JPH11127543A - Protective circuit device for secondary battery - Google Patents

Protective circuit device for secondary battery

Info

Publication number
JPH11127543A
JPH11127543A JP9291105A JP29110597A JPH11127543A JP H11127543 A JPH11127543 A JP H11127543A JP 9291105 A JP9291105 A JP 9291105A JP 29110597 A JP29110597 A JP 29110597A JP H11127543 A JPH11127543 A JP H11127543A
Authority
JP
Japan
Prior art keywords
voltage
circuit
secondary battery
discharge
overcurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9291105A
Other languages
Japanese (ja)
Inventor
Yutaka Murano
豊 村野
Koichi Hikita
浩一 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
Toshiba Development and Engineering Corp
AT Battery KK
Original Assignee
A&T Battery Corp
AT Battery KK
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Battery Corp, AT Battery KK, Toshiba Electronic Engineering Co Ltd filed Critical A&T Battery Corp
Priority to JP9291105A priority Critical patent/JPH11127543A/en
Publication of JPH11127543A publication Critical patent/JPH11127543A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a protective circuit device which protects a secondary battery from overcorrect, when the battery discharges by detecting the overcorrect without causing the overheating of an FET for controlling the discharge or changing a reference voltage for detecting the overcurrent. SOLUTION: A protective circuit device is provided with a voltage-adding circuit 20 which outputs a discharge current detecting voltage by adding an offset voltage to the voltage between the drain and source of an FET 12, which relies upon the discharge current of a secondary battery 4 when the battery 4 discharges to a load and protects the battery 4 from an overcurrent by comparing the discharge current detecting voltage with a reference voltage Vref 3 for detecting an overcurrent by means of a voltage comparator circuit 15 for detecting overcurrent, and when the discharge current detecting voltage becomes higher than the reference voltage Vref 3, turning off the FET 12 by means of an FET drive circuit 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の保護回
路装置に係り、特に過電流保護機能を有する保護回路装
置に関する。
The present invention relates to a protection circuit device for a secondary battery, and more particularly to a protection circuit device having an overcurrent protection function.

【0002】[0002]

【従来の技術】一般に、二次電池を使用した電池パック
では、二次電池を過充電、過放電および過電流から保護
する保護回路装置が内蔵されている。この保護回路装置
は、具体的には二次電池の充放電路、すなわち二次電池
と充電器や負荷が接続される外部接続端子との間に、充
電制御用FETと放電制御用FETを直列に挿入し、充
電時に電池電圧が充電禁止電圧に達したとき、充電制御
用FETをオフ状態にして充電を停止し、放電時には電
池電圧が放電禁止電圧に達するか、または過電流が流れ
たとき、放電制御用FETをオフ状態にして放電を停止
させるように構成される。
2. Description of the Related Art Generally, a battery pack using a secondary battery has a built-in protection circuit device for protecting the secondary battery from overcharge, overdischarge and overcurrent. Specifically, this protection circuit device includes a charge control FET and a discharge control FET connected in series between a charge / discharge path of a secondary battery, that is, an external connection terminal to which a charger and a load are connected. When the battery voltage reaches the charging prohibition voltage during charging, the charge control FET is turned off to stop charging, and when discharging, the battery voltage reaches the discharging prohibition voltage or when an overcurrent flows. The discharge control FET is turned off to stop the discharge.

【0003】このような二次電池の保護回路装置におい
て、放電時の過電流の検出法としては、充放電路に放電
電流検出用抵抗を挿入する方法がまず考えられる。しか
し、この方法では放電電流検出用抵抗での電圧降下によ
り、二次電池から負荷に供給できる電圧が低下してしま
い、電池が蓄えているエネルギーを十分に引き出すこと
ができない。
In such a secondary battery protection circuit device, as a method of detecting an overcurrent at the time of discharging, a method of inserting a discharging current detecting resistor in a charging / discharging path can be considered first. However, in this method, the voltage that can be supplied from the secondary battery to the load decreases due to the voltage drop in the discharge current detection resistor, and the energy stored in the battery cannot be sufficiently extracted.

【0004】そこで、放電時の放電制御用FETのオン
抵抗による電圧降下、つまりドレイン・ソース間の電圧
降下が放電電流に依存して変化することを利用して、こ
の電圧降下が過電流検出のために設定された所定の基準
電圧に達したとき、過電流が流れたものと判断して放電
制御用FETをオフ状態にし、放電を停止させるように
した保護回路装置が知られている。
Therefore, by utilizing the voltage drop due to the on-resistance of the discharge control FET at the time of discharge, that is, the voltage drop between the drain and source changes depending on the discharge current, this voltage drop is used for detecting the overcurrent. For this reason, there is known a protection circuit device in which when a predetermined reference voltage set for this purpose is reached, it is determined that an overcurrent has flown, and the discharge control FET is turned off to stop discharging.

【0005】ところで、過電流検出のための基準電圧
は、一般に充電制御用FETおよび放電制御用FETを
制御する制御ICの内部で設定されている場合が多い。
このように過電流検出用の基準電圧が予め設定された固
定値であると、二次電池の放電能力をより効率的に引き
出すべくオン抵抗の低いFETを放電制御用FETとし
て使用した場合、放電制御用FETにより大きな電流が
流れなければドレイン・ソース間電圧が基準電圧に達せ
ず、過電流として検出できなくなる。この結果、過電流
が流れたとき、放電制御用FETのドレイン・ソース間
電圧降下が過電流検出用の基準電圧に達しないため過電
流を検出できず、充電制御用FETおよび放電制御用F
ETが過熱し、場合によってはFETの動作保証温度を
越えてしまい、ついにはFETを破壊に至らしめるおそ
れがある。
The reference voltage for detecting an overcurrent is generally set in a control IC for controlling a charge control FET and a discharge control FET in many cases.
When the reference voltage for overcurrent detection is a fixed value set in advance as described above, when a low on-resistance FET is used as a discharge control FET in order to more efficiently extract the discharge capacity of the secondary battery, If a large current does not flow through the control FET, the drain-source voltage does not reach the reference voltage and cannot be detected as an overcurrent. As a result, when an overcurrent flows, the overcurrent cannot be detected because the drain-source voltage drop of the discharge control FET does not reach the reference voltage for overcurrent detection, and the charge control FET and the discharge control F
The ET may overheat, possibly exceeding the guaranteed operating temperature of the FET, and eventually may cause the FET to be destroyed.

