JPH1092589A - Inverter circuit for hot-cathode fluorescent lamp lighting device, and hot-cathode fluorescent lamp lighting device using this inverter circuit - Google Patents

Inverter circuit for hot-cathode fluorescent lamp lighting device, and hot-cathode fluorescent lamp lighting device using this inverter circuit

Info

Publication number
JPH1092589A
JPH1092589A JP8241825A JP24182596A JPH1092589A JP H1092589 A JPH1092589 A JP H1092589A JP 8241825 A JP8241825 A JP 8241825A JP 24182596 A JP24182596 A JP 24182596A JP H1092589 A JPH1092589 A JP H1092589A
Authority
JP
Japan
Prior art keywords
voltage
fluorescent tube
cathode fluorescent
hot
inverter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8241825A
Other languages
Japanese (ja)
Inventor
Junichi Shimamura
純一 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8241825A priority Critical patent/JPH1092589A/en
Publication of JPH1092589A publication Critical patent/JPH1092589A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PROBLEM TO BE SOLVED: To provide a hot-cathode fluorescent lamp lighting device, which can maintain the same power consumption with the conventional case and which can improve the luminance of a fluorescent lamp without generating luminance grade in the fluorescent lamp and which can reduce the noise from wiring of the fluorescent lamp in the case of connecting two fluorescent lamps in series to each other, and its inverter circuit. SOLUTION: In an inverter circuit 2' for converting the direct current power source voltage of a hot-cathode fluorescent lamp lighting device to the alternating current voltage at a predetermined frequency and for applying the alternating current voltage to a fluorescent lamp 1, high-voltage transformers T1, T2 for discharge of lamp are connected in series to each other, and voltage output of one of the two high-voltage transformers T1, T2 is taken out as an opposite phase to the voltage output of the other transformer, and applied to the fluorescent lamp 1. Furthermore, capacitors Cb1, Cb2 having the nearly same capacity are interposed between an output side of each transformer of the inverter circuit 2' and electrodes of the hot-cathode fluorescent lamp 1 so as to discharge the hot-cathode fluorescent lamp 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、大画面液晶ディス
プレイなどのバックライト、その他に使用される熱陰極
蛍光管の点灯装置に関し、特に、蛍光管の輝度効率を上
げ、ノイズ放射を少なくした点灯装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device for a hot cathode fluorescent tube used for a backlight of a large-screen liquid crystal display or the like, and more particularly to a lighting device in which the luminance efficiency of the fluorescent tube is increased and noise emission is reduced. Related to the device.

【0002】[0002]

【従来の技術】従来、熱陰極蛍光管は、冷陰極管と比較
して高輝度を得ることができるため、大画面の液晶ディ
スプレイ等のバックライト照明やフィルム検査用のライ
トテーブル等の用途に適する。
2. Description of the Related Art Conventionally, since a hot cathode fluorescent tube can obtain higher brightness than a cold cathode tube, it is used for backlight illumination of a large-screen liquid crystal display and a light table for film inspection. Suitable.

【0003】熱陰極蛍光管の発光原理としては、まず、
ヒーター回路によってフィラメント電極に電圧を加えて
これを加熱する。すると、フィラメントに塗ってある電
子放射性物質より熱電子が放出され、管内の温度が上昇
する。この温度上昇に伴い、管内に封入された水銀蒸気
のガス圧が上昇する。
The principle of light emission of a hot cathode fluorescent tube is as follows.
A voltage is applied to the filament electrode by a heater circuit to heat it. Then, thermoelectrons are emitted from the electron-emitting substance applied to the filament, and the temperature in the tube rises. With this temperature rise, the gas pressure of the mercury vapor sealed in the tube rises.

【0004】このとき、熱陰極蛍光管に印加されている
電界により、フィラメント付近の水銀蒸気のガスの電離
が進行し、管内放電(導通状態)が開始される。この放
電により、水銀蒸気から紫外線が放出され、この紫外線
が管内に塗ってある蛍光体を励起して発光を起こすもの
である。
At this time, due to the electric field applied to the hot cathode fluorescent tube, the ionization of the mercury vapor gas in the vicinity of the filament proceeds, and a discharge (conduction state) in the tube is started. Due to this discharge, ultraviolet rays are emitted from the mercury vapor, and the ultraviolet rays excite phosphors coated in the tube to cause light emission.

【0005】図2乃至図5は、従来の熱陰極蛍光管点灯
装置の基本回路である。図2は熱陰極蛍光管1灯用の点
灯装置の電気系回路を示す構成図、図3は熱陰極蛍光管
2灯を並列に接続した場合の点灯装置の電気系回路を示
す構成図、図4は熱陰極蛍光管2灯を直列に接続した場
合の点灯装置の電気系回路を示す構成図、図5は高圧ト
ランスを2個並列に使用し、出力捲き線を直列にした大
電力ランプ用の点灯装置の電気系回路を示す構成図であ
る。
FIGS. 2 to 5 show a basic circuit of a conventional hot cathode fluorescent tube lighting device. FIG. 2 is a configuration diagram showing an electric circuit of a lighting device for one hot cathode fluorescent tube, and FIG. 3 is a configuration diagram showing an electric circuit of a lighting device when two hot cathode fluorescent tubes are connected in parallel. 4 is a configuration diagram showing an electric circuit of a lighting device when two hot cathode fluorescent tubes are connected in series, and FIG. 5 is for a high power lamp using two high voltage transformers in parallel and an output winding in series. FIG. 3 is a configuration diagram showing an electric circuit of the lighting device of FIG.

【0006】図2乃至図5において、1は熱陰極蛍光管
(以下、蛍光管と称する)、PSは蛍光管1点灯用の直
流電源、GNDは、そのグランド端子である。2は、電
源PSの直流電圧を所定周波数の交流電圧に変換し管に
高電圧を印加してこれを点灯するためのインバータ回路
である。3はヒーター回路、4は電流検出回路、5はタ
イマー回路、6はスイッチ回路、7はPWMコントロー
ル回路である。
2 to 5, reference numeral 1 denotes a hot cathode fluorescent tube (hereinafter referred to as a fluorescent tube); PS, a DC power supply for lighting the fluorescent tube 1; and GND, a ground terminal thereof. Reference numeral 2 denotes an inverter circuit for converting a DC voltage of the power supply PS into an AC voltage having a predetermined frequency, applying a high voltage to the tube, and lighting the tube. Reference numeral 3 denotes a heater circuit, 4 denotes a current detection circuit, 5 denotes a timer circuit, 6 denotes a switch circuit, and 7 denotes a PWM control circuit.

【0007】インバーター回路2は、、トランスT1と
その前段に設けられた発振部からなっている。図2乃至
図5において太線で示した部分から理解できるように、
従来の方式のいずれにおいても、トランスから高電圧を
印加される蛍光管の一方の電極は、グランドに接続され
ている。
[0007] The inverter circuit 2 comprises a transformer T1 and an oscillating unit provided at a stage preceding the transformer T1. As can be understood from the portions shown by thick lines in FIGS. 2 to 5,
In any of the conventional methods, one electrode of a fluorescent tube to which a high voltage is applied from a transformer is connected to ground.

【0008】また、図6及び図7に模式的に示すよう
に、蛍光管1の配線は、バックライトの反射板(金属)
や筺体内を引き回されて通るため、これらの金属部材等
と蛍光管1及び蛍光管1の配線間で浮遊容量を持つ。ヒ
ーター配線は、フィラメントに電流を供給するために、
各電極より2本づつ出るため、この配線のもつ浮遊容量
も、ばかにならない。
Further, as schematically shown in FIGS. 6 and 7, the wiring of the fluorescent tube 1 is formed by a reflector (metal) of a backlight.
And has a floating capacitance between these metal members and the fluorescent tube 1 and the wiring of the fluorescent tube 1. Heater wiring is to supply current to the filament,
Since two wires are protruded from each electrode, the stray capacitance of this wiring does not become ridiculous.

