoupler 19 decreases, and the voltage between the collector and the emitter of the light receiving portion 19b increases. As a result, the PWM modulation circuit 20
The pulse width of the control pulse signal V G1 applied to the gate terminal of the S-FET 3 becomes wider, and the ON period of the MOS-FET 3 becomes longer, so that the DC output voltage V O rises. By the above operation, the DC output voltage V O of the synchronous rectification type DC-DC converter shown in FIG. 3 is controlled to a constant value, and a constant voltage DC output is supplied to the load 15.

【0006】[0006]

【発明が解決しようとする課題】ところで、図3に示す
従来の同期整流型DC−DCコンバータでは、同期整流
用MOS-FET4に流れる電流に対応する電圧降下を
同期整流制御回路14内のコンパレータ12の反転入力
端子及び非反転入力端子にそれぞれ入力される電圧
1、V2の差として検出し、コンパレータ12からプル
アップ用抵抗13を介して出力される同期整流制御信号
G2により同期整流用MOS-FET4をオン・オフ制
御している。このため、コンパレータ12の入出力特性
が理想的な場合は特に問題ないが、実際に使用されるコ
ンパレータには応答遅れがあるため、同期整流用MOS
-FET4のゲート端子に付与する同期整流制御信号V
G2の立ち上がり及び立ち下がりにそれぞれ遅れ時間t1
−t0=Δt1、t3−t2=Δt2が生ずる。同期整流制
御信号VG2の立ち下がりに遅れ時間Δt2が生ずると、
2次側回路に流れる電流I0の極性が反転して2次側か
ら1次側に回生電流が流れるが、この場合はコンパレー
タ12の閾値電圧を低く調整することにより比較的容易
に解消できる。また、このときに同期整流用MOS-F
ET4に流れる電流値も0に極めて近いため、回生電流
による影響は少ない。しかしながら、同期整流制御信号
G2の立ち上がりに遅れ時間Δt1が生じると、オフ状
態にある同期整流用MOS-FET4のオン状態に切り
換わる時間が遅れ、同期整流方式の効果が最も顕著に表
れる2次側回路に流れる電流I0(図4(C))の下がり
勾配のピーク部分が無効となる。したがって、同期整流
制御回路14内のコンパレータ12の応答遅れにより、
同期整流用MOS-FET4のオン開始の時間が遅れて
無効電力を生じ、同期整流型DC−DCコンバータの効
率が低下する欠点があった。
In the conventional synchronous rectification type DC-DC converter shown in FIG. 3, the voltage drop corresponding to the current flowing through the synchronous rectification MOS-FET 4 is determined by the comparator 12 in the synchronous rectification control circuit 14. And a synchronous rectification control signal V G2 output from the comparator 12 via the pull-up resistor 13 to detect the difference between the voltages V 1 and V 2 respectively input to the inverting input terminal and the non-inverting input terminal. The ON / OFF control of the MOS-FET 4 is performed. For this reason, there is no particular problem when the input / output characteristics of the comparator 12 are ideal. However, since the comparator actually used has a response delay, the synchronous rectification MOS
-Synchronous rectification control signal V applied to the gate terminal of FET4
Delay time t 1 for the rise and fall of G2
-T 0 = Δt 1, t 3 -t 2 = Δt 2 occurs. When a delay time Δt 2 occurs at the fall of the synchronous rectification control signal V G2 ,
The regenerative current flows from the secondary side to the primary side by reversing the polarity of the current I 0 flowing through the secondary side circuit. In this case, it can be solved relatively easily by adjusting the threshold voltage of the comparator 12 low. At this time, the synchronous rectification MOS-F
Since the value of the current flowing through ET4 is also very close to 0, the effect of the regenerative current is small. However, if a delay time Δt 1 occurs at the rise of the synchronous rectification control signal V G2 , the time for switching the synchronous rectification MOS-FET 4 in the off state to the on state is delayed, and the effect of the synchronous rectification method is most remarkably exhibited. The peak portion of the falling slope of the current I 0 (FIG. 4C) flowing through the secondary circuit becomes invalid. Therefore, due to the response delay of the comparator 12 in the synchronous rectification control circuit 14,
There is a drawback that the on-start time of the synchronous rectification MOS-FET 4 is delayed to generate reactive power, and the efficiency of the synchronous rectification type DC-DC converter is reduced.

【0007】そこで、本発明は同期整流用スイッチング
素子を最適に制御して効率を向上できる同期整流型DC
−DCコンバータを提供することを目的とする。
Therefore, the present invention provides a synchronous rectification type DC which can improve efficiency by optimally controlling a switching element for synchronous rectification.
-To provide a DC converter.