【0006】この問題は放電電流検出用抵抗を用いる
か、あるいは放電制御用FETの電圧降下と放電電流検
出用抵抗の電圧降下を併用して過電流検出を行う場合で
も同様であり、二次電池の放電能力をより効率的に引き
出すために抵抗値の低い放電電流検出用抵抗を用いる
と、より大きな電流が流れなければ過電流として検出で
きなくなってしまう。従って過電流を感度よく検出でき
ないため、充電制御用FETおよび放電制御用FETが
過熱し、最悪の場合にはFETが破壊してしまう可能性
がある。
This problem is the same even when the overcurrent detection is performed by using the discharge current detection resistor or by using both the voltage drop of the discharge control FET and the voltage drop of the discharge current detection resistor. If a discharge current detecting resistor having a low resistance value is used in order to more efficiently extract the discharge capability of the device, an overcurrent cannot be detected unless a larger current flows. Accordingly, since the overcurrent cannot be detected with high sensitivity, the charge control FET and the discharge control FET may overheat, and in the worst case, the FET may be destroyed.

【0007】一方、制御IC内部で設定されている過電
流検出用の基準電圧を放電制御用FETのオン抵抗に合
わせて変更することは、ICの設計変更のために多大な
費用と開発期間を要し、好ましくない。さらに、外付け
抵抗によって過電流検出用の基準電圧を変更する方式を
採用することも、基準電圧調整用の端子を有する特殊な
制御ICを開発しなければならず、同様に多くの設計変
更費用と開発期間を要するという問題がある。
On the other hand, changing the reference voltage for overcurrent detection set in the control IC in accordance with the on-resistance of the discharge control FET requires a great deal of cost and development time due to the design change of the IC. Necessary and not preferred. Furthermore, adopting a method of changing the reference voltage for overcurrent detection by an external resistor also requires the development of a special control IC having a terminal for adjusting the reference voltage, and similarly a large amount of design change cost. There is a problem that requires a development period.

【0008】[0008]

【発明が解決しようとする課題】上述したように、放電
制御用FETのオン抵抗による電圧降下や放電電流検出
用抵抗の電圧降下あるいはその両方を利用して過電流の
検出を行い、過電流検出電圧が過電流検出用の基準電圧
に達したとき、放電制御用FETをオフ状態にして放電
を停止させて過電流保護を行うようにした従来の二次電
池の保護回路装置では、基準電圧が制御ICの内部で設
定されているため、二次電池の放電能力を十分に引き出
すべくオン抵抗の低い放電制御用FETや、抵抗値の低
い放電電流検出用抵抗を用いた場合、より大きな電流が
流れなければ過電流として検出できなくなり、過電流が
発生したとき充電制御用FETおよび放電制御用FET
が過熱して動作保証温度を越えたり、FETを破壊させ
るおそれがあった。
As described above, the overcurrent is detected by utilizing the voltage drop due to the on-resistance of the discharge control FET and / or the voltage drop of the discharge current detection resistor. When the voltage reaches the reference voltage for overcurrent detection, the discharge control FET is turned off to stop discharging and perform overcurrent protection. Since it is set inside the control IC, if a discharge control FET with a low on-resistance or a discharge current detection resistor with a low resistance value is used to sufficiently draw out the discharge capability of the secondary battery, a larger current will flow. If it does not flow, it cannot be detected as overcurrent, and when overcurrent occurs, the charge control FET and discharge control FET
May overheat and exceed the operation guarantee temperature, or may destroy the FET.

【0009】また、この問題に対処するために制御IC
内部で設定されている基準電圧を変更したり、外付け抵
抗によって基準電圧を変更する方式を採用することは、
ICの設計変更や基準電圧調整用の端子を有する特殊な
制御ICの開発を行わなければならないという問題があ
った。
In order to address this problem, a control IC
Changing the reference voltage set internally or changing the reference voltage with an external resistor
There is a problem that it is necessary to change the design of the IC and to develop a special control IC having a terminal for adjusting the reference voltage.

【0010】本発明は、このような従来の問題点を解消
するためになされたもので、放電制御用スイッチ素子に
過大な電流を流すことなく、またIC内で設定された過
電流検出用の基準電圧を変更することなしに過電流を確
実に検出して過電流保護を行うことができる二次電池の
保護回路装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and does not allow an excessive current to flow through a discharge control switch element, and detects an overcurrent for an overcurrent set in an IC. An object of the present invention is to provide a protection circuit device for a secondary battery that can reliably detect an overcurrent without changing a reference voltage and perform overcurrent protection.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係る二次電池の保護回路装置は、二次電池
と負荷との間に挿入されたスイッチ素子と、二次電池の
負荷への放電電流に依存した電圧に所定のオフセット電
圧を加算する電圧加算回路と、この電圧加算回路の出力
電圧を所定の基準電圧と比較する過電流検出用電圧比較
回路と、この過電流検出用電圧比較回路の出力に従っ
て、電圧加算回路の出力電圧が基準電圧以上になったと
きスイッチ素子をオフ状態にするスイッチ駆動回路とを
有することを特徴とする。
In order to solve the above-mentioned problems, a protection circuit device for a secondary battery according to the present invention comprises a switch element inserted between a secondary battery and a load; A voltage adding circuit for adding a predetermined offset voltage to a voltage depending on a discharge current to a load, a voltage comparing circuit for detecting an overcurrent for comparing an output voltage of the voltage adding circuit with a predetermined reference voltage, A switch driving circuit for turning off the switching element when the output voltage of the voltage adding circuit becomes equal to or higher than the reference voltage in accordance with the output of the use voltage comparison circuit.

【0012】また、より好ましい態様によると本発明に
係る二次電池の保護回路装置は、二次電池と負荷との間
に挿入されたスイッチ素子と、二次電池の負荷への放電
時の電圧を放電禁止電圧と比較する過放電検出用電圧比
較回路と、二次電池の負荷への放電電流に依存した電圧
に所定のオフセット電圧を加算する電圧加算回路と、こ
の電圧加算回路の出力電圧を所定の基準電圧と比較する
過電流検出用電圧比較回路と、過放電検出用電圧比較回
路および過電流検出用電圧比較回路の出力に従って、二
次電池の負荷への放電時の電圧が放電禁止電圧以下にな
ったとき、または電圧加算回路の出力電圧が基準電圧以
上になったときスイッチ素子をオフ状態にするスイッチ
駆動回路と、二次電池の負荷への放電時の電圧が放電禁
止電圧以下となってスイッチ駆動回路がオフ状態になっ
た後、スイッチ駆動回路の電源電圧を二次電池の電圧か
ら接地電位に切り替えるパワーセーブ制御回路とを有
し、かつ電圧加算回路はスイッチ駆動回路の出力電圧を
分圧してオフセット電圧を生成することを特徴とする。
According to a more preferred aspect, the protection circuit device for a secondary battery according to the present invention includes a switch element inserted between the secondary battery and the load, and a voltage at the time of discharging the secondary battery to the load. Over-discharge detection voltage comparison circuit that compares the voltage with the discharge prohibition voltage, a voltage addition circuit that adds a predetermined offset voltage to a voltage that depends on the discharge current to the load of the secondary battery, and an output voltage of the voltage addition circuit. According to the outputs of the overcurrent detection voltage comparison circuit for comparing with a predetermined reference voltage, the overdischarge detection voltage comparison circuit and the overcurrent detection voltage comparison circuit, the voltage at the time of discharging to the load of the secondary battery is a discharge inhibition voltage. A switch drive circuit that turns off the switch element when the output voltage of the voltage addition circuit becomes equal to or less than the reference voltage, and a voltage at the time of discharging the load of the secondary battery to the discharge inhibition voltage or less. Become A power save control circuit for switching the power supply voltage of the switch drive circuit from the voltage of the secondary battery to the ground potential after the switch drive circuit is turned off, and the voltage adding circuit divides the output voltage of the switch drive circuit. Pressure to generate an offset voltage.