【0009】また、蛍光管1は、冷陰極蛍光管と比較し
て形状が大きいため、配線の引き回しが長くなり、浮遊
容量が大きくなる。また、トランスから出力される高電
圧は交流なので、この交流成分が前記浮遊容量を通じ
て、筺体や反射板にリークして損失となってしまい、そ
の分、蛍光管1に流れる電流が減って蛍光管1の輝度が
低下してしまう。また、蛍光管自体も筺体との間に浮遊
容量を持っているので、蛍光管に流れるべき電流の一部
がリークしてしまい、蛍光管の高圧側が明るくて接地側
が暗いというように、輝度に傾斜が出てしまう。特に、
輝度を絞った状態のとき、ランプ表面輝度の傾斜が著し
くなる傾向がある。
Further, since the fluorescent tube 1 has a larger shape than the cold cathode fluorescent tube, the length of the wiring is increased and the floating capacitance is increased. Further, since the high voltage output from the transformer is an alternating current, the alternating current component leaks to the housing or the reflection plate through the stray capacitance to cause a loss, and the current flowing through the fluorescent tube 1 is reduced by that amount, so that the fluorescent tube is reduced. The brightness of No. 1 decreases. In addition, since the fluorescent tube itself has a stray capacitance between itself and the housing, part of the current that should flow through the fluorescent tube leaks, and the luminance is high, such as the high voltage side of the fluorescent tube is bright and the ground side is dark. The slope comes out. Especially,
When the luminance is reduced, the inclination of the lamp surface luminance tends to be remarkable.

【0010】また、上記従来例で、蛍光管を2灯直列に
使用する場合は、トランスは出力電圧の大きいものを必
要とし、その場合、蛍光管の配線からのノイズがさらに
大きくなるという欠点がある。
In the conventional example, when two fluorescent tubes are used in series, a transformer having a large output voltage is required. In this case, the noise from the fluorescent tube wiring is further increased. is there.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は上記の
問題点に鑑み従来の場合と同じ消費電力を保ちつつ、蛍
光管の輝度を向上させることができ、かつ、蛍光管に輝
度傾斜を起こすことのない熱陰極蛍光管点灯装置、およ
びそのインバーター回路を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to improve the brightness of a fluorescent tube while maintaining the same power consumption as in the conventional case, and to reduce the brightness gradient of the fluorescent tube. It is an object of the present invention to provide a hot-cathode fluorescent tube lighting device that does not occur and its inverter circuit.

【0012】さらには、熱陰極蛍光管2灯直列の場合
に、管の配線からのノイズを極力少なくすることのでき
る熱陰極蛍光管点灯装置、およびそのインバーター回路
を提供することにある。
It is still another object of the present invention to provide a hot cathode fluorescent tube lighting device capable of minimizing noise from the tube wiring when two hot cathode fluorescent tubes are connected in series, and an inverter circuit therefor.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を達
成するために請求項1では、熱陰極蛍光管点灯装置の直
流電源電圧を所定周波数の交流電圧に変換して、該交流
電圧を熱陰極蛍光管に印加するインバーター回路であっ
て、管放電用の高圧トランスを2個直列接続して設け、
一方の高圧トランスの電圧出力を、他方の高圧トランス
の電圧出力の逆位相として取り出す熱陰極蛍光管点灯装
置のインバータ回路を提案する。
In order to achieve the above object, according to the present invention, a DC power supply voltage of a hot cathode fluorescent tube lighting device is converted into an AC voltage of a predetermined frequency, and the AC voltage is converted to a predetermined frequency. An inverter circuit applied to a hot cathode fluorescent tube, wherein two high-voltage transformers for tube discharge are connected in series,
We propose an inverter circuit of a hot cathode fluorescent tube lighting device that takes out the voltage output of one high-voltage transformer as the opposite phase of the voltage output of the other high-voltage transformer.

【0014】該インバータ回路によれば、蛍光管が、正
位相のトランスの出力端と逆位相の出力端の間に接続さ
れることとなるため、蛍光管が接地電位からフローティ
ング状態で点灯することになり、蛍光管の配線と筺体や
反射板との間の浮遊容量が小さくなる。従って、リーク
電流が減り、蛍光管の輝度の低下を防ぐことができると
共に、輝度分布の偏りが改善される。
According to the inverter circuit, since the fluorescent tube is connected between the output terminal of the positive-phase transformer and the output terminal of the reverse phase, the fluorescent tube is lit from the ground potential in a floating state. And the stray capacitance between the wiring of the fluorescent tube and the housing or the reflector is reduced. Therefore, the leak current is reduced, the luminance of the fluorescent tube can be prevented from lowering, and the deviation of the luminance distribution is improved.

【0015】また、請求項2では、熱陰極蛍光管点灯装
置の直流電源電圧を所定周波数の交流電圧に変換して該
交流電圧を熱陰極蛍光管に印加するインバーター回路で
あって、管放電用の高圧トランスを2個一組に直列接続
したトランスを複数設けて並列接続し、該複数設けたそ
れぞれのトランスの組の一方の高圧トランスの電圧出力
を、他方の高圧トランスの電圧出力の逆位相として、そ
れぞれの側において併せて取り出すようにした熱陰極蛍
光管点灯装置のインバータ回路を提案する。
According to a second aspect of the present invention, there is provided an inverter circuit for converting a DC power supply voltage of a hot cathode fluorescent tube lighting device into an AC voltage having a predetermined frequency and applying the AC voltage to the hot cathode fluorescent tube. A plurality of high-voltage transformers are connected in series to form a set of two high-voltage transformers and connected in parallel, and the voltage output of one high-voltage transformer of each of the plurality of provided transformer sets is set to the opposite phase of the voltage output of the other high-voltage transformer. The present invention proposes an inverter circuit of a hot cathode fluorescent tube lighting device in which both sides are taken out together.

【0016】該インバータ回路によれば、蛍光管が、正
位相のトランスの出力端と逆位相の出力端の間に接続さ
れることとなるため、蛍光管が接地電位からフローティ
ング状態で点灯することになり、蛍光管の配線と筺体や
反射板との間の浮遊容量が小さくなる。従って、リーク
電流が減り、蛍光管の輝度の低下を防ぐことができる。
さらに、トランスを並列接続しているので、大電力にも
対応可能となる。
According to the inverter circuit, since the fluorescent tube is connected between the output terminal of the positive-phase transformer and the output terminal of the reverse phase, the fluorescent tube is lit from the ground potential in a floating state. And the stray capacitance between the wiring of the fluorescent tube and the housing or the reflector is reduced. Therefore, a leak current is reduced, and a decrease in luminance of the fluorescent tube can be prevented.
Further, since the transformers are connected in parallel, it is possible to cope with high power.