【0008】[0008]

【課題を解決するための手段】本発明による同期整流型
DC−DCコンバータは、直流電源の両端に直列に接続
されたトランスの1次巻線及び主スイッチング素子と、
前記トランスの2次巻線と直列に接続された同期整流用
スイッチング素子と、前記2次巻線及び前記同期整流用
スイッチング素子の直列回路の両端に接続された平滑回
路とを備え、前記主スイッチング素子のオン・オフ動作
により前記同期整流用スイッチング素子に流れる電流の
電圧降下を検出しかつ該検出値に応じて前記同期整流用
スイッチング素子をオン・オフ制御すると共に、前記平
滑回路の出力電圧に応じて前記主スイッチング素子をオ
ン・オフ制御することにより、前記トランスの2次巻線
から前記平滑回路を介して負荷に定電圧の直流出力を供
給する。この同期整流型DC−DCコンバータでは、前
記トランスの2次巻線に発生する電圧を検出する電圧検
出手段と、該電圧検出手段の検出電圧により前記同期整
流用スイッチング素子をオフ状態からオン状態に切り換
えかつ前記同期整流用スイッチング素子に流れる電流の
電圧降下の検出値により前記同期整流用スイッチング素
子をオン状態からオフ状態に切り換える同期整流制御回
路とを設けている。主スイッチング素子のオン・オフ動
作によりトランスの2次巻線に発生する電圧が電圧検出
手段により検出され、電圧検出手段の検出電圧により同
期整流用スイッチング素子がオフ状態からオン状態とな
る。また、同期整流用スイッチング素子がオン状態のと
きに同期整流用スイッチング素子に流れる電流の電圧降
下の検出値により、同期整流用スイッチング素子がオン
状態からオフ状態となる。これにより、主スイッチング
素子のターンオフ又はターンオン時に同期整流用スイッ
チング素子を瞬時にオン状態にすることができるので、
同期整流用スイッチング素子のオン開始時間の遅れによ
り無効電力を生じない。したがって、同期整流用スイッ
チング素子を最適に制御して同期整流型DC−DCコン
バータの効率を向上することが可能となる。
A synchronous rectification type DC-DC converter according to the present invention comprises: a primary winding and a main switching element of a transformer connected in series to both ends of a DC power supply;
A switching element for synchronous rectification connected in series with a secondary winding of the transformer; and a smoothing circuit connected to both ends of a series circuit of the secondary winding and the switching element for synchronous rectification, A voltage drop of a current flowing through the synchronous rectification switching element is detected by on / off operation of the element, and the synchronous rectification switching element is turned on / off in accordance with the detected value, and the output voltage of the smoothing circuit is reduced. By controlling on / off of the main switching element accordingly, a DC output of a constant voltage is supplied from the secondary winding of the transformer to the load via the smoothing circuit. In this synchronous rectification type DC-DC converter, voltage detection means for detecting a voltage generated in the secondary winding of the transformer, and the synchronous rectification switching element is turned from an off state to an on state by a detection voltage of the voltage detection means. A synchronous rectification control circuit for switching and switching the synchronous rectification switching element from an on state to an off state based on a detected value of a voltage drop of a current flowing through the synchronous rectification switching element. The voltage generated in the secondary winding of the transformer by the on / off operation of the main switching element is detected by the voltage detection means, and the synchronous rectification switching element is turned from the off state to the on state by the detection voltage of the voltage detection means. Further, the synchronous rectification switching element is turned off from the on state by the detected value of the voltage drop of the current flowing through the synchronous rectification switching element when the synchronous rectification switching element is on. This allows the synchronous rectifying switching element to be instantaneously turned on when the main switching element is turned off or turned on.
No reactive power is generated due to a delay in the on-time of the switching element for synchronous rectification. Therefore, the efficiency of the synchronous rectification type DC-DC converter can be improved by optimally controlling the switching element for synchronous rectification.

【0009】本発明の実施形態では、前記同期整流用ス
イッチング素子及び前記電圧検出手段及び前記同期整流
制御回路は集積回路体に形成されかつ前記トランスの2
次巻線と前記平滑回路との間に接続される。したがっ
て、同期整流用スイッチング素子及び電圧検出手段及び
同期整流制御回路をハイブリッドIC(混成集積回路)
又はインテリジェントIC(インテリジェント集積回
路)等の集積回路体に形成して既存のDC−DCコンバ
ータのトランスの2次巻線と平滑回路との間に接続する
ことにより、容易に高効率の同期整流型DC−DCコン
バータを構成することが可能となる。
In an embodiment of the present invention, the switching element for synchronous rectification, the voltage detecting means, and the synchronous rectification control circuit are formed in an integrated circuit body, and are connected to the transformer.
It is connected between the next winding and the smoothing circuit. Therefore, a synchronous rectifying switching element, a voltage detecting means and a synchronous rectification control circuit are combined with a hybrid IC (hybrid integrated circuit)
Or by forming it on an integrated circuit such as an intelligent IC (intelligent integrated circuit) and connecting it between a secondary winding of a transformer of an existing DC-DC converter and a smoothing circuit, a highly efficient synchronous rectification type can be easily achieved. It is possible to configure a DC-DC converter.