【0013】ここで、二次電池の負荷への放電電流に依
存した電圧は、例えば放電電流によるスイッチ素子の電
圧降下に依存した電圧であり、さらに具体的にはスイッ
チ素子がFET(電界効果トランジスタ)の場合、FE
Tのオン抵抗による電圧降下に依存したドレイン電圧が
これに相当する。
Here, the voltage that depends on the discharge current to the load of the secondary battery is, for example, a voltage that depends on the voltage drop of the switch element due to the discharge current. More specifically, the switch element is an FET (field effect transistor). ), FE
The drain voltage depending on the voltage drop due to the ON resistance of T corresponds to this.

【0014】このように本発明の保護回路装置では、放
電制御用スイッチ素子の電圧降下または放電電流検出用
抵抗の電圧降下、あるいはこれらの両方に依存した電圧
にオフセット電圧を加算し、このオフセット電圧加算後
の電圧を放電電流検出電圧として、これを過電流検出用
電圧比較回路で過電流検出用の基準電圧と比較すること
により、過電流の検出を行っている。
As described above, in the protection circuit device of the present invention, the offset voltage is added to the voltage drop of the discharge control switch element, the voltage drop of the discharge current detection resistor, or a voltage dependent on both, and the offset voltage is added. The voltage after the addition is used as a discharge current detection voltage, and the overcurrent is detected by comparing the voltage with a reference voltage for overcurrent detection by a voltage comparison circuit for overcurrent detection.

【0015】従って、負荷への二次電池の放電能力を十
分に引き出すために放電制御用スイッチ素子に抵抗値の
低い素子を使用したり、あるいは放電電流検出用抵抗に
低抵抗を使用した場合においても、放電時に放電制御用
スイッチ素子に必要以上に多くの電流が流れなくとも放
電電流検出電圧を適切な値にすることができ、過電流検
出用の基準電圧が制御IC内部で予め設定されていて変
更ができない場合でも、過電流の検出を確実に行って過
電流保護機能を実現することが可能となる。
Therefore, in order to sufficiently draw out the discharging ability of the secondary battery to a load, when a low resistance element is used for the discharge control switch element or a low resistance is used for the discharge current detection resistance. In addition, the discharge current detection voltage can be set to an appropriate value even when an unnecessarily large current flows through the discharge control switch element at the time of discharge, and the reference voltage for overcurrent detection is preset in the control IC. Even if the change cannot be made, the overcurrent can be reliably detected and the overcurrent protection function can be realized.

【0016】また、二次電池の過放電時には過放電検出
用電圧比較回路の出力によってパワーセーブ制御回路が
動作し、スイッチ駆動回路の電源電圧が接地電位に低下
するが、この時スイッチ駆動回路の出力電圧も接地電位
に低下させることによって、スイッチ駆動回路のみなら
ず、このスイッチ駆動回路の出力電圧を分圧してオフセ
ット電圧を生成する電圧加算回路での消費電力も低減さ
れる。
When the secondary battery is over-discharged, the output of the over-discharge detection voltage comparison circuit operates the power save control circuit, and the power supply voltage of the switch drive circuit drops to the ground potential. By reducing the output voltage to the ground potential, power consumption is reduced not only in the switch driving circuit but also in a voltage adding circuit that divides the output voltage of the switch driving circuit to generate an offset voltage.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を説明する。図1は、本発明の一実施形態に係
る二次電池の保護回路装置の構成を示す図である。図1
において、保護回路装置1は電池接続端子2a,2bと
外部接続端子3a,3bを有し、電池接続端子2a,2
b間に二次電池4が接続され、外部接続端子3a,3b
間に外部装置5が接続される。外部装置5としては、二
次電池4の充電時には充電器が接続され、放電時には負
荷、つまり二次電池4を電源として使用する各種の電子
機器がそれぞれ接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a protection circuit device for a secondary battery according to one embodiment of the present invention. FIG.
, The protection circuit device 1 has battery connection terminals 2a, 2b and external connection terminals 3a, 3b, and the battery connection terminals 2a, 2b.
b, a secondary battery 4 is connected between the external connection terminals 3a and 3b.
The external device 5 is connected therebetween. As the external device 5, a charger is connected when the secondary battery 4 is charged, and a load, that is, various electronic devices that use the secondary battery 4 as a power source, is connected when discharging.

【0018】保護回路装置1は、次のように構成されて
いる。まず、二次電池4の充放電路の一部である外部接
続端子3bと電池接続端子2bとの間に、充電制御用F
ET11と放電制御用FET12が直列に接続されてい
る。この例では、充電制御用FET11と放電制御用F
ET12にNチャネルFETを用いている。D11,D
12はそれぞれ充電制御用FET11、放電制御用FE
T12のドレイン・ソース間の寄生ダイオードである。
ここで、充電制御用FET11および放電制御用FET
12は、寄生ダイオードD11は二次電池4の放電電流
の方向が順方向となり、寄生ダイオードD12は二次電
池4の充電電流の方向が順方向となるように接続され
る。
The protection circuit device 1 is configured as follows. First, a charge control F is provided between the external connection terminal 3b, which is a part of the charge / discharge path of the secondary battery 4, and the battery connection terminal 2b.
The ET 11 and the discharge control FET 12 are connected in series. In this example, the charge control FET 11 and the discharge control F
An N-channel FET is used for ET12. D11, D
Reference numeral 12 denotes a charge control FET 11 and a discharge control FE, respectively.
This is a parasitic diode between the drain and source of T12.
Here, the charge control FET 11 and the discharge control FET
The parasitic diode D11 is connected such that the direction of the discharge current of the secondary battery 4 is forward, and the parasitic diode D12 is connected so that the direction of the charge current of the secondary battery 4 is forward.

【0019】充電制御用FET11は、過充電検出用電
圧比較回路13の出力に従ってFET駆動回路16によ
って駆動される。放電制御用FET12は、過放電検出
用電圧比較回路14の出力と過電流検出用電圧比較回路
15の出力に従ってFET駆動回路17によって駆動さ
れる。
The charge control FET 11 is driven by an FET drive circuit 16 according to the output of the overcharge detection voltage comparison circuit 13. The discharge control FET 12 is driven by the FET drive circuit 17 according to the output of the over-discharge detection voltage comparison circuit 14 and the output of the over-current detection voltage comparison circuit 15.