【0017】また、請求項3では、直流を交流に変換す
るインバータ回路を備え、該インバータ回路の出力電圧
を熱陰極蛍光管の両端の電極に印加することによって該
熱陰極蛍光管を点灯する熱陰極蛍光管の点灯装置におい
て、前記インバータ回路の出力部に管放電用の高圧トラ
ンスを2個直列接続して設け、一方の高圧トランスの電
圧出力を、他方の高圧トランスの電圧出力の逆位相とし
て取り出すと共に、前記インバータ回路のトランス出力
と熱陰極蛍光管電極の間に各々ほぼ容量値の等しい限流
素子を介在させて熱陰極蛍光管を放電させるようにした
熱陰極蛍光管の点灯装置を提案する。
In a third aspect of the present invention, there is provided an inverter circuit for converting a direct current into an alternating current, and a heat source for lighting the hot cathode fluorescent tube by applying an output voltage of the inverter circuit to electrodes at both ends of the hot cathode fluorescent tube. In the cathode fluorescent tube lighting device, two high-voltage transformers for tube discharge are provided in series at the output of the inverter circuit, and the voltage output of one high-voltage transformer is set as the opposite phase of the voltage output of the other high-voltage transformer. At the same time, a lighting device for a hot cathode fluorescent tube is proposed in which a current limiting element having substantially the same capacitance value is interposed between the transformer output of the inverter circuit and the hot cathode fluorescent tube electrode to discharge the hot cathode fluorescent tube. I do.

【0018】該熱陰極蛍光管の点灯装置によれば、蛍光
管が、正位相のトランスの出力端と逆位相の出力端の間
に接続されることとなるため、蛍光管が接地電位からフ
ローティング状態で点灯することになり、蛍光管の配線
と筺体や反射板との間の浮遊容量が小さくなる。従っ
て、リーク電流が減り、蛍光管の輝度の低下を防ぐこと
ができる。
According to the hot cathode fluorescent tube lighting device, the fluorescent tube is connected between the output terminal of the positive phase transformer and the output terminal of the opposite phase, so that the fluorescent tube floats from the ground potential. In this state, the stray capacitance between the wiring of the fluorescent tube and the housing or the reflection plate is reduced. Therefore, a leak current is reduced, and a decrease in luminance of the fluorescent tube can be prevented.

【0019】また、請求項4では、直流を交流に変換す
るインバータ回路を備え、該インバータ回路の出力電圧
を熱陰極蛍光管の両端の電極に印加することによって該
熱陰極蛍光管を点灯する熱陰極蛍光管の点灯装置におい
て、前記インバータ回路の出力部に管放電用の高圧トラ
ンスを2個一組に直列接続したトランスを複数設けて並
列接続し、該複数設けたそれぞれのトランスの組の一方
の高圧トランスの電圧出力を他方の高圧トランスの電圧
出力の逆位相として、それぞれの側において併せて取り
出すと共に、前記インバータ回路の各出力と熱陰極蛍光
管電極の間に各々ほぼ容量値の等しい限流素子を介在さ
せて熱陰極蛍光管を放電させるようにした熱陰極蛍光管
の点灯装置を提案する。
In a preferred embodiment of the present invention, there is provided an inverter circuit for converting a direct current to an alternating current, and a heat source for lighting the hot cathode fluorescent tube by applying an output voltage of the inverter circuit to electrodes at both ends of the hot cathode fluorescent tube. In the cathode fluorescent tube lighting device, a plurality of high-voltage transformers for tube discharge are connected in series at the output of the inverter circuit, and two or more high-voltage transformers are connected in series and connected in parallel. The voltage output of the high-voltage transformer is taken out together as an opposite phase of the voltage output of the other high-voltage transformer on each side, and the capacitance value between each output of the inverter circuit and the hot cathode fluorescent tube electrode is almost equal. The present invention proposes a lighting device for a hot cathode fluorescent tube that discharges the hot cathode fluorescent tube via a flow element.

【0020】該熱陰極蛍光管点灯装置によれば、蛍光管
が、正位相のトランスの出力端と逆位相の出力端の間に
接続されることとなるため、蛍光管が接地電位からフロ
ーティング状態で点灯することになり、蛍光管の配線と
筺体や反射板との間の浮遊容量が小さくなる。従って、
リーク電流が減り、蛍光管の輝度の低下を防ぐことがで
きる。さらに、トランスを並列接続しているので、大電
力にも対応可能となる。さらにまた、熱陰極蛍光管の端
とトランスの出力間に容量値のほぼ等しい限流素子が入
ることにより、接地電位(グランド)に対する蛍光管両
端の電圧は、バランスしてほぼ等しくなり、蛍光管の輝
度が管全体に渡って傾斜することがなく、ほぼ均一にな
る。
According to the hot cathode fluorescent tube lighting device, the fluorescent tube is connected between the output terminal of the positive phase transformer and the output terminal of the opposite phase, so that the fluorescent tube is in a floating state from the ground potential. , And the stray capacitance between the wiring of the fluorescent tube and the housing or the reflection plate is reduced. Therefore,
Leakage current is reduced, and a decrease in luminance of the fluorescent tube can be prevented. Further, since the transformers are connected in parallel, it is possible to cope with high power. Furthermore, since a current-limiting element having substantially the same capacitance value is inserted between the end of the hot cathode fluorescent tube and the output of the transformer, the voltage at both ends of the fluorescent tube with respect to the ground potential (ground) becomes substantially equal, and the fluorescent tube Does not incline over the entire tube and becomes almost uniform.

【0021】[0021]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施形態を説明する。図1は、本発明の第1の実施形態
の電気系回路を示す構成図である。図において、前述し
た従来例と同一構成部分は同一符号をもって表す(ただ
し、トランスを除く)。また、第1の実施形態は、蛍光
管1を2灯直列に接続した場合の回路図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an electric circuit according to the first embodiment of the present invention. In the figure, the same components as those in the above-described conventional example are denoted by the same reference numerals (excluding the transformer). The first embodiment is a circuit diagram when two fluorescent tubes 1 are connected in series.

【0022】図において、2’は本発明のインバータ回
路(高圧回路)で、インダクタンスL1,抵抗R1,R
2,トランジスタQ2,Q3,コンデンサCrからなる
ロイヤ回路で構成した発振部と、該発振部に接続される
トランスT1,T2から構成されている。
In the figure, reference numeral 2 'denotes an inverter circuit (high voltage circuit) of the present invention, which has an inductance L1, a resistance R1, and a resistance R1.
2, an oscillating section composed of a Loyer circuit composed of transistors Q2, Q3 and a capacitor Cr, and transformers T1, T2 connected to the oscillating section.

【0023】発振部は、電源電圧PS(直流電圧)を受
けて、トランスT1,T2の1次巻線に所定周波数の交
流電流を流すためのものである。トランスT1,T2の
2次巻線は、前記1次巻線に流れる交流電流を交流電圧
(高電圧)に変換する。本発明のインバーター回路2’
は、商用電源がAC/DCコンバータによって直流に変
換された低電圧直流電源PSを電源として作動する。言
い替えれば、本発明のインバータ回路2’は、直流電圧
を交流電圧に変換するDC/ACインバータである。
The oscillating unit receives the power supply voltage PS (DC voltage) and allows an AC current having a predetermined frequency to flow through the primary windings of the transformers T1 and T2. The secondary windings of the transformers T1 and T2 convert an AC current flowing through the primary winding into an AC voltage (high voltage). Inverter circuit 2 'of the present invention
Operates using a low-voltage DC power supply PS in which commercial power is converted to DC by an AC / DC converter as a power supply. In other words, the inverter circuit 2 'of the present invention is a DC / AC inverter that converts a DC voltage to an AC voltage.