【0010】[0010]

【発明の実施の形態】以下、本発明による同期整流型D
C−DCコンバータの一実施形態を図1及び図2に基づ
いて説明する。但し、図1では図3に示す箇所と同一の
部分には同一の符号を付し、その説明を省略する。本実
施形態の同期整流型DC−DCコンバータは、図1に示
すように、図5に示す同期整流型DC−DCコンバータ
において、同期整流用MOS-FET4のドレイン−ソ
ース端子間に電圧検出手段としての電圧検出用抵抗2
1、22を接続し、同期整流制御回路14内のコンパレ
ータ12の比較出力端子と同期整流用MOS-FET4
のゲート端子との間にNOTゲート23、ダイオード2
4、抵抗25、コンデンサ26、NORゲート27及び
ORゲート28から構成される制御信号形成回路29を
接続し、電圧検出用抵抗21、22の接続点を制御信号
形成回路29内のNORゲート27の一方の入力端子に
接続し、抵抗6、7の接続点の接続先をコンパレータ1
2の非反転入力端子に変更し、抵抗8、9の接続点の接
続先をコンパレータ12の反転入力端子に変更したもの
である。また、本実施形態における同期整流用MOS-
FET4、同期整流制御回路14、電圧検出用抵抗2
1、22及び制御信号形成回路29は、破線A、B、C
で包囲された部分を3端子とするハイブリッドIC又は
インテリジェントICとして形成されている。その他の
回路構成は、図3の同期整流型DC−DCコンバータと
略同一である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A synchronous rectification type D according to the present invention will be described below.
An embodiment of a C-DC converter will be described with reference to FIGS. However, in FIG. 1, the same portions as those shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. As shown in FIG. 1, the synchronous rectification type DC-DC converter of this embodiment is a synchronous rectification type DC-DC converter shown in FIG. Voltage detection resistor 2
1 and 22 and the comparison output terminal of the comparator 12 in the synchronous rectification control circuit 14 and the synchronous rectification MOS-FET 4
Between the NOT terminal 23 and the diode 2
4, a control signal forming circuit 29 composed of a resistor 25, a capacitor 26, a NOR gate 27 and an OR gate 28 is connected, and a connection point of the voltage detecting resistors 21 and 22 is connected to the NOR gate 27 in the control signal forming circuit 29. Connected to one input terminal, the connection point of the connection point of the resistors 6 and 7 is connected to the comparator 1
2 is changed to the non-inverting input terminal, and the connection point of the connection point of the resistors 8 and 9 is changed to the inverting input terminal of the comparator 12. Further, the synchronous rectification MOS-
FET4, synchronous rectification control circuit 14, voltage detection resistor 2
1, 22 and the control signal forming circuit 29 are indicated by broken lines A, B, C
It is formed as a hybrid IC or intelligent IC having three terminals in the portion surrounded by. The other circuit configuration is substantially the same as the synchronous rectification type DC-DC converter of FIG.