【0020】過充電検出用電圧比較回路13は、二次電
池4の端子電圧(以下、電池電圧という)VB と充電禁
止電圧に相当する第1の基準電圧Vref1を比較し、電池
電圧VB が基準電圧Vref1以上になると、出力が低レベ
ルから高レベルに反転する。FET駆動回路16は、過
充電検出用電圧比較回路13の出力が高レベルになると
充電制御用FET11をオフ状態にする。
The overcharge detection voltage comparison circuit 13 compares a terminal voltage (hereinafter referred to as a battery voltage) VB of the secondary battery 4 with a first reference voltage Vref1 corresponding to a charging prohibition voltage, and the battery voltage VB is used as a reference. When the voltage becomes equal to or higher than the voltage Vref1, the output is inverted from a low level to a high level. When the output of the overcharge detection voltage comparison circuit 13 becomes high, the FET drive circuit 16 turns off the charge control FET 11.

【0021】一方、過放電検出用電圧比較回路14は、
電池電圧VB と放電禁止電圧に相当する第2の基準電圧
Vref2を比較し、電池電圧VB が基準電圧Vref2以下に
なると出力が低レベルから高レベルに反転する。過電流
検出用電圧比較回路15は、後述する電圧加算回路20
の出力電圧である放電電流検出電圧が第3の基準電圧V
ref 以上になると出力が低レベルから高レベルに反転す
る。そして、FET駆動回路17は、過放電検出用電圧
比較回路14または過電流検出用電圧比較回路15の出
力が高レベルになると放電制御用FET12をオフ状態
にする。
On the other hand, the over-discharge detection voltage comparison circuit 14
The battery voltage VB is compared with the second reference voltage Vref2 corresponding to the discharge prohibition voltage, and when the battery voltage VB falls below the reference voltage Vref2, the output is inverted from a low level to a high level. The overcurrent detection voltage comparison circuit 15 includes a voltage addition circuit 20 described later.
The discharge current detection voltage which is the output voltage of the third reference voltage V
When ref or more, the output is inverted from low level to high level. Then, when the output of the over-discharge detection voltage comparison circuit 14 or the over-current detection voltage comparison circuit 15 becomes high level, the FET drive circuit 17 turns off the discharge control FET 12.

【0022】二次電池4の放電時の過電流検出は、放電
制御用FET12のオン抵抗によるドレイン・ソース間
の電圧降下を利用して行われる。すなわち、放電制御用
FET12のドレイン・ソース間の電圧降下に依存して
変化するドレイン電圧(この場合はドレイン・ソース間
電圧に等しい)が電圧加算回路20によりオフセット電
圧が加算されることにより電圧変換され、この電圧加算
回路20の出力電圧が過電流検出電圧として過電流検出
用電圧比較回路15の反転入力端子に入力される構成と
なっている。
The detection of the overcurrent at the time of discharging the secondary battery 4 is performed by utilizing the voltage drop between the drain and the source due to the ON resistance of the discharge control FET 12. That is, a drain voltage that changes depending on the voltage drop between the drain and source of the discharge control FET 12 (in this case, it is equal to the voltage between the drain and source) is added to the offset voltage by the voltage adding circuit 20 to perform voltage conversion. The output voltage of the voltage addition circuit 20 is input to the inverting input terminal of the overcurrent detection voltage comparison circuit 15 as an overcurrent detection voltage.

【0023】電圧加算回路20は、放電制御用FET1
2のドレイン・ソース間電圧に所定のオフセット電圧を
加算した電圧を出力する回路であり、充電制御用FET
11および放電制御用FET12のドレインとFET駆
動回路17の出力端子との間に接続された分圧抵抗2
1,22と、これらの分圧抵抗21,22の接続点(分
圧点)と過電流検出用電圧比較回路15の反転入力端子
との間に接続された保護用抵抗23からなる。すなわ
ち、電圧加算回路20ではFET駆動回路17の出力電
圧を分圧抵抗21,22により分圧した電圧がオフセッ
ト電圧として放電制御用FET12のドレイン・ソース
間電圧に加算され、このオフセット電圧加算後の電圧が
過電流検出電圧として保護用抵抗23を介して過電流検
出用電圧比較回路15の反転入力端子に入力される。
The voltage adding circuit 20 includes a discharge control FET 1
2 is a circuit for outputting a voltage obtained by adding a predetermined offset voltage to the drain-source voltage of the FET 2 and a charge control FET
11 and a voltage dividing resistor 2 connected between the drain of the discharge control FET 12 and the output terminal of the FET drive circuit 17.
1 and 22 and a protection resistor 23 connected between a connection point (voltage division point) of the voltage dividing resistors 21 and 22 and an inverting input terminal of the overcurrent detection voltage comparison circuit 15. That is, in the voltage adding circuit 20, the voltage obtained by dividing the output voltage of the FET drive circuit 17 by the voltage dividing resistors 21 and 22 is added as an offset voltage to the drain-source voltage of the discharge control FET 12, and the voltage after this offset voltage addition is performed. The voltage is input to the inverting input terminal of the overcurrent detection voltage comparison circuit 15 via the protection resistor 23 as the overcurrent detection voltage.

【0024】また、本実施形態ではパワーセーブ制御回
路18が設けられている。このパワーセーブ制御回路1
8は、過放電保護が働いているとき二次電池11をFE
T駆動回路17の電源から切り離し、FET駆動回路1
7の電源を接地電位とすることによって、二次電池11
の電力を節約するための制御を行う回路である。
In this embodiment, a power save control circuit 18 is provided. This power save control circuit 1
8 indicates that the secondary battery 11 is FE
The FET drive circuit 1 is disconnected from the power supply of the T drive circuit 17.
7 is set to the ground potential, the secondary battery 11
This is a circuit that performs control for saving power.

【0025】さらに、図1の保護回路装置1のうち例え
ばFET11,12と電圧加算回路20を除く部分は、
制御IC内に構成される。従って、第1〜第3の各基準
電圧Vref1,Vref2,Vref31 は制御IC内部で設定さ
れ、基本的に電圧値の変更はできないものとする。
Further, in the protection circuit device 1 of FIG. 1, for example, the parts other than the FETs 11 and 12 and the voltage adding circuit 20 are as follows.
It is configured in the control IC. Therefore, the first to third reference voltages Vref1, Vref2, and Vref31 are set inside the control IC, and the voltage values cannot be basically changed.