【0024】1は、熱陰極蛍光管(以下、蛍光管と称す
る)であり、Cb1,Cb2は後述する限流素子として
のバランストコンデンサである。3はフィラメント加熱
用のヒーター回路で、インダクタンスL2,抵抗器R
4,R5,トランジスタQ4,Q5、コンデンサCrh
からなる発振部と、該発振部に接続されたトランスT3
から構成される。4は電流検出回路で、ダイオードD
2,コンデンサC1,抵抗R3から構成される。4は電
流検出回路、5はタイマー回路、6はスイッチ回路、7
はPWMコントロール回路である。
Reference numeral 1 denotes a hot cathode fluorescent tube (hereinafter, referred to as a fluorescent tube), and Cb1 and Cb2 denote balanced capacitors as current limiting elements to be described later. 3 is a heater circuit for heating the filament, which has an inductance L2 and a resistor R
4, R5, transistors Q4, Q5, capacitor Chr
And a transformer T3 connected to the oscillation unit.
Consists of 4 is a current detection circuit, and a diode D
2, a capacitor C1 and a resistor R3. 4 is a current detection circuit, 5 is a timer circuit, 6 is a switch circuit, 7
Is a PWM control circuit.

【0025】次に、前述の構成よりなる本実施例の動作
について説明する。初めに点灯スイッチSW1がONさ
れると、タイマー回路5及びスイッチ回路6を介してヒ
ーター回路3が作動する。タイマー回路5は、蛍光管1
の放電をヒーター予熱後に行わせるために使用されるも
のであるから、ヒーター回路3自体は、点灯スイッチS
W1がONされると直ちに作動する。
Next, the operation of this embodiment having the above-described configuration will be described. First, when the lighting switch SW1 is turned on, the heater circuit 3 operates via the timer circuit 5 and the switch circuit 6. The timer circuit 5 includes the fluorescent tube 1
Is used to cause the discharge of the heater after the heater is preheated.
It is activated as soon as W1 is turned on.

【0026】点灯スイッチSW1がONされてから所定
時間(1〜2秒)経過すると、タイマー回路5の作動に
より、インバーター回路2’が作動する。
When a predetermined time (1-2 seconds) elapses after the lighting switch SW1 is turned on, the operation of the timer circuit 5 activates the inverter circuit 2 '.

【0027】インバーター回路2’の作動は、まず、直
流電源PSがスイッチング素子Q1を介してPWMコン
トロール回路7に入力され、ダイオードD1を介して作
動する。
The operation of the inverter circuit 2 'is as follows. First, the DC power supply PS is input to the PWM control circuit 7 via the switching element Q1, and operates via the diode D1.

【0028】インバータ回路2’に用いたロイヤ回路の
特徴は、トランス(変成器)に帰還回路を設けて、各ト
ランジスタのコレクタからベースへ正帰還を行い、オン
・オフ動作を自動的に行わせる、いわゆる自励式発振器
であることである。R1,R2は、始動を容易にするた
めに、ベースに予め順方向の電圧を与えておくバイアス
抵抗器で、動作には本質的に関与しない。
The characteristic of the Loyer circuit used in the inverter circuit 2 'is that a feedback circuit is provided in a transformer (transformer) to perform positive feedback from the collector of each transistor to the base, thereby automatically performing an on / off operation. Is a so-called self-excited oscillator. R1 and R2 are bias resistors that pre-apply a forward voltage to the base in order to facilitate starting, and have essentially no effect on operation.

【0029】タイマー回路5が作動すると、トランジス
タQ2,Q3が交互に、オン・オフを繰り返し、トラン
スT1,T2の一次巻線には高周波電流が流れ、二次巻
線には高周波電圧が現れる。この交流電圧の周波数は、
トランジスタQ2,Q3のオン・オフの切り替わり周波
数によって決定される。トランスT1,T2の二次側電
圧の昇圧度は周知の通り、一次巻線と二次巻線とのコイ
ルの巻数の比によって決定する。
When the timer circuit 5 operates, the transistors Q2 and Q3 alternately turn on and off, a high-frequency current flows through the primary windings of the transformers T1 and T2, and a high-frequency voltage appears on the secondary windings. The frequency of this AC voltage is
It is determined by the switching frequency of the transistors Q2 and Q3. As is well known, the boosting degree of the secondary voltage of the transformers T1 and T2 is determined by the ratio of the number of turns of the primary winding and the secondary winding.

【0030】ロイヤ回路が発振すると、トランジスタQ
2,Q3のコレクタ電圧波形は、図8の(a),(b)
のようになる。すると、トランスT1とT2の出力(位
相)が180度づれて現れるるので、トランスT2の出
力電圧波形はトランスT1の出力電圧波形を反転した形
で現れる(図8の(c),(d))。
When the Royal circuit oscillates, the transistor Q
2 and Q3 show the collector voltage waveforms in FIGS.
become that way. Then, since the outputs (phases) of the transformers T1 and T2 appear 180 degrees apart, the output voltage waveform of the transformer T2 appears in an inverted form of the output voltage waveform of the transformer T1 ((c) and (d) in FIG. 8). .

【0031】この両トランス出力によって、一方蛍光管
1の電極f1と他方の蛍光管の電極f4には、図8の
(e),(f)に示すような互いに逆相の電圧が駆動さ
れる。そして、トランスT1とT2の出力は、蛍光管1
に定電流を流すため、バランストコンデンサCb1,C
b2などの限流素子を通して蛍光管に印加される。
By the outputs of the two transformers, the electrodes f1 of the one fluorescent tube 1 and the electrode f4 of the other fluorescent tube are driven with mutually opposite voltages as shown in FIGS. 8 (e) and 8 (f). . The outputs of the transformers T1 and T2 are
To supply a constant current to the balanced capacitors Cb1 and Cb1
The voltage is applied to the fluorescent tube through a current limiting element such as b2.

【0032】トランスT1,T2の出力を振幅でみれ
ば、トランスT1,T2とも、それぞれトランス1個分
の出力に他ならないが、両者の位相が互いに反転してい
るので、一方の出力を基準にすると、蛍光管1には、見
かけ上、図8の(h)に示すような電圧が印加されるこ
ととなる。これを振幅(最大値)でみれば、トランス2
個分の出力を取り出していることが理解できよう。
When the outputs of the transformers T1 and T2 are viewed in terms of amplitude, both of the transformers T1 and T2 are the same as the output of one transformer. However, since the phases of the two are inverted, the output of one of the transformers T1 and T2 is referred to. Then, a voltage as shown in (h) of FIG. 8 is apparently applied to the fluorescent tube 1. Looking at this in terms of amplitude (maximum value), transformer 2
It can be understood that the output for each item is taken out.

【0033】また、蛍光管1の電極f2,f3の電圧
は、互いに逆相の電圧の中点になるので、ほぼ0ボルト
になる(図8の(g))。よって、図9にみる程に蛍光
管両端の輝度の傾斜は起こらず、蛍光管全体を通してみ
れば、ほぼ均一な輝度が得られる(図10)。
Further, the voltages of the electrodes f2 and f3 of the fluorescent tube 1 become substantially zero volts because they are at the midpoints of voltages having opposite phases (FIG. 8 (g)). Therefore, as shown in FIG. 9, the brightness does not tilt at both ends of the fluorescent tube, and almost uniform brightness can be obtained when viewed through the entire fluorescent tube (FIG. 10).

【0034】また、蛍光管両端の電圧の位相がそれぞれ
逆位相の関係にあるので、配線から出るノイズが互いに
打ち消し合って少なくなる。従って、2灯を直列接続し
た蛍光管1を放電しながら、1灯放電のときよりノイズ
の少ない点灯装置及びそのインバーター回路を提供でき
る。
Further, since the phases of the voltages at both ends of the fluorescent tube are opposite to each other, noises emitted from the wiring cancel each other out and are reduced. Accordingly, it is possible to provide a lighting device and an inverter circuit thereof with less noise than in the case of single lamp discharge while discharging the fluorescent tube 1 in which two lamps are connected in series.