【0011】次に、図1に示す同期整流型DC−DCコ
ンバータの主回路の動作について説明する。定電圧制御
回路16内のPWM変調回路20から図2(B)に示す制
御パルス信号VG1が付与され、時刻t0においてMOS-
FET3がオン状態からオフ状態になると、MOS-F
ET3のドレイン−ソース間の電圧VDS1が図2(A)に
示すように直流電源1の直流入力電圧Eに等しくなる。
このとき、トランス2の2次巻線2bに逆起電力が発生
して同期整流用MOS-FET4の寄生ダイオード4aが
順バイアスされ、2次側回路に図2(C)に示す電流I0
が流れてその最大値I0PからVS/LS(VS:2次巻線
2bの電圧、LS:2次巻線2bのインダクタンス)の比
率で徐々に減少して行く。2次側回路に流れる電流I0
により、同期整流制御回路14内の抵抗6、7及び抵抗
8、9のそれぞれの接続点に図2(D)に示す電圧V1
2が発生し、これらの各電圧V1、V2は時刻t2におい
て同電位となる。一方、トランス2の2次巻線2bに発
生する電圧は、図2(E)に示す電圧検出用抵抗21、2
2の接続点の電圧V3として検出される。図2(D)に示
す各電圧V1、V2は、コンパレータ12の非反転入力端
子及び反転入力端子にそれぞれ入力され、比較出力端子
から図2(F)に示す時刻t0からΔt1=t1−t0だけ遅
れたパルス信号V4が出力される。コンパレータ12の
比較出力端子から出力されるパルス信号V4は、制御信
号形成回路29内のNOTゲート23により反転されて
図2(G)に示す反転パルス信号−V4となり、更にこの
反転パルス信号−V4はダイオード24、抵抗25及び
コンデンサ26により図2(H)に示すような立ち下がり
部分が緩やかな信号V5となる。図2(H)に示す信号V5
は図2(E)に示す電圧V3と共にNORゲート27に入
力され、NORゲート27から図2(I)に示す否定論理
和信号V6が出力される。NORゲート27から出力さ
れる否定論理和信号V6は図2(G)に示す反転パルス信
号−V4と共にORゲート28に入力され、ORゲート
28からそれらの論理和信号が出力される。ORゲート
28から出力される論理和信号は、同期整流制御信号V
G2として同期整流用MOS-FET4のゲート端子に付
与され、図2(J)に示すように時刻t0において高レベ
ルとなる。これにより、時刻t0において同期整流用M
OS-FET4がオン状態となり、トランス2の2次巻
線2bから同期整流用MOS-FET4及び平滑コンデン
サ5を介して負荷15に直流出力が供給される。
Next, the operation of the main circuit of the synchronous rectification type DC-DC converter shown in FIG. 1 will be described. Control pulse signal V G1 shown in FIG. 2 (B) is applied from the PWM modulation circuit 20 of the constant voltage control circuit 16, at time t 0 MOS-
When the FET 3 changes from the on state to the off state, the MOS-F
The drain-source voltage V DS1 of ET3 becomes equal to the DC input voltage E of the DC power supply 1 as shown in FIG.
At this time, a back electromotive force is generated in the secondary winding 2b of the transformer 2, and the parasitic diode 4a of the synchronous rectification MOS-FET 4 is forward-biased, and the current I 0 shown in FIG.
Flows from the maximum value I 0P and gradually decreases at a ratio of V S / L S (V S : voltage of the secondary winding 2b, L S : inductance of the secondary winding 2b). Current I 0 flowing in the secondary side circuit
As a result, the voltage V 1 shown in FIG. 2D is connected to each connection point of the resistors 6 and 7 and the resistors 8 and 9 in the synchronous rectification control circuit 14.
V 2 is generated, and these voltages V 1 and V 2 have the same potential at time t 2 . On the other hand, the voltage generated in the secondary winding 2b of the transformer 2 is the voltage detecting resistors 21 and 2 shown in FIG.
2 is detected as the voltage V 3 at the connection point. Figure 2 (D) each voltages V 1 shown in, V 2 is input to the non-inverting input terminal and the inverting input terminal of the comparator 12, Delta] t from the time t 0 of shown in FIG. 2 (F) from the comparison output terminal 1 = t 1 -t 0 delayed by pulse signal V 4 is output. The pulse signal V 4 output from the comparison output terminal of the comparator 12 is inverted by the NOT gate 23 in the control signal forming circuit 29 to become an inverted pulse signal −V 4 shown in FIG. −V 4 is a signal V 5 having a gentle falling portion as shown in FIG. 2H due to the diode 24, the resistor 25 and the capacitor 26. The signal V 5 shown in FIG.
Is input to the NOR gate 27 together with the voltages V 3 shown in FIG. 2 (E), NOR signal V 6 showing the NOR gate 27 in FIG. 2 (I) is output. The NOR signal V 6 output from the NOR gate 27 is input to the OR gate 28 together with the inverted pulse signal −V 4 shown in FIG. 2 (G), and the OR gate 28 outputs these OR signals. The OR signal output from the OR gate 28 is a synchronous rectification control signal V
Granted to the gate terminal of the synchronous rectification MOS-FET 4 as G2, a high level at time t 0 as shown in FIG. 2 (J). Thus, at time t 0 , the synchronous rectification M
The OS-FET 4 is turned on, and a DC output is supplied from the secondary winding 2 b of the transformer 2 to the load 15 via the synchronous rectification MOS-FET 4 and the smoothing capacitor 5.

【0012】時刻t3において、図2(C)に示すように
2次側回路に流れる電流I0が0になり、コンパレータ
12の非反転入力端子及び反転入力端子にそれぞれ入力
される電圧V1、V2が図2(D)に示すようになると、コ
ンパレータ12から出力されるパルス信号V4が図2
(F)に示すように低レベルから高レベルとなる。これと
同時に、電圧検出用抵抗21、22の接続点における電
圧V3が図2(E)に示すように低レベルから高レベルと
なる。このときの反転パルス信号−V4、NORゲート
27に入力される信号V5及びNORゲート27から出
力される否定論理和信号V6の電圧波形をそれぞれ図2
(G)、(H)及び(I)に示す。これにより、同期整流用M
OS-FET4のゲート端子に付与される同期整流制御
信号VG2が図2(J)に示すように高レベルから低レベル
となり、同期整流用MOS-FET4がオフ状態とな
る。このとき、同期整流用MOS-FET4のオン期間
中に充電された平滑コンデンサ5の電荷が負荷15に供
給される。また、MOS-FET3のドレイン−ソース
間の電圧VDS1が図2(A)に示すように直流入力電圧E
から減少して行き、時刻t4において図2(B)に示すよ
うにMOS-FET3のゲート端子に付与される制御パ
ルス信号VG1が低レベルから高レベルとなり、MOS-
FET3がオフ状態からオン状態となると、MOS-F
ET3のドレイン−ソース間の電圧VDS1が図2(A)に
示すように0Vとなる。なお、図1に示す同期整流型D
C−DCコンバータの定電圧制御動作は先述の図3に示
す場合と略同様であるので説明は省略する。
At time t 3 , the current I 0 flowing through the secondary circuit becomes 0 as shown in FIG. 2C, and the voltage V 1 input to the non-inverting input terminal and the inverting input terminal of the comparator 12 respectively. When V 2 is as shown in FIG. 2 (D), pulse signal V 4 output from the comparator 12 in FIG. 2
The level changes from a low level to a high level as shown in FIG. At the same time, the voltage V 3 at the connection point of the voltage detecting resistors 21 and 22 becomes a high level from the low level as shown in FIG. 2 (E). At this time, the inverted pulse signal −V 4 , the signal V 5 input to the NOR gate 27 and the voltage waveform of the NOR signal V 6 output from the NOR gate 27 are shown in FIG.
(G), (H) and (I) show. Thereby, M for synchronous rectification
The synchronous rectification control signal V G2 applied to the gate terminal of the OS-FET 4 changes from a high level to a low level as shown in FIG. 2J, and the synchronous rectification MOS-FET 4 is turned off. At this time, the charge of the smoothing capacitor 5 charged during the ON period of the synchronous rectification MOS-FET 4 is supplied to the load 15. Further, the voltage V DS1 between the drain and the source of the MOS-FET 3 becomes equal to the DC input voltage E as shown in FIG.
At time t 4 , the control pulse signal V G1 applied to the gate terminal of the MOS-FET 3 changes from a low level to a high level at time t 4 , as shown in FIG.
When the FET 3 changes from the off state to the on state, the MOS-F
The voltage V DS1 between the drain and the source of ET3 becomes 0 V as shown in FIG. The synchronous rectification type D shown in FIG.
The constant voltage control operation of the C-DC converter is substantially the same as the case shown in FIG.