【0026】次に、本実施形態の保護回路装置の動作を
説明する。 (充電時)二次電池11の充電時には、外部接続端子3
a,3b間に外部装置5として充電器が接続される。こ
の場合、充電制御用FET11および放電制御用FET
12は通常オン状態であり、「充電器の+側出力端子→
端子3a→端子2a→二次電池4→端子2b→放電制御
用FET12→充電制御用FET11→充電器の−側出
力端子」の経路で充電電流が流れる。
Next, the operation of the protection circuit device according to this embodiment will be described. (When charging) When charging the secondary battery 11, the external connection terminal 3
A charger is connected as an external device 5 between a and 3b. In this case, the charge control FET 11 and the discharge control FET
Reference numeral 12 indicates a normal ON state, and indicates “+ side output terminal of charger →
A charging current flows through a path of terminal 3a → terminal 2a → secondary battery 4 → terminal 2b → discharge control FET 12 → charge control FET 11 → negative output terminal of the charger.

【0027】この充電中に電池電圧VB が充電禁止電圧
である第1の基準電圧Vref1に達すると、過充電検出用
電圧比較回路13の出力が高レベルとなるため、FET
駆動回路16によって充電制御用FET11がオフ状態
となり、充電は停止される。このようにして、二次電池
11の過充電保護が行われる。
If the battery voltage VB reaches the first reference voltage Vref1, which is a charging prohibition voltage, during this charging, the output of the overcharge detection voltage comparison circuit 13 goes high,
The drive circuit 16 turns off the charge control FET 11 and stops charging. Thus, the overcharge protection of the secondary battery 11 is performed.

【0028】(放電時)二次電池12の放電時には、外
部接続端子3a,3b間に外部装置5として負荷が接続
される。この場合、充電制御用FET11および放電制
御用FET12は通常オン状態であり、「二次電池4の
+側電極→端子2a→端子3a→負荷→端子3b→充電
制御用FET11→放電制御用FET12→二次電池4
の−側電極」の経路で放電電流が流れる。
(During discharge) When the secondary battery 12 is discharged, a load is connected as the external device 5 between the external connection terminals 3a and 3b. In this case, the charge control FET 11 and the discharge control FET 12 are normally in the ON state, and “+ side electrode of the secondary battery 4 → terminal 2 a → terminal 3 a → load → terminal 3 b → charge control FET 11 → discharge control FET 12 → Rechargeable battery 4
The discharge current flows through the path of “− side electrode”.

【0029】この放電中に電池電圧VB が放電禁止電圧
である第2の基準電圧Vref2に達すると、過放電検出用
電圧比較回路14の出力が高レベルとなるため、FET
駆動回路17によって放電制御用FET12がオフ状態
となり、放電は停止される。このようにして、二次電池
11の過放電保護が行われる。
When the battery voltage VB reaches the second reference voltage Vref2, which is a discharge prohibition voltage, during this discharge, the output of the overdischarge detection voltage comparison circuit 14 goes high,
The drive control circuit 17 turns off the discharge control FET 12, and the discharge is stopped. In this way, the overdischarge protection of the secondary battery 11 is performed.

【0030】(過電流発生時)上記の放電時に何らかの
原因、例えば外部接続端子3a,3b間のショートなど
によって二次電池11に過電流が流れると、放電制御用
FET12のオン抵抗によって生じるドレイン・ソース
間電圧が高くなる。このFET12のドレイン・ソース
間電圧に電圧加算回路20によってオフセット電圧が加
算され、これが放電電流検出電圧として過電流検出用電
圧比較回路15に入力される。
(When Overcurrent Occurs) When an overcurrent flows through the secondary battery 11 due to any cause during the above-described discharge, for example, a short circuit between the external connection terminals 3a and 3b, the drain current generated by the ON resistance of the discharge control FET 12 The source-to-source voltage increases. An offset voltage is added to the voltage between the drain and the source of the FET 12 by the voltage adding circuit 20, and this is input to the overcurrent detection voltage comparison circuit 15 as a discharge current detection voltage.

【0031】図2は、電圧加算回路20の動作を説明す
るための図である。同図に示されるように、電圧加算回
路20における抵抗21,22の値をR1,R2、放電
制御用FET12のドレイン・ソース間電圧をVa、F
ET駆動回路17の出力電圧をVbとすると、電圧加算
回路20の出力電圧Vcは、 Vc=Va+{R1/(R1+R2)}・Vb で与えられる。すなわち、電圧加算回路20からは放電
制御用FET12のドレイン・ソース間電圧Vaに{R
1/(R1+R2)}・Vbなるオフセット電圧を加算
した電圧Vcが放電電流検出電圧として出力される。な
お、抵抗21,22の抵抗値R1,R2の関係はR1<
<R2であり、具体的には例えばR1は数10kΩ、R
2は数MΩに選ばれる。
FIG. 2 is a diagram for explaining the operation of the voltage adding circuit 20. As shown in the figure, the values of the resistors 21 and 22 in the voltage addition circuit 20 are R1 and R2, and the drain-source voltage of the discharge control FET 12 is Va and F
Assuming that the output voltage of the ET driving circuit 17 is Vb, the output voltage Vc of the voltage adding circuit 20 is given by Vc = Va + {R1 / (R1 + R2)} · Vb. That is, from the voltage adding circuit 20, the drain-source voltage Va of the discharge control FET 12 is set to {R
A voltage Vc obtained by adding an offset voltage of 1 / (R1 + R2)} · Vb is output as a discharge current detection voltage. Note that the relationship between the resistance values R1 and R2 of the resistors 21 and 22 is R1 <
<R2, specifically, for example, R1 is several tens kΩ, R
2 is chosen to be a few MΩ.

【0032】過電流検出用電圧比較回路15は、この放
電電流検出電圧Vcが過電流検出用基準電圧である第3
の基準電圧Vref3に達すると、二次電池4に過電流が流
れたものと判断して、その出力が高レベルに反転する。
この過電流検出用電圧比較回路15の出力によって、F
ET駆動回路17を介して放電制御用FET12がオフ
状態となり、二次電池4の過電流保護が行われる。
The overcurrent detection voltage comparison circuit 15 determines that the discharge current detection voltage Vc is the third overcurrent detection reference voltage.
When the reference voltage Vref3 reaches the reference voltage Vref3, it is determined that an overcurrent has flowed through the secondary battery 4, and the output is inverted to a high level.
By the output of the overcurrent detection voltage comparison circuit 15, F
The discharge control FET 12 is turned off via the ET drive circuit 17, and overcurrent protection of the secondary battery 4 is performed.