【0035】尚、トランスT1とT2の2次側のコイル
から、電流検出回路4を通って、PWMコントロール回
路7につなげるのは、このフィードバック系によって、
両方の蛍光管1に印加される電圧を管電流が一定になる
ように制御するためのものである。即ち、抵抗器R3
は、電流を電圧に変換するためのもので、ダイオードD
2は、それを半波整流し、コンデンサC1は、ピーク電
圧を保持する。そして、PWMコントロール回路7は、
この送出されてくるピーク電圧値を検出して、インバー
タ回路2’が蛍光管1に印加する電圧値を調整する。ま
た、PWMコントロール回路7は、別途設けられた調光
スイッチ(SW2)の操作によって、インバータ回路
2’へ印加する電圧値を制御して、蛍光管1の明るさを
調節する機能を果たす。
The connection from the secondary side coils of the transformers T1 and T2 to the PWM control circuit 7 through the current detection circuit 4 is based on this feedback system.
This is for controlling the voltage applied to both the fluorescent tubes 1 so that the tube current becomes constant. That is, the resistor R3
Is for converting a current into a voltage, and a diode D
2 rectifies it half-wave and capacitor C1 holds the peak voltage. And the PWM control circuit 7
By detecting the transmitted peak voltage value, the inverter circuit 2 ′ adjusts the voltage value applied to the fluorescent tube 1. Further, the PWM control circuit 7 controls the voltage value applied to the inverter circuit 2 ′ by operating a separately provided dimming switch (SW 2) to adjust the brightness of the fluorescent tube 1.

【0036】次に、本発明の第2の実施形態を説明す
る。図11は、本発明の第2の実施形態の電気系回路を
示す構成図である。図において、前述した従来例及び第
1の実施形態と同一構成部分は同一符号をもって表す
(ただし、トランスを除く)。また、第2の実施形態
は、蛍光管1を2本並列に接続したものである。
Next, a second embodiment of the present invention will be described. FIG. 11 is a configuration diagram showing an electric circuit according to the second embodiment of the present invention. In the drawing, the same components as those of the above-described conventional example and the first embodiment are denoted by the same reference numerals (however, excluding the transformer). In the second embodiment, two fluorescent tubes 1 are connected in parallel.

【0037】第2の実施形態の場合も、トランスT1と
T2では、2次巻線における出力の極性が異なるので、
トランスT1とT2の出力電圧波形はその位相が180
度相違する。トランスT1とT2の出力は、バランスト
コンデンサCb1/Cb3、及びCb2/Cb4を通し
て、蛍光管1の両電極にそれぞれ印加される。
Also in the case of the second embodiment, the transformers T1 and T2 have different output polarities in the secondary winding.
The output voltage waveforms of the transformers T1 and T2 have a phase of 180
Different. The outputs of the transformers T1 and T2 are applied to both electrodes of the fluorescent tube 1 through balanced capacitors Cb1 / Cb3 and Cb2 / Cb4, respectively.

【0038】蛍光管1の電極f1とf2,及びf3とf
4には、互いに逆相の電圧が印加され、駆動される。本
実施形態においても、蛍光管1の両方の電極ともにグラ
ンドされていないので、図9にみるような、蛍光管両端
の輝度の傾斜は起こらず、図10のように、蛍光管全体
を通して、ほぼ均一な輝度が得られる。
The electrodes f1 and f2 of the fluorescent tube 1 and f3 and f
4 are driven by applying voltages having opposite phases to each other. Also in the present embodiment, since both electrodes of the fluorescent tube 1 are not grounded, the brightness does not tilt at both ends of the fluorescent tube as shown in FIG. 9, and as shown in FIG. Uniform brightness can be obtained.

【0039】次に、本発明の第3の実施形態を説明す
る。図12は、本発明の第3の実施形態の電気系回路を
示す構成図である。図において、前述した従来例及び第
1乃至第2の実施形態と同一構成部分は同一符号をもっ
て表す(ただし、トランスを除く)。
Next, a third embodiment of the present invention will be described. FIG. 12 is a configuration diagram showing an electric circuit according to the third embodiment of the present invention. In the figure, the same components as those of the above-described conventional example and the first and second embodiments are denoted by the same reference numerals (except for the transformer).

【0040】また、第3の実施形態は、大電力の蛍光管
用にトランスを4個に増設した例を示している。特に、
ノートブックコンピュータなどの携帯型装置の表示装置
における低背型バックライトとして使用する場合、小型
のトランスを複数使用して電力を賄わなければならな
い。本実施形態では、トランスT3及びT4が、トラン
スT1、T2と並列に接続されており、トランスT1と
T3の出力が正位相で、トランスT2とT4の出力が逆
位相でそれぞれ併せて出力する。
The third embodiment shows an example in which four transformers are added for a high-power fluorescent tube. Especially,
When used as a low-profile backlight in a display device of a portable device such as a notebook computer, power must be supplied by using a plurality of small transformers. In this embodiment, the transformers T3 and T4 are connected in parallel with the transformers T1 and T2, and the outputs of the transformers T1 and T3 are output in the positive phase, and the outputs of the transformers T2 and T4 are output in the opposite phase.

【0041】従って、トランスT1〜T4がそれぞれ小
電力型の場合であっても、本構成のように、正位相で出
力するトランスと逆位相で出力するトランスの組を複数
段並列接続して、各位相毎の出力を併せて出力すること
により、大電力構成とすることができる。その他の作用
・効果は第1の実施形態と同じである。
Therefore, even when the transformers T1 to T4 are each of a low power type, as in the present configuration, a set of a transformer outputting in the normal phase and a transformer outputting in the opposite phase are connected in a plurality of stages in parallel. By outputting the outputs for each phase together, a large power configuration can be achieved. Other functions and effects are the same as those of the first embodiment.

【0042】[0042]

【発明の効果】以上説明したように、本発明の請求項1
記載のインバータ回路によれば、管放電用の高圧トラン
スを2個直列接続したトランスを設け、一方の高圧トラ
ンスの出力を他方の高圧トランスの出力の逆位相で取り
出すようにしたので、熱陰極蛍光管が接地電位からフロ
ーティング状態で点灯することになり、熱陰極蛍光管の
配線と筺体や反射板間の浮遊容量を小さくすることがで
きる。これにより、リーク電流が減り、熱陰極蛍光管の
輝度の低下を防ぐことができる。特に、熱陰極蛍光管の
輝度を低く調光したとき、高圧側が明るくなり、低圧側
が暗くなるというような輝度分布の偏りが改善される。
さらに、高圧トランス1個あたりの出力電圧が小さくて
済み、不要輻射(ノイズ)を少なくすることができる。
As described above, according to the first aspect of the present invention,
According to the inverter circuit described above, a transformer in which two high-voltage transformers for tube discharge are connected in series is provided, and the output of one high-voltage transformer is taken out in the opposite phase to the output of the other high-voltage transformer. Since the tube is lit in a floating state from the ground potential, the stray capacitance between the wiring of the hot cathode fluorescent tube and the housing or the reflector can be reduced. Thereby, a leak current is reduced, and a decrease in luminance of the hot cathode fluorescent tube can be prevented. In particular, when the brightness of the hot cathode fluorescent tube is adjusted to be low, the bias of the brightness distribution such that the high voltage side becomes bright and the low voltage side becomes dark is improved.
Furthermore, the output voltage per high-voltage transformer can be reduced, and unnecessary radiation (noise) can be reduced.