【0013】図1に示す実施形態の同期整流型DC−D
Cコンバータでは、MOS-FET3がオン状態からオ
フ状態になるときにトランス2の2次巻線2bに発生す
る電圧を電圧検出用抵抗21、22の接続点に発生する
電圧V3として検出し、この検出信号の電圧レベルが切
り替わる時点(t0)で同期整流制御信号VG2を低レベ
ルから高レベルにすることにより、同期整流用MOS-
FET4をオフ状態からオン状態に切り換える。また、
同期整流用MOS-FET4に流れる電流の電圧降下を
同期整流制御回路14内のコンパレータ12の非反転入
力端子及び反転入力端子にそれぞれ入力される電圧
1、V2の差として検出し、これによりコンパレータ1
2から出力されるパルス信号(V4)の電圧レベルが切
り替わる時点(t3)で同期整流制御信号VG2を高レベ
ルから低レベルにすることにより、同期整流用MOS-
FET4をオン状態からオフ状態に切り換える。したが
って、MOS-FET3がオン状態からオフ状態になる
ときに同期整流用MOS-FET4を瞬時にオン状態に
することができるので、コンパレータ12の応答遅れに
より無効電力を生じることがなく、同期整流用MOS-
FET4を最適に制御して同期整流型DC−DCコンバ
ータの効率を向上することが可能となる。また、同期整
流用MOS-FET4、同期整流制御回路14、電圧検
出用抵抗21、22及び制御信号形成回路29を3端子
構成のハイブリッドIC又はインテリジェントICとし
て形成したので、既存のフライバック型DC−DCコン
バータのトランスの2次巻線と平滑コンデンサとの間に
組み込むことにより、容易に高効率の同期整流型DC−
DCコンバータを構成することが可能となる。
The synchronous rectification type DC-D of the embodiment shown in FIG.
The C converter, detects the voltage V 3 for generating a voltage generated in the secondary winding 2b of the transformer 2 when MOS-FET 3 is turned off from the on state to the connection point of the voltage detecting resistors 21 and 22, By changing the synchronous rectification control signal VG2 from a low level to a high level at the time when the voltage level of the detection signal switches (t 0 ), the synchronous rectification MOS-
The FET 4 is switched from the off state to the on state. Also,
The voltage drop of the current flowing through the synchronous rectification MOS-FET 4 is detected as the difference between the voltages V 1 and V 2 input to the non-inverting input terminal and the inverting input terminal of the comparator 12 in the synchronous rectification control circuit 14, respectively. Comparator 1
By synchronous rectification control signal V G2 from the high level when the voltage level of the pulse signal output from the 2 (V 4) is switched (t 3) to the low level, the synchronous rectification MOS-
The FET 4 is switched from the ON state to the OFF state. Therefore, the synchronous rectification MOS-FET 4 can be instantaneously turned on when the MOS-FET 3 changes from the on state to the off state. MOS-
By controlling the FET 4 optimally, it is possible to improve the efficiency of the synchronous rectification type DC-DC converter. Further, since the synchronous rectification MOS-FET 4, the synchronous rectification control circuit 14, the voltage detection resistors 21 and 22, and the control signal forming circuit 29 are formed as a three-terminal hybrid IC or intelligent IC, the existing flyback type DC-FET is used. By incorporating it between the secondary winding of the transformer of the DC converter and the smoothing capacitor, a highly efficient synchronous rectification type DC-
It is possible to configure a DC converter.