【0033】このように本実施形態の保護回路装置で
は、放電制御用FET12のオン抵抗の電圧降下による
ドレイン・ソース間電圧を検出して過電流検出を行う際
に、このドレイン・ソース間電圧に電圧加算回路20で
オフセット電圧を加算し、この電圧加算回路20の出力
電圧を放電電流検出電圧として、これを過電流検出用電
圧比較回路14で過電流検出用の基準電圧Vref3と比較
している。
As described above, in the protection circuit device of the present embodiment, when the overcurrent detection is performed by detecting the drain-source voltage due to the voltage drop of the on-resistance of the discharge control FET 12, this drain-source voltage is The offset voltage is added by the voltage addition circuit 20, and the output voltage of the voltage addition circuit 20 is used as the discharge current detection voltage, and this is compared with the reference voltage Vref3 for overcurrent detection by the overcurrent detection voltage comparison circuit 14. .

【0034】従って、放電時に放電制御用FET12に
必要以上に多くの電流を流すことなく放電電流検出電圧
を十分に大きくできるため、基準電圧Vref3が制御IC
内部で予め設定されていて変更ができない場合でも、過
電流の検出を確実かつ容易に行うことができる。
Therefore, the discharge current detection voltage can be made sufficiently large without causing an unnecessarily large current to flow through the discharge control FET 12 at the time of discharge.
Even if it cannot be changed because it is set in advance internally, overcurrent can be detected reliably and easily.

【0035】すなわち、前述したように負荷への二次電
池4の放電能力を十分に引き出すためには、放電制御用
FET12にオン抵抗の低いFETを使用する必要があ
る。ここで、従来のように放電制御FET12のオン抵
抗の電圧降下によるドレイン・ソース間電圧をそのまま
放電電流検出電圧とすると、FET12に流れる電流が
より大きくならなければ過電流として検出できなかっ
た。
That is, as described above, in order to sufficiently extract the discharging ability of the secondary battery 4 to the load, it is necessary to use an FET having a low on-resistance as the discharging control FET 12. Here, if the drain-source voltage due to the voltage drop of the on-resistance of the discharge control FET 12 is used as the discharge current detection voltage as in the related art, it cannot be detected as an overcurrent unless the current flowing through the FET 12 becomes larger.

【0036】これに対し、本実施形態ではFET12の
ドレイン電圧にオフセット電圧を加算した電圧を放電電
流検出電圧とするため、オフセット電圧を適当に選ぶこ
とにより、FET12のオン抵抗が低くとも、FET1
2により大きな電流が流れることなく、放電電流検出電
圧が十分に大きくなり、過電流の検出を確実に行うこと
が可能となる。
On the other hand, in this embodiment, since the voltage obtained by adding the offset voltage to the drain voltage of the FET 12 is used as the discharge current detection voltage, the offset voltage is appropriately selected.
2, the discharge current detection voltage becomes sufficiently large without a large current flowing, and the overcurrent can be reliably detected.

【0037】図3は、本実施形態の効果を説明するため
の二次電池4の放電電流Idと放電電流検出電圧Vcお
よびFETの接合温度の関係を示している。従来技術の
場合、すなわちオフセット電圧を加算しない場合は、破
線で示すように放電電流Idが6Aになったとき放電電
流検出電圧Vcが過電流検出用の基準電圧Vref3に達
し、この時FETの接合温度が破壊限界の150℃に達
してしまっているのに対し、本実施形態のようにオフセ
ット電圧を加算した場合は、実線で示すように放電電流
Idが5.3Aになったとき放電電流検出電圧Vcが基
準電圧Vref3に達し、FETの接合温度が150℃未満
で過電流検出が行われることが分かる。
FIG. 3 shows the relationship between the discharge current Id of the secondary battery 4, the discharge current detection voltage Vc, and the junction temperature of the FET for explaining the effect of the present embodiment. In the case of the prior art, that is, when the offset voltage is not added, the discharge current detection voltage Vc reaches the reference voltage Vref3 for overcurrent detection when the discharge current Id reaches 6 A as shown by the broken line, and at this time, the junction of the FETs In contrast to the case where the temperature has reached the breakdown limit of 150 ° C., when the offset voltage is added as in this embodiment, when the discharge current Id reaches 5.3 A as shown by the solid line, the discharge current is detected. It can be seen that the voltage Vc reaches the reference voltage Vref3 and overcurrent detection is performed when the junction temperature of the FET is lower than 150 ° C.

【0038】ところで、二次電池4の過放電時には、過
放電検出用電圧比較回路14の出力によってパワーセー
ブ制御回路18が働き、FET駆動回路17の電源電圧
が電池電圧から接地電位へと低下し、FET駆動回路1
7の出力電圧も接地電位に低下することによって、FE
T駆動回路17の消費電力が低減され、二次電池4の電
力が節約される。
When the secondary battery 4 is overdischarged, the power save control circuit 18 operates by the output of the overdischarge detection voltage comparison circuit 14, and the power supply voltage of the FET drive circuit 17 drops from the battery voltage to the ground potential. , FET drive circuit 1
7 also drops to the ground potential,
The power consumption of the T drive circuit 17 is reduced, and the power of the secondary battery 4 is saved.

【0039】このようにパワーセーブ制御回路18が働
くと、FET駆動回路17の出力電圧を入力としてオフ
セット電圧を生成する電圧加算回路20での消費電力も
低減されるため、電圧加算回路20を設けたことによる
消費電力の増大の問題は少ない。この場合、電圧加算回
路20で生成されるオフセット電圧は零となるが、過放
電時には過電流検出を行う必要はないため、何ら問題は
ない。
When the power save control circuit 18 operates as described above, the power consumption of the voltage addition circuit 20 that generates the offset voltage by using the output voltage of the FET drive circuit 17 as input is reduced. Thus, there is little problem of an increase in power consumption. In this case, the offset voltage generated by the voltage adding circuit 20 becomes zero, but there is no problem because it is not necessary to perform overcurrent detection during overdischarge.

【0040】なお、上記実施形態では放電制御用FET
のオン抵抗による電圧降下を利用して過電流検出を行っ
たが、放電電流検出用抵抗による電圧降下を利用して過
電流検出を行ってもよいし、放電制御用FETのオン抵
抗と放電電流検出用抵抗の両者による電圧降下を利用し
て過電流検出を行う場合にも、これらの電圧降下に依存
した電圧にオフセット電圧を加算して過電流検出電圧と
することにより、上記実施形態と同様の効果を得ること
ができる。
In the above embodiment, the discharge control FET is used.
The overcurrent detection is performed using the voltage drop due to the on-resistance of the FET. However, the overcurrent detection may be performed using the voltage drop due to the discharge current detecting resistor. Also in the case where overcurrent detection is performed using the voltage drop due to both of the detection resistors, the same as in the above embodiment, by adding an offset voltage to a voltage dependent on these voltage drops to obtain an overcurrent detection voltage. The effect of can be obtained.