【0043】また、請求項2記載のインバータ回路によ
れば、管放電用の高圧トランスを2個直列接続したトラ
ンスを複数設け、これらを並列接続すると共に、一方の
高圧トランスの出力を他方の高圧トランスの出力の逆位
相で取り出すようにしたので、熱陰極蛍光管が接地電位
からフローティング状態で点灯することになり、熱陰極
蛍光管の配線と筺体や反射板間の浮遊容量を小さくする
ことができる。これにより、リーク電流が減り、熱陰極
蛍光管の輝度の低下を防ぐことができる。特に、熱陰極
蛍光管の輝度を低く調光したとき、高圧側が明るくな
り、低圧側が暗くなるというような輝度分布の偏りが改
善される。さらに、大電力にも対応可能となると共に、
高圧トランス1個あたりの出力電圧が小さくて済み、不
要輻射(ノイズ)を少なくすることができる。
According to the inverter circuit of the present invention, a plurality of transformers in which two high voltage transformers for tube discharge are connected in series are provided, these are connected in parallel, and the output of one high voltage transformer is connected to the other high voltage transformer. Since the output is taken out of phase with the transformer output, the hot-cathode fluorescent tube lights up in a floating state from the ground potential, and the stray capacitance between the wiring of the hot-cathode fluorescent tube and the housing or reflector can be reduced. it can. Thereby, a leak current is reduced, and a decrease in luminance of the hot cathode fluorescent tube can be prevented. In particular, when the brightness of the hot cathode fluorescent tube is adjusted to be low, the bias of the brightness distribution such that the high voltage side becomes bright and the low voltage side becomes dark is improved. Furthermore, while being able to cope with high power,
The output voltage per high-voltage transformer can be reduced, and unnecessary radiation (noise) can be reduced.

【0044】また、請求項3記載の熱陰極蛍光管の点灯
装置によれば、管放電用の高圧トランスを2個直列接続
したトランスを設け、一方の高圧トランスの出力を他方
の高圧トランスの出力の逆位相で取り出すようにしたの
で、熱陰極蛍光管が接地電位からフローティング状態で
点灯することになり、熱陰極蛍光管の配線と筺体や反射
板間の浮遊容量を小さくすることができる。これによ
り、リーク電流が減り、熱陰極蛍光管の輝度の低下を防
ぐことができる。特に、熱陰極蛍光管の輝度を低く調光
したとき、高圧側が明るくなり、低圧側が暗くなるとい
うような輝度分布の偏りが改善される。さらに、高圧ト
ランス1個あたりの出力電圧が小さくて済み、不要輻射
(ノイズ)を少なくすることができる。さらにまた、熱
陰極蛍光管電極とトランス出力間に容量値のほぼ等しい
限流素子を介在して設けたので、接地電位に対する蛍光
管両端の電圧が、バランスしてほぼ等しくなり、蛍光管
の輝度が蛍光管全体に渡って傾斜することがなく、輝度
をほぼ均一にすることができる。また、蛍光管を2灯直
列に接続する場合には、蛍光管の配線からのノイズを極
力少なくすることができる。
According to a third aspect of the present invention, there is provided a lighting device for a hot cathode fluorescent tube, wherein two high voltage transformers for tube discharge are connected in series, and the output of one high voltage transformer is changed to the output of the other high voltage transformer. The hot cathode fluorescent tubes are turned on in a floating state from the ground potential, and the stray capacitance between the wiring of the hot cathode fluorescent tubes and the housing or reflector can be reduced. Thereby, a leak current is reduced, and a decrease in luminance of the hot cathode fluorescent tube can be prevented. In particular, when the brightness of the hot cathode fluorescent tube is adjusted to be low, the bias of the brightness distribution such that the high voltage side becomes bright and the low voltage side becomes dark is improved. Furthermore, the output voltage per high-voltage transformer can be reduced, and unnecessary radiation (noise) can be reduced. Furthermore, since a current limiting element having substantially the same capacitance value is interposed between the hot cathode fluorescent tube electrode and the transformer output, the voltage at both ends of the fluorescent tube with respect to the ground potential is almost equal in balance, and the brightness of the fluorescent tube Does not incline over the entire fluorescent tube, and the luminance can be made substantially uniform. When two fluorescent tubes are connected in series, noise from the wiring of the fluorescent tubes can be reduced as much as possible.

【0045】また、請求項4記載の熱陰極蛍光管の点灯
装置によれば、管放電用の高圧トランスを2個直列接続
したトランスを複数設け、これらを並列接続すると共
に、一方の高圧トランスの出力を他方の高圧トランスの
出力の逆位相で取り出すようにしたので、熱陰極蛍光管
が接地電位からフローティング状態で点灯することにな
り、熱陰極蛍光管の配線と筺体や反射板間の浮遊容量を
小さくすることができる。これにより、リーク電流が減
り、熱陰極蛍光管の輝度の低下を防ぐことができる。特
に、熱陰極蛍光管の輝度を低く調光したとき、高圧側が
明るくなり、低圧側が暗くなるというような輝度分布の
偏りが改善される。さらに、大電力にも対応可能となる
と共に、高圧トランス1個あたりの出力電圧が小さくて
済み、不要輻射(ノイズ)を少なくすることができる。
さらにまた、熱陰極蛍光管電極とトランス出力間に容量
値のほぼ等しい限流素子を介在して設けたので、接地電
位に対する蛍光管両端の電圧が、バランスしてほぼ等し
くなり、蛍光管の輝度が蛍光管全体に渡って傾斜するこ
とがなく、輝度をほぼ均一にすることができる。また、
蛍光管を2灯直列に接続する場合には、管の配線からの
ノイズを極力少なくすることができる。
Further, according to the hot cathode fluorescent tube lighting device of the fourth aspect, a plurality of transformers in which two high voltage transformers for tube discharge are connected in series are provided, these are connected in parallel, and one of the high voltage transformers is connected. Since the output is taken out of phase with the output of the other high-voltage transformer, the hot-cathode fluorescent tube lights up in a floating state from the ground potential, and the stray capacitance between the wiring of the hot-cathode fluorescent tube and the housing or reflector plate Can be reduced. Thereby, a leak current is reduced, and a decrease in luminance of the hot cathode fluorescent tube can be prevented. In particular, when the brightness of the hot cathode fluorescent tube is adjusted to be low, the bias of the brightness distribution such that the high voltage side becomes bright and the low voltage side becomes dark is improved. Further, it is possible to cope with high power, and the output voltage per one high-voltage transformer can be reduced, so that unnecessary radiation (noise) can be reduced.
Furthermore, since a current limiting element having substantially the same capacitance value is interposed between the hot cathode fluorescent tube electrode and the transformer output, the voltage at both ends of the fluorescent tube with respect to the ground potential is almost equal in balance, and the brightness of the fluorescent tube Does not incline over the entire fluorescent tube, and the luminance can be made substantially uniform. Also,
When two fluorescent tubes are connected in series, noise from the wiring of the tubes can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施実施形態の電気系回路を示
す構成図
FIG. 1 is a configuration diagram showing an electric circuit according to a first embodiment of the present invention;

【図2】従来例の熱陰極蛍光管1灯用の点灯装置の電気
系回路を示す構成図
FIG. 2 is a configuration diagram showing an electric circuit of a conventional lighting device for one hot cathode fluorescent tube.

【図3】従来例の熱陰極蛍光管を2灯並列に接続する点
灯装置の電気系回路を示す構成図
FIG. 3 is a configuration diagram showing an electric system circuit of a lighting device in which two conventional hot cathode fluorescent tubes are connected in parallel.