【0014】本発明の実施態様は前記の実施形態に限定
されず、種々の変更が可能である。例えば、上記の実施
形態では同期整流型DC−DCコンバータの直流出力電
圧V Oの定電圧制御方式として、制御パルス信号の周波
数を一定にしてパルス幅を制御するPWM(パルス幅変
調)方式を採用したが、制御パルス信号のオン期間を一
定にしてオフ期間を制御するPFM(パルス周波数変
調)方式を採用することも可能である。この場合、上記
の実施形態におけるPWM変調回路20の代わりに、フ
ォトカプラ19の発光部19aの光出力が増加して受光
部19bに流れる電流が増加し、受光部19bのコレクタ
−エミッタ間の電圧が低下するときに制御パルス信号出
力のオフ期間を広げる動作をし、フォトカプラ19の発
光部19aの光出力が減少して受光部19bに流れる電流
が減少し、受光部19bのコレクタ−エミッタ間の電圧
が上昇するときに制御パルス信号出力のオフ期間を狭め
る動作をするPFM変調回路を使用すればよい。また、
上記の実施形態ではフライバック型の同期整流型DC−
DCコンバータに本発明を適用した形態を示したが、フ
ォワード型の同期整流型DC−DCコンバータにも本発
明を適用することが可能である。更に、上記の実施形態
では同期整流用MOS-FET4、同期整流制御回路1
4、電圧検出用抵抗21、22及び制御信号形成回路2
9を3端子構成のハイブリッドIC又はインテリジェン
トICとして形成した形態を示したが、同期整流用MO
S-FET4、同期整流制御回路14、電圧検出用抵抗
21、22及び制御信号形成回路29はディスクリート
回路としてそれぞれ別個に形成することも可能であるこ
とは云うまでもない。
The embodiment of the present invention is limited to the above embodiment.
However, various changes are possible. For example, the implementation above
In the embodiment, the DC output voltage of the synchronous rectification type DC-DC converter is
Pressure V OOf the control pulse signal
PWM (pulse width change) that controls the pulse width while keeping the number constant
Control), but the on-period of the control pulse signal
PFM (pulse frequency change
It is also possible to adopt a tonality) method. In this case,
Instead of the PWM modulation circuit 20 in the embodiment,
The light output of the light emitting portion 19a of the photocoupler 19 increases and receives light.
The current flowing through the portion 19b increases, and the collector of the light receiving portion 19b increases.
-A control pulse signal is output when the voltage between
Operate to extend the off period of the force, and
The current flowing through the light receiving portion 19b due to the decrease in the optical output of the light portion 19a
Decreases, and the voltage between the collector and the emitter of the light receiving portion 19b decreases.
The control pulse signal output off period when
What is necessary is just to use the PFM modulation circuit which operates. Also,
In the above embodiment, the flyback type synchronous rectification type DC-
An embodiment in which the present invention is applied to a DC converter has been described.
High-speed synchronous rectification type DC-DC converter
Lighting can be applied. Further, the above embodiment
Then, MOS-FET4 for synchronous rectification, synchronous rectification control circuit 1
4. Voltage detecting resistors 21 and 22 and control signal forming circuit 2
9 is a three-terminal hybrid IC or intelligence
Although the form formed as the IC was shown, the MO for synchronous rectification was
S-FET4, synchronous rectification control circuit 14, resistor for voltage detection
21 and 22 and the control signal forming circuit 29 are discrete
It is also possible to form each circuit separately.
Needless to say.

【0015】[0015]

【発明の効果】本発明によれば、同期整流用スイッチン
グ素子を最適に制御することができるため、同期整流回
路の性能を最大限に引き出して同期整流型DC−DCコ
ンバータの効率を著しく向上することが可能となる。ま
た、同期整流回路を1個のハイブリッドIC又はインテ
リジェントICとして形成した場合は、容易に既存のD
C−DCコンバータに組み込むことができるので、その
汎用性は極めて高く、容易に高効率の同期整流型DC−
DCコンバータを構成することが可能となる。
According to the present invention, since the switching element for synchronous rectification can be optimally controlled, the performance of the synchronous rectifier circuit is maximized and the efficiency of the synchronous rectifier DC-DC converter is remarkably improved. It becomes possible. Also, when the synchronous rectifier circuit is formed as one hybrid IC or intelligent IC, the existing D
Since it can be incorporated in a C-DC converter, its versatility is extremely high and it is easy to use a highly efficient synchronous rectification type DC-DC converter.
It is possible to configure a DC converter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による同期整流型DC−DCコンバー
タの一実施形態を示す電気回路図
FIG. 1 is an electric circuit diagram showing an embodiment of a synchronous rectification type DC-DC converter according to the present invention.

【図2】 図1の回路の各部の電圧及び電流を示す波形
FIG. 2 is a waveform chart showing voltages and currents of respective parts of the circuit of FIG.

【図3】 従来の同期整流型DC−DCコンバータを示
す電気回路図
FIG. 3 is an electric circuit diagram showing a conventional synchronous rectification type DC-DC converter.

【図4】 図3の回路の各部の電圧及び電流を示す波形
FIG. 4 is a waveform chart showing the voltage and current of each part of the circuit of FIG.