【0041】また、上記実施形態では過充電保護と過放
電保護および過電流保護の機能を有する保護回路装置に
ついて述べたが、過放電保護と過電流保護の機能のみを
有する保護回路装置にも本発明は有効である。
In the above embodiment, the protection circuit device having the functions of overcharge protection, overdischarge protection and overcurrent protection has been described. However, the protection circuit device having only the functions of overdischarge protection and overcurrent protection is also applicable to the present invention. The invention is valid.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば放
電制御用スイッチ素子または放電電流検出用抵抗の電圧
降下に依存した電圧にオフセット電圧を加算し、このオ
フセット電圧加算後の電圧を放電電流検出電圧として過
電流検出用電圧比較回路で過電流検出用の基準電圧と比
較することで過電流の検出を行うことにより、二次電池
の放電能力を十分に引き出すために放電制御用スイッチ
素子に抵抗値の低い素子を使用したり、放電電流検出用
抵抗に低抵抗を使用した場合でも、放電時に放電制御用
スイッチ素子に必要以上に多くの電流を流すことなく放
電電流検出電圧を十分に大きくでき、過電流検出用の基
準電圧が制御IC内部で予め設定されていて変更ができ
ない場合でも、過電流の検出を確実に行って過電流保護
機能を実現することが可能となる。
As described above, according to the present invention, the offset voltage is added to the voltage depending on the voltage drop of the discharge control switch element or the discharge current detecting resistor, and the voltage after the addition of the offset voltage is discharged. The overcurrent detection voltage comparator circuit compares the current as the overcurrent detection reference voltage with the overcurrent detection reference voltage to detect the overcurrent, thereby fully discharging the rechargeable battery. Even if a low-resistance element is used for the resistor or a low-resistance resistor is used for the discharge current detection resistor, the discharge current detection voltage can be sufficiently increased without flowing more current than necessary to the discharge control switch element during discharging. Even if the reference voltage for overcurrent detection is preset in the control IC and cannot be changed, the overcurrent can be reliably detected to implement the overcurrent protection function. It is possible.

【0043】さらに、二次電池の過放電時に過放電検出
用電圧比較回路の出力によってパワーセーブ制御回路を
動作させスイッチ駆動回路の電源電圧(出力電圧)を接
地電位に低下させるようにすれば、スイッチ駆動回路と
電圧加算回路での消費電力を低減させることができ、電
池寿命をより長くすることが可能となる。
Further, when the secondary battery is overdischarged, the power save control circuit is operated by the output of the overdischarge detection voltage comparison circuit to lower the power supply voltage (output voltage) of the switch drive circuit to the ground potential. The power consumption of the switch driving circuit and the voltage adding circuit can be reduced, and the battery life can be prolonged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る二次電池の保護回路
装置の構成を示す図
FIG. 1 is a diagram showing a configuration of a protection circuit device for a secondary battery according to an embodiment of the present invention.

【図2】図1における電圧加算回路の動作を説明するた
めの図
FIG. 2 is a diagram for explaining the operation of the voltage adding circuit in FIG. 1;

【図3】同実施形態における二次電池の放電電流と過放
電電流の関係を従来の保護回路装置と比較して示す特性
FIG. 3 is a characteristic diagram showing a relationship between a discharge current and an over-discharge current of the secondary battery in the same embodiment as compared with a conventional protection circuit device.

【符号の説明】[Explanation of symbols]

1…保護回路装置 2a,2b…電池接続端子 3a,3b…外部接続端子 4…二次電池 5…外部装置(充電器または負荷) 11…充電制御用FET 12…放電制御用FET 13…過充電検出用電圧比較回路 14…過放電検出用電圧比較回路 15…過電流検出用電圧比較回路 16…充電制御用FETの駆動回路 17…放電制御用FETの駆動回路 18…パワーセーブ制御回路 20…電圧加算回路 21,22…分圧抵抗 23…保護用抵抗 DESCRIPTION OF SYMBOLS 1 ... Protection circuit device 2a, 2b ... Battery connection terminal 3a, 3b ... External connection terminal 4 ... Secondary battery 5 ... External device (charger or load) 11 ... Charge control FET 12 ... Discharge control FET 13 ... Overcharge Detection voltage comparison circuit 14 ... Over discharge detection voltage comparison circuit 15 ... Over current detection voltage comparison circuit 16 ... Charge control FET drive circuit 17 ... Discharge control FET drive circuit 18 ... Power save control circuit 20 ... Voltage Adder circuits 21, 22 ... voltage dividing resistors 23 ... protective resistors

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】二次電池と負荷との間に挿入されたスイッ
チ素子と、 前記二次電池の前記負荷への放電電流に依存した電圧に
所定のオフセット電圧を加算する電圧加算回路と、 この電圧加算回路の出力電圧を所定の基準電圧と比較す
る過電流検出用電圧比較回路と、 前記過電流検出用電圧比較回路の出力に従って、前記電
圧加算回路の出力電圧が前記基準電圧以上になったとき
前記スイッチ素子をオフ状態にするスイッチ駆動回路と
を有することを特徴とする二次電池の保護回路装置。
A switching element inserted between a secondary battery and a load; a voltage adding circuit for adding a predetermined offset voltage to a voltage dependent on a discharge current of the secondary battery to the load; An overcurrent detection voltage comparison circuit that compares an output voltage of the voltage addition circuit with a predetermined reference voltage, and an output voltage of the voltage addition circuit is equal to or higher than the reference voltage according to an output of the overcurrent detection voltage comparison circuit. And a switch driving circuit for turning off the switching element.
【請求項2】二次電池と負荷との間に挿入されたスイッ
チ素子と、 前記二次電池の前記負荷への放電時の電圧を放電禁止電
圧と比較する過放電検出用電圧比較回路と、 前記二次電池の前記負荷への放電電流に依存した電圧に
所定のオフセット電圧を加算する電圧加算回路と、 この電圧加算回路の出力電圧を所定の基準電圧と比較す
る過電流検出用電圧比較回路と、 前記過放電検出用電圧比較回路および前記過電流検出用
電圧比較回路の出力に従って、前記二次電池の前記負荷
への放電時の電圧が放電禁止電圧以下になったとき、ま
たは前記電圧加算回路の出力電圧が前記基準電圧以上に
なったとき前記スイッチ素子をオフ状態にするスイッチ
駆動回路と、 前記二次電池の前記負荷への放電時の電圧が放電禁止電
圧以下となって前記スイッチ駆動回路がオフ状態になっ
た後、前記スイッチ駆動回路の電源電圧を前記二次電池
の電圧から接地電位に切り替えるパワーセーブ制御回路
とを有し、 前記電圧加算回路は、前記スイッチ駆動回路の出力電圧
を分圧して前記オフセット電圧を生成することを特徴と
する二次電池の保護回路装置。
2. A switch element inserted between a secondary battery and a load; an overdischarge detection voltage comparison circuit for comparing a voltage of the secondary battery to the load with a discharge inhibition voltage; A voltage adding circuit for adding a predetermined offset voltage to a voltage dependent on a discharge current of the secondary battery to the load, and a voltage comparing circuit for overcurrent detection for comparing an output voltage of the voltage adding circuit with a predetermined reference voltage According to the output of the over-discharge detection voltage comparison circuit and the over-current detection voltage comparison circuit, when the voltage at the time of discharging the secondary battery to the load becomes equal to or less than a discharge inhibition voltage, or the voltage addition. A switch drive circuit for turning off the switch element when an output voltage of the circuit is equal to or higher than the reference voltage; and a switch when the voltage of the secondary battery discharged to the load is equal to or lower than a discharge inhibition voltage. A power save control circuit for switching a power supply voltage of the switch drive circuit from a voltage of the secondary battery to a ground potential after the drive circuit is turned off, wherein the voltage adding circuit includes an output of the switch drive circuit. A protection circuit device for a secondary battery, wherein the offset voltage is generated by dividing a voltage.
【請求項3】前記電圧加算回路は、前記放電電流による
前記スイッチ素子の電圧降下に依存した電圧に前記オフ
セット電圧を加算することを特徴とする請求項1または
2記載の二次電池の保護回路装置。
3. The protection circuit for a secondary battery according to claim 1, wherein the voltage addition circuit adds the offset voltage to a voltage dependent on a voltage drop of the switch element due to the discharge current. apparatus.
【請求項4】前記スイッチ素子は電界効果トランジスタ
であり、前記電圧加算回路は該電界効果トランジスタの
オン抵抗による電圧降下に依存した電圧に前記オフセッ
ト電圧を加算することを特徴とする請求項1〜3のいず
れか1項記載の二次電池の保護回路装置。
4. The device according to claim 1, wherein said switch element is a field effect transistor, and said voltage adding circuit adds said offset voltage to a voltage dependent on a voltage drop due to an on-resistance of said field effect transistor. 4. The protection circuit device for a secondary battery according to claim 3.
JP9291105A 1997-10-23 1997-10-23 Protective circuit device for secondary battery Pending JPH11127543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9291105A JPH11127543A (en) 1997-10-23 1997-10-23 Protective circuit device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9291105A JPH11127543A (en) 1997-10-23 1997-10-23 Protective circuit device for secondary battery