【図4】従来例の熱陰極蛍光管を2灯直列に接続する点
灯装置の電気系回路を示す構成図
FIG. 4 is a configuration diagram showing an electric circuit of a lighting device in which two conventional hot cathode fluorescent tubes are connected in series.

【図5】従来例の高圧トランスを2個使用し、出力捲き
線を直列にした大電力熱陰極蛍光管点灯装置の電気系回
路を示す構成図
FIG. 5 is a configuration diagram showing an electric circuit of a high-power hot-cathode fluorescent tube lighting device in which two conventional high-voltage transformers are used and output windings are connected in series.

【図6】エッジライト方式のバックライトにおける蛍光
管及びリード線を説明する図
FIG. 6 is a diagram illustrating a fluorescent tube and a lead wire in an edge light type backlight.

【図7】直下型バックライトシステムにおける蛍光管、
リード線及び反射板の様子を説明する図
FIG. 7 shows a fluorescent tube in a direct backlight system,
Diagram for explaining the state of lead wire and reflector

【図8】本発明の第1の実施形態における信号波形図FIG. 8 is a signal waveform diagram according to the first embodiment of the present invention.

【図9】従来型蛍光管の輝度分布を説明する図FIG. 9 is a view for explaining the luminance distribution of a conventional fluorescent tube.

【図10】本発明の一実施形態における蛍光管の輝度分
布を説明する図
FIG. 10 is a diagram illustrating a luminance distribution of a fluorescent tube according to an embodiment of the present invention.

【図11】本発明の第2の実施形態の電気系回路を示す
構成図
FIG. 11 is a configuration diagram showing an electric circuit according to a second embodiment of the present invention.

【図12】本発明の第3実施形態の電気系回路を示す構
成図
FIG. 12 is a configuration diagram showing an electric circuit according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…熱陰極蛍光管、2…従来の熱陰極蛍光管点灯装置の
インバーター回路、2’…本発明の熱陰極蛍光管点灯装
置のインバーター回路、3…ヒーター回路、4…電流検
出回路、5…タイマー回路、6…スイッチ回路、7…P
WMコントロール回路、f1〜f4…フィラメント、T
1〜T5…トランス。
DESCRIPTION OF SYMBOLS 1 ... Hot cathode fluorescent tube, 2 ... Inverter circuit of conventional hot cathode fluorescent tube lighting device, 2 '... Inverter circuit of hot cathode fluorescent tube lighting device of the present invention, 3 ... Heater circuit, 4 ... Current detection circuit, 5 ... Timer circuit, 6 ... Switch circuit, 7 ... P
WM control circuit, f1 to f4 ... filament, T
1 to T5 ... Transformer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱陰極蛍光管点灯装置の直流電源電圧を
所定周波数の交流電圧に変換して、該交流電圧を熱陰極
蛍光管に印加するインバーター回路であって、 管放電用の高圧トランスを2個直列接続して設け、一方
の高圧トランスの電圧出力を、他方の高圧トランスの電
圧出力の逆位相として取り出すことを特徴とする熱陰極
蛍光管点灯装置のインバータ回路。
1. An inverter circuit for converting a DC power supply voltage of a hot cathode fluorescent tube lighting device into an AC voltage having a predetermined frequency and applying the AC voltage to the hot cathode fluorescent tube. An inverter circuit for a hot cathode fluorescent tube lighting device, wherein two inverters are connected in series, and a voltage output of one high voltage transformer is taken out as an opposite phase of a voltage output of the other high voltage transformer.
【請求項2】 熱陰極蛍光管点灯装置の直流電源電圧を
所定周波数の交流電圧に変換して該交流電圧を熱陰極蛍
光管に印加するインバーター回路であって、 管放電用の高圧トランスを2個一組に直列接続したトラ
ンスを複数設けて並列接続し、該複数設けたそれぞれの
トランスの組の一方の高圧トランスの電圧出力を、他方
の高圧トランスの電圧出力の逆位相として、それぞれの
側において併せて取り出すようにしたことを特徴とする
熱陰極蛍光管点灯装置のインバータ回路。
2. An inverter circuit for converting a DC power supply voltage of a hot cathode fluorescent tube lighting device into an AC voltage having a predetermined frequency and applying the AC voltage to the hot cathode fluorescent tube. A plurality of series-connected transformers are provided in parallel and connected in parallel, and the voltage output of one high-voltage transformer of each of the plurality of provided transformer sets is set as the opposite phase of the voltage output of the other high-voltage transformer, and An inverter circuit for a hot cathode fluorescent tube lighting device, wherein the inverter circuit is also taken out.
【請求項3】 直流を交流に変換するインバータ回路を
備え、該インバータ回路の出力電圧を熱陰極蛍光管の両
端の電極に印加することによって該熱陰極蛍光管を点灯
する熱陰極蛍光管の点灯装置において、 前記インバータ回路の出力部に管放電用の高圧トランス
を2個直列接続して設け、一方の高圧トランスの電圧出
力を、他方の高圧トランスの電圧出力の逆位相として取
り出すと共に、 前記インバータ回路のトランス出力と熱陰極蛍光管電極
の間に各々ほぼ容量値の等しい限流素子を介在させて熱
陰極蛍光管を放電させるようにしたことを特徴とする熱
陰極蛍光管の点灯装置。
3. A hot-cathode fluorescent lamp which is provided with an inverter circuit for converting a direct current to an alternating current, and which lights the hot-cathode fluorescent tube by applying an output voltage of the inverter circuit to electrodes at both ends of the hot-cathode fluorescent tube. In the apparatus, two high-voltage transformers for tube discharge are provided in series at an output part of the inverter circuit, and a voltage output of one high-voltage transformer is taken out as an opposite phase of a voltage output of the other high-voltage transformer, and the inverter is provided. A lighting device for a hot cathode fluorescent tube, wherein a current limiting element having substantially the same capacitance value is interposed between a transformer output of a circuit and a hot cathode fluorescent tube electrode to discharge the hot cathode fluorescent tube.
【請求項4】 直流を交流に変換するインバータ回路を
備え、該インバータ回路の出力電圧を熱陰極蛍光管の両
端の電極に印加することによって該熱陰極蛍光管を点灯
する熱陰極蛍光管の点灯装置において、 前記インバータ回路の出力部に管放電用の高圧トランス
を2個一組に直列接続したトランスを複数設けて並列接
続し、 該複数設けたそれぞれのトランスの組の一方の高圧トラ
ンスの電圧出力を他方の高圧トランスの電圧出力の逆位
相として、それぞれの側において併せて取り出すと共
に、 前記インバータ回路の各出力と熱陰極蛍光管電極の間に
各々ほぼ容量値の等しい限流素子を介在させて熱陰極蛍
光管を放電させるようにしたことを特徴とする熱陰極蛍
光管の点灯装置。
4. A hot-cathode fluorescent lamp which is provided with an inverter circuit for converting a direct current to an alternating current, and which lights the hot-cathode fluorescent tube by applying an output voltage of the inverter circuit to electrodes at both ends of the hot-cathode fluorescent tube. In the apparatus, a plurality of transformers in which two high-voltage transformers for tube discharge are connected in series in a set at an output portion of the inverter circuit are connected in parallel, and a voltage of one high-voltage transformer of each of the plurality of provided transformer sets is provided. The outputs are taken out together on each side as the opposite phase of the voltage output of the other high-voltage transformer, and a current limiting element having substantially the same capacitance value is interposed between each output of the inverter circuit and the hot cathode fluorescent tube electrode. A lighting device for a hot cathode fluorescent tube, characterized in that the hot cathode fluorescent tube is discharged by discharging.
JP8241825A 1996-09-12 1996-09-12 Inverter circuit for hot-cathode fluorescent lamp lighting device, and hot-cathode fluorescent lamp lighting device using this inverter circuit Pending JPH1092589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8241825A JPH1092589A (en) 1996-09-12 1996-09-12 Inverter circuit for hot-cathode fluorescent lamp lighting device, and hot-cathode fluorescent lamp lighting device using this inverter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8241825A JPH1092589A (en) 1996-09-12 1996-09-12 Inverter circuit for hot-cathode fluorescent lamp lighting device, and hot-cathode fluorescent lamp lighting device using this inverter circuit