【符号の説明】 1...直流電源、2...トランス、2a...1次
巻線、2b...2次巻線、3...MOS-FET(主
スイッチング素子)、4...同期整流用MOS-FE
T(同期整流用スイッチング素子)、4a...寄生ダ
イオード、5...平滑コンデンサ、6,7,8,
9...抵抗、10,11...ダイオード、1
2...コンパレータ、13...プルアップ用抵抗、
14...同期整流制御回路、15...負荷、1
6...定電圧制御回路、17...基準電源、1
8...誤差増幅器、19...フォトカプラ、19
a...発光部、19b...受光部、20...PWM
変調回路、21,22...電圧検出用抵抗(電圧検出
手段)、23...NOTゲート、24...ダイオー
ド、25...抵抗、26...コンデンサ、2
7...NORゲート、28...ORゲート、2
9...制御信号形成回路
[Explanation of Codes] . . DC power supply, 2. . . Transformer, 2a. . . Primary winding, 2b. . . 2. secondary winding; . . 3. MOS-FET (main switching element); . . MOS-FE for synchronous rectification
T (switching element for synchronous rectification), 4a. . . 4. parasitic diode; . . Smoothing capacitors, 6, 7, 8,
9. . . Resistance, 10,11. . . Diode, 1
2. . . Comparator, 13. . . Pull-up resistor,
14. . . 14. Synchronous rectification control circuit, . . Load, 1
6. . . Constant voltage control circuit, 17. . . Reference power supply, 1
8. . . Error amplifier, 19. . . Photocoupler, 19
a. . . Light emitting section, 19b. . . Light receiving section, 20. . . PWM
Modulation circuits, 21, 22,. . . 23. voltage detecting resistor (voltage detecting means); . . NOT gate, 24. . . Diode, 25. . . Resistance, 26. . . Capacitor, 2
7. . . NOR gate, 28. . . OR gate, 2
9. . . Control signal forming circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直流電源の両端に直列に接続されたトラ
ンスの1次巻線及び主スイッチング素子と、前記トラン
スの2次巻線と直列に接続された同期整流用スイッチン
グ素子と、前記2次巻線及び前記同期整流用スイッチン
グ素子の直列回路の両端に接続された平滑回路とを備
え、前記主スイッチング素子のオン・オフ動作により前
記同期整流用スイッチング素子に流れる電流の電圧降下
を検出しかつ該検出値に応じて前記同期整流用スイッチ
ング素子をオン・オフ制御すると共に、前記平滑回路の
出力電圧に応じて前記主スイッチング素子をオン・オフ
制御することにより、前記トランスの2次巻線から前記
平滑回路を介して負荷に定電圧の直流出力を供給する同
期整流型DC−DCコンバータにおいて、 前記トランスの2次巻線に発生する電圧を検出する電圧
検出手段と、該電圧検出手段の検出電圧により前記同期
整流用スイッチング素子をオフ状態からオン状態に切り
換えかつ前記同期整流用スイッチング素子に流れる電流
の電圧降下の検出値により前記同期整流用スイッチング
素子をオン状態からオフ状態に切り換える同期整流制御
回路とを設けたことを特徴とする同期整流型DC−DC
コンバータ。
A primary winding and a main switching element of a transformer connected in series to both ends of a DC power supply; a synchronous rectification switching element connected in series with a secondary winding of the transformer; A winding and a smoothing circuit connected to both ends of a series circuit of the synchronous rectifying switching element, detecting a voltage drop of a current flowing through the synchronous rectifying switching element by an on / off operation of the main switching element; By controlling on / off of the synchronous rectifying switching element according to the detected value and controlling on / off of the main switching element according to the output voltage of the smoothing circuit, the secondary winding of the transformer In a synchronous rectification type DC-DC converter for supplying a constant-voltage DC output to a load via the smoothing circuit, a voltage generated in a secondary winding of the transformer is generated. Voltage detecting means for detecting a voltage, and the synchronous rectification switching element is switched from an off state to an on state by a detection voltage of the voltage detection means, and the synchronous rectification is performed by a detection value of a voltage drop of a current flowing through the synchronous rectification switching element. A synchronous rectification control circuit for switching a rectifying switching element from an on-state to an off-state.
converter.
【請求項2】 前記同期整流用スイッチング素子及び前
記電圧検出手段及び前記同期整流制御回路は集積回路体
に形成されかつ前記トランスの2次巻線と前記平滑回路
との間に接続される「請求項1」に記載の同期整流型D
C−DCコンバータ。
2. The synchronous rectification switching element, the voltage detection means, and the synchronous rectification control circuit are formed in an integrated circuit and connected between a secondary winding of the transformer and the smoothing circuit. Synchronous rectification type D according to item 1)
C-DC converter.
JP12766298A 1998-05-11 1998-05-11 Synchronous rectification type DC-DC converter Expired - Fee Related JP4210803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12766298A JP4210803B2 (en) 1998-05-11 1998-05-11 Synchronous rectification type DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12766298A JP4210803B2 (en) 1998-05-11 1998-05-11 Synchronous rectification type DC-DC converter

Publications (2)

Publication Number Publication Date
JPH11332226A true JPH11332226A (en) 1999-11-30
JP4210803B2 JP4210803B2 (en) 2009-01-21

Family

ID=14965630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12766298A Expired - Fee Related JP4210803B2 (en) 1998-05-11 1998-05-11 Synchronous rectification type DC-DC converter

Country Status (1)