Publications (1)

Publication Number Publication Date
JPH11127543A true JPH11127543A (en) 1999-05-11

Family

ID=17764525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9291105A Pending JPH11127543A (en) 1997-10-23 1997-10-23 Protective circuit device for secondary battery

Country Status (1)

Country Link
JP (1) JPH11127543A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166108A (en) * 1998-11-20 2000-06-16 At Battery:Kk Protective circuit device for secondary battery
JP2002325360A (en) * 2001-04-24 2002-11-08 Seiko Instruments Inc Circuit for monitoring battery state and battery device
JP2005287141A (en) * 2004-03-29 2005-10-13 Nec Saitama Ltd Overcurrent protecting circuit of battery
KR100886041B1 (en) * 2001-02-20 2009-02-26 세이코 인스트루 가부시키가이샤 Charge and discharge controller
JP2010124640A (en) * 2008-11-21 2010-06-03 Sony Corp Integrated circuit and battery pack using the same
US9312723B2 (en) 2012-03-02 2016-04-12 Mitsumi Electric Co., Ltd. Secondary-battery monitoring device and battery pack
CN107123971A (en) * 2016-02-24 2017-09-01 株式会社电装 Load drive device
CN114552538A (en) * 2022-03-15 2022-05-27 苏州赛芯电子科技股份有限公司 Battery protection system with load turn-off function and lithium battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166108A (en) * 1998-11-20 2000-06-16 At Battery:Kk Protective circuit device for secondary battery
KR100886041B1 (en) * 2001-02-20 2009-02-26 세이코 인스트루 가부시키가이샤 Charge and discharge controller
JP2002325360A (en) * 2001-04-24 2002-11-08 Seiko Instruments Inc Circuit for monitoring battery state and battery device
JP4555502B2 (en) * 2001-04-24 2010-10-06 セイコーインスツル株式会社 Battery state monitoring circuit and battery device
JP2005287141A (en) * 2004-03-29 2005-10-13 Nec Saitama Ltd Overcurrent protecting circuit of battery
JP2010124640A (en) * 2008-11-21 2010-06-03 Sony Corp Integrated circuit and battery pack using the same
US9312723B2 (en) 2012-03-02 2016-04-12 Mitsumi Electric Co., Ltd. Secondary-battery monitoring device and battery pack
JP2016114611A (en) * 2012-03-02 2016-06-23 ミツミ電機株式会社 Secondary battery monitoring device and battery pack
US9812887B2 (en) 2012-03-02 2017-11-07 Mitsumi Electric Co., Ltd. Secondary-battery monitoring device and battery pack
CN107123971A (en) * 2016-02-24 2017-09-01 株式会社电装 Load drive device
CN107123971B (en) * 2016-02-24 2019-11-05 株式会社电装 Load drive device
CN114552538A (en) * 2022-03-15 2022-05-27 苏州赛芯电子科技股份有限公司 Battery protection system with load turn-off function and lithium battery
CN114552538B (en) * 2022-03-15 2023-03-14 苏州赛芯电子科技股份有限公司 Battery protection system with load turn-off function and lithium battery

Similar Documents

Publication Publication Date Title
JP6614388B1 (en) Secondary battery protection circuit, secondary battery protection device, battery pack, and control method of secondary battery protection circuit
EP1772942B1 (en) Battery charge/discharge control circuit
JP3439035B2 (en) Battery pack to prevent battery over-discharge
JP3254159B2 (en) Charge / discharge control circuit
JP2004296165A (en) Battery pack with charge control function
JP6038377B1 (en) Secondary battery protection circuit
WO2008019391A1 (en) Charge-pump biased battery protection circuit
JP3298600B2 (en) Secondary battery protection device
JP2009005559A (en) Battery pack
JP5098501B2 (en) Battery pack
JP2007028898A (en) Charge and discharge protection circuit
US6605925B2 (en) Power source circuit
JP5588370B2 (en) Output circuit, temperature switch IC, and battery pack
JPH08265985A (en) Charging method for pack battery
JPH11127543A (en) Protective circuit device for secondary battery
JP3940508B2 (en) Secondary battery protection circuit device
JP2011239652A (en) Battery protection device and integrated circuit for battery protection
JPH08103027A (en) Detector for battery pack state
JP2006121827A (en) Protection circuit for secondary battery
JP4025580B2 (en) Charging device and control method of charging device
JP2001145271A (en) Secondary battery protection method and circuit
JP4663591B2 (en) Battery pack and electronic equipment
JP2021158752A (en) Charge and discharge control device and battery device
JP2001057740A (en) Battery protecting device
JP3361712B2 (en) Charge / discharge control circuit