Publications (1)

Publication Number Publication Date
JPH1092589A true JPH1092589A (en) 1998-04-10

Family

ID=17080063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8241825A Pending JPH1092589A (en) 1996-09-12 1996-09-12 Inverter circuit for hot-cathode fluorescent lamp lighting device, and hot-cathode fluorescent lamp lighting device using this inverter circuit

Country Status (1)

Country Link
JP (1) JPH1092589A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231034A (en) * 2001-01-18 2002-08-16 Samsung Electronics Co Ltd Back light assembly and liquid crystal display device having the same
KR100413685B1 (en) * 2001-07-09 2003-12-31 삼성전자주식회사 Apparatus and method for generating control voltage having phase difference
EP1526762A2 (en) * 2003-10-24 2005-04-27 Masakazu Ushijima Inverter circuit for surface light source system
JP2006059816A (en) * 2004-08-20 2006-03-02 O2 Micro Inc Protection for external electrode fluorescent lamp system
JP2007178985A (en) * 2005-12-27 2007-07-12 Lg Phillips Lcd Co Ltd Hybrid backlight driving apparatus for liquid crystal display
JP2007200889A (en) * 2006-01-24 2007-08-09 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Light modulation mode selection circuit, and discharge lamp drive device
US7397198B2 (en) 2004-05-13 2008-07-08 Sony Corporation Fluorescent lamp driver and liquid crystal display apparatus
JP2008270214A (en) * 2002-09-30 2008-11-06 Sharp Corp Backlight unit and liquid crystal display using backlight
JP2009004171A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Discharge lamp lighting device and illuminating device using the same as well as liquid crystal display
US7675241B2 (en) 2004-01-15 2010-03-09 Hon Hai Precision Industry Co., Ltd. Lighting apparatus formed by serially-driven lighting units
US7777431B2 (en) 2002-08-06 2010-08-17 Sharp Kabushiki Kaisha Inverter circuit, fluorescent bulb operating device, backlight device, and liquid crystal display device
JP2012004094A (en) * 2010-05-15 2012-01-05 Saka Techno Science Co Ltd Lighting device and power control method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231034A (en) * 2001-01-18 2002-08-16 Samsung Electronics Co Ltd Back light assembly and liquid crystal display device having the same
KR100413685B1 (en) * 2001-07-09 2003-12-31 삼성전자주식회사 Apparatus and method for generating control voltage having phase difference
US7936136B2 (en) 2002-08-06 2011-05-03 Sharp Kabushiki Kaisha Inverter circuit, fluorescent tube lighting apparatus, backlight apparatus, and liquid crystal display
US7791286B2 (en) 2002-08-06 2010-09-07 Sharp Kabushiki Kaisha Inverter circuit, fluorescent tube lighting apparatus, backlight apparatus, and liquid crystal display
US7786681B2 (en) 2002-08-06 2010-08-31 Sharp Kabushiki Kaisha Inverter circuit, fluorescent tube lighting apparatus, backlight apparatus, and liquid crystal display
US7777431B2 (en) 2002-08-06 2010-08-17 Sharp Kabushiki Kaisha Inverter circuit, fluorescent bulb operating device, backlight device, and liquid crystal display device
JP2008270214A (en) * 2002-09-30 2008-11-06 Sharp Corp Backlight unit and liquid crystal display using backlight
US7141935B2 (en) 2003-10-24 2006-11-28 Masakazu Ushijima Inverter circuit for surface light source system
EP1526762A3 (en) * 2003-10-24 2008-04-09 Masakazu Ushijima Inverter circuit for surface light source system
EP1526762A2 (en) * 2003-10-24 2005-04-27 Masakazu Ushijima Inverter circuit for surface light source system
US7675241B2 (en) 2004-01-15 2010-03-09 Hon Hai Precision Industry Co., Ltd. Lighting apparatus formed by serially-driven lighting units
US7397198B2 (en) 2004-05-13 2008-07-08 Sony Corporation Fluorescent lamp driver and liquid crystal display apparatus
JP2006059816A (en) * 2004-08-20 2006-03-02 O2 Micro Inc Protection for external electrode fluorescent lamp system
JP2007178985A (en) * 2005-12-27 2007-07-12 Lg Phillips Lcd Co Ltd Hybrid backlight driving apparatus for liquid crystal display
US7804480B2 (en) 2005-12-27 2010-09-28 Lg Display Co., Ltd. Hybrid backlight driving apparatus for liquid crystal display
JP4634971B2 (en) * 2005-12-27 2011-02-16 エルジー ディスプレイ カンパニー リミテッド Hybrid backlight driving device for liquid crystal display element
JP2007200889A (en) * 2006-01-24 2007-08-09 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Light modulation mode selection circuit, and discharge lamp drive device
JP2009004171A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Discharge lamp lighting device and illuminating device using the same as well as liquid crystal display
JP2012004094A (en) * 2010-05-15 2012-01-05 Saka Techno Science Co Ltd Lighting device and power control method

Similar Documents

Publication Publication Date Title
US7728528B2 (en) Electronic ballast with preheating and dimming control
US5751120A (en) DC operated electronic ballast for fluorescent light
JP4744064B2 (en) Backlight assembly for external electrode fluorescent lamp, driving method thereof, and liquid crystal display device
JP2005078910A (en) High luminance discharge lamp lighting device
US7635955B2 (en) Back light assembly and display apparatus having the same
JPH1092589A (en) Inverter circuit for hot-cathode fluorescent lamp lighting device, and hot-cathode fluorescent lamp lighting device using this inverter circuit
JP2001507824A (en) Lighting unit and liquid crystal display
US6914391B2 (en) Illuminating device
JP2004241136A (en) Discharge lamp lighting device and display device having the same
US20040100209A1 (en) Electric discharge lamp and electric discharge lamp drive apparatus
US7514878B2 (en) High frequency electronic ballast with sine wave oscillator
US7199526B2 (en) Electronic ballast
JPH10112396A (en) Discharge lamp lighting device
JP4690296B2 (en) Discharge lamp lighting device
JP3899798B2 (en) Electrodeless discharge lamp lighting device
KR101181142B1 (en) Lighting apparatus for rare gas fluorescent lamp
KR200189769Y1 (en) Inverter circuit for use in a fluoresecent lamp
US5909091A (en) Discharge lamp including an integral cathode fall indicator
KR20020060342A (en) Igniter circuit of the high intensity discharge lamp
KR100528698B1 (en) Apparatus and method for driving of lamp
JPH10289791A (en) Lighting circuit for rare gas fluororescent lamp with external electrode and lighting system
KR20200007451A (en) An Apparatus For Lighting Electroless And Cold Cathode Fluorescent Lamps
JP2002289390A (en) Electric discharge lamp equipment
JPH0822894A (en) Discharge lamp lighting device
JP2001160497A (en) Rare gas fluorescent lamp lighting device