Country Link
JP (1) JP4210803B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059644A1 (en) * 2000-12-01 2002-06-13 Siemens Ag Circuit arrangement for DC / DC converter with low output voltage
WO2005034324A1 (en) * 2003-09-30 2005-04-14 Sanken Electric Co., Ltd. Switching power supply apparatus
KR100597415B1 (en) 2004-12-16 2006-07-05 삼성전자주식회사 Synchronous buck DC/DC converter to perform the switching operation by adjusting variable resistor
JP2007300799A (en) * 2002-09-18 2007-11-15 Toyota Motor Corp Voltage converter, voltage converting method, and computer readable recording medium, on which program for making computer perform voltage conversion control is recorded
JP2008167506A (en) * 2006-12-26 2008-07-17 Toyota Motor Corp Dc-dc converter and its control method
JP2009273329A (en) * 2008-05-12 2009-11-19 Mitsumi Electric Co Ltd Switching power supply unit
DE10328782B4 (en) * 2002-06-27 2010-06-02 Fuji Electric Systems Co., Ltd. Control circuit for a synchronous rectification MOSFET
CN102104338A (en) * 2009-12-21 2011-06-22 佳能株式会社 Power supply device and image forming apparatus
CN103368423A (en) * 2013-06-24 2013-10-23 冠捷显示科技(厦门)有限公司 Flyback synchronous rectifying circuit controlled by operational amplifier or comparator and flyback power supply thereof
JP2015133886A (en) * 2014-01-14 2015-07-23 群光電能科技股▲ふん▼有限公司 Power conversion device
JP2017529050A (en) * 2014-09-19 2017-09-28 アルファ アンド オメガ セミコンダクター (ケイマン) リミテッドAlpha And Omega Semiconductor (Cayman) Ltd. Constant on-time (COT) control in isolated converters

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059644A1 (en) * 2000-12-01 2002-06-13 Siemens Ag Circuit arrangement for DC / DC converter with low output voltage
DE10328782B4 (en) * 2002-06-27 2010-06-02 Fuji Electric Systems Co., Ltd. Control circuit for a synchronous rectification MOSFET
JP2007300799A (en) * 2002-09-18 2007-11-15 Toyota Motor Corp Voltage converter, voltage converting method, and computer readable recording medium, on which program for making computer perform voltage conversion control is recorded
WO2005034324A1 (en) * 2003-09-30 2005-04-14 Sanken Electric Co., Ltd. Switching power supply apparatus
US7120036B2 (en) 2003-09-30 2006-10-10 Sanken Electric Co., Ltd. Switching-mode power supply having a synchronous rectifier
USRE44180E1 (en) 2004-12-16 2013-04-30 Samsung Electronics Co., Ltd. Synchronous buck DC/DC converter to perform an improved switching operation by adjusting variable resistor
KR100597415B1 (en) 2004-12-16 2006-07-05 삼성전자주식회사 Synchronous buck DC/DC converter to perform the switching operation by adjusting variable resistor
JP2008167506A (en) * 2006-12-26 2008-07-17 Toyota Motor Corp Dc-dc converter and its control method
JP2009273329A (en) * 2008-05-12 2009-11-19 Mitsumi Electric Co Ltd Switching power supply unit
CN102104338A (en) * 2009-12-21 2011-06-22 佳能株式会社 Power supply device and image forming apparatus
CN103368423A (en) * 2013-06-24 2013-10-23 冠捷显示科技(厦门)有限公司 Flyback synchronous rectifying circuit controlled by operational amplifier or comparator and flyback power supply thereof
JP2015133886A (en) * 2014-01-14 2015-07-23 群光電能科技股▲ふん▼有限公司 Power conversion device
JP2017529050A (en) * 2014-09-19 2017-09-28 アルファ アンド オメガ セミコンダクター (ケイマン) リミテッドAlpha And Omega Semiconductor (Cayman) Ltd. Constant on-time (COT) control in isolated converters

Also Published As

Publication number Publication date
JP4210803B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
US6831847B2 (en) Synchronous rectifier drive circuit and power supply including same
US7486055B2 (en) DC-DC converter having a diode module with a first series circuit and a second series with a flywheel diode
JP4070200B2 (en) Power converter
US6570268B1 (en) Synchronous rectifier drive circuit and power supply including same
US20030026115A1 (en) Switching-type DC-DC converter
US6294903B1 (en) Switching power supply
JP2005525069A (en) Power converter
JPH09140126A (en) Method for operating adaptive switch circuit, adaptive output circuit, control circuit and switching voltage regulator
US20020131282A1 (en) Switching power supply
WO2001052395A1 (en) Method and apparatus for driving switching elements of current-controlled power conversion device
JPH11332226A (en) Synchronous commutation dc-dc converter
JP3341825B2 (en) Synchronous rectification type DC-DC converter
US7400519B2 (en) Switching power supply
US6798269B2 (en) Bootstrap circuit in DC/DC static converters
JP2003299354A (en) Synchronous rectifier circuit for flyback converter
WO2003043166A1 (en) Leading edge modulator for post regulation of multiple output voltage power supplies
JP2002374672A (en) Switching power source apparatus
JP4210804B2 (en) Synchronous rectification type DC-DC converter
US6040987A (en) DC-DC converter unit
US6163467A (en) Switching power supply for generating DC voltage by synchronous rectification
JP4534354B2 (en) DC-DC converter
US11637489B2 (en) Isolated DC/DC converter and AC/DC converter
JP2882472B2 (en) Power supply circuit using power insulated gate type FET
JPH10136646A (en) Synchronous rectifier
JP2001037214A (en) Power source circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees