JPH10243548A - Line-to-ground fault detector for high-voltage distribution line - Google Patents

Line-to-ground fault detector for high-voltage distribution line

Info

Publication number
JPH10243548A
JPH10243548A JP9039001A JP3900197A JPH10243548A JP H10243548 A JPH10243548 A JP H10243548A JP 9039001 A JP9039001 A JP 9039001A JP 3900197 A JP3900197 A JP 3900197A JP H10243548 A JPH10243548 A JP H10243548A
Authority
JP
Japan
Prior art keywords
zero
phase
output
value
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9039001A
Other languages
Japanese (ja)
Other versions
JP3384481B2 (en
Inventor
Takao Kojima
孝男 小島
Mamoru Iso
守 磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Toko Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Electric Corp filed Critical Toko Electric Corp
Priority to JP03900197A priority Critical patent/JP3384481B2/en
Publication of JPH10243548A publication Critical patent/JPH10243548A/en
Application granted granted Critical
Publication of JP3384481B2 publication Critical patent/JP3384481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a line-to-ground fault with high reliability by outputting a line-to-ground fault signal when the total time for which a phase difference anomaly signal is output when a specified time has passed after the detection of both a detection signal for zero-phase- sequence voltage and a detection signal for zero-phase-sequence current, exceeds a specified value. SOLUTION: The results of detection output from the zero-phase-sequence voltage level detecting circuit 4 and zero-phase-sequence current level detecting circuit 5 of the detector are input to a NAND gate 9. The inverted value of the conjunction of the two inputs is input to a specified time averaging circuit 10, and the result of comparison is also input from a zero-phase-sequence voltage/zero-phase-sequence current phase comparing circuit 6. The circuit 10 is actuated when both a zero-phase-sequence voltage and a zero-phase- sequence current are detected. Then the circuit 10 measures a time for which the value of input from the circuit 6 is '1', calculates a ratio of the measured time to a time which has passed after the stating point of the measurement, and sends the calculated value to a judging circuit 11. The judging circuit 11 judges whether the value of output when a specified time has passed after the start of the operation of the circuit 10 is larger than a specified value. If the output value is larger than the specified value, the judging circuit 11 outputs a line-to- ground fault signal. As a result line-to-ground faults can be detected with reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高圧配電線に発生
した地絡を検出するための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting a ground fault generated in a high-voltage distribution line.

【0002】[0002]

【従来の技術】従来、高圧配電線において発生した地絡
を検出するには、高圧配電線の零相を監視することによ
り行われていた。すなわち、高圧配電線の零相電圧(以
下Voと記す)および零相電流(以下Ioと記す)のレベ
ルの異常と、Voの位相とIoの位相にずれがある場合に
地絡の発生とみなしていた。図4は、従来の地絡検出装
置の構成を示すブロック図である。1は周知の零相抽出
手段であり、計器用変圧器や変流器等から構成され、高
圧配電線から零相を抽出する。抽出された零相の電圧と
電流は、それぞれ零相電圧フィルタ2、零相電流フィル
タ3へ入力された後に、それぞれ零相電圧レベル検出回
路4、零相電流レベル検出回路5に入力され、零相電流
および零相電圧がそれぞれ所定レベル以上か否かが判別
される。
2. Description of the Related Art Conventionally, ground faults generated in a high-voltage distribution line have been detected by monitoring the zero-phase of the high-voltage distribution line. In other words, abnormalities in the levels of the zero-phase voltage (hereinafter referred to as Vo) and the zero-phase current (hereinafter referred to as Io) of the high-voltage distribution line and the occurrence of a ground fault are considered when there is a deviation between the phases of Vo and Io. I was FIG. 4 is a block diagram showing a configuration of a conventional ground fault detecting device. Reference numeral 1 denotes a well-known zero-phase extracting unit, which includes a transformer for an instrument, a current transformer, and the like, and extracts a zero-phase from a high-voltage distribution line. The extracted zero-phase voltage and current are input to a zero-phase voltage filter 2 and a zero-phase current filter 3, respectively, and then input to a zero-phase voltage level detection circuit 4 and a zero-phase current level detection circuit 5, respectively. It is determined whether the phase current and the zero-phase voltage are each equal to or higher than a predetermined level.

【0003】具体的には、アナログ信号からなるVo及
びIoを全波整流直流化し、その波高値が一定のしきい
値以上か否かを判別し、一定のしきい値以上のVo及び
Ioを、継続するサイクルに応じた振幅にクリップした
矩形波信号として出力する。また、アナログ信号として
入力された零相電流および零相電圧は、各々零クロス点
が検出されて一定振幅にクリップした矩形波信号に変換
され、零相電圧/零相電流位相比較回路6に入力され
る。比較回路6は、両位相を比較し、進み/遅れが一定
値以上か否かを判別してその判別結果をANDゲート7
に入力する。ここで、零相電圧レベルおよび零相電流レ
ベルが一定以上であってかつ零相電圧の位相と零相電流
の位相にずれがある場合は、ANDゲート7の論理積条
件が成立して出力される。論理積条件成立の出力結果は
タイマ8に入力され、一定時間を経過した後に、地絡検
出信号が出力される。
More specifically, Vo and Io composed of analog signals are converted into full-wave rectified DC, and whether or not the peak value is equal to or greater than a certain threshold value is determined. , And output as a rectangular wave signal clipped to an amplitude corresponding to a continuous cycle. The zero-phase current and the zero-phase voltage input as analog signals are converted into rectangular wave signals each having a zero cross point detected and clipped to a constant amplitude, and input to the zero-phase voltage / zero-phase current phase comparison circuit 6. Is done. The comparison circuit 6 compares the two phases, determines whether the lead / lag is equal to or greater than a predetermined value, and outputs the determination result to an AND gate 7.
To enter. Here, when the zero-phase voltage level and the zero-phase current level are equal to or higher than a certain value and there is a difference between the phase of the zero-phase voltage and the phase of the zero-phase current, the AND condition of the AND gate 7 is satisfied and the output is performed. You. The output result of the satisfaction of the logical product condition is input to the timer 8, and after a certain period of time, a ground fault detection signal is output.

【0004】図5は、図4における動作を示すタイミン
グチャートであり、地絡が発生すると、その発生期間と
ほぼ同一期間のAND出力がなされ、その期間がタイマ
値T0よりも長いと、地絡検出信号が出力される。とこ
ろで、碍子アークやケーブルアークを伴う地絡事故時の
VoとIoの波形は、急峻なパルス状となることが多い。
そこで、高周波ノイズと選別するため、コンデンサーC
と抵抗Rを組合わせたCR形アナログ積分回路を使用し
ている。
FIG. 5 is a timing chart showing the operation in FIG. 4. When a ground fault occurs, an AND output is made for substantially the same period as the occurrence period, and when the period is longer than the timer value T0, a ground fault occurs. A detection signal is output. Incidentally, the waveforms of Vo and Io at the time of a ground fault involving an insulator arc or a cable arc often have a steep pulse shape.
Therefore, to distinguish it from high-frequency noise, a capacitor C
A CR type analog integrator circuit using a combination of a resistor and a resistor R is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このC
R形アナログ積分回路では、事故現象により、VoとIo
の位相差が経時的に変動する場合、正確に検出すること
が困難である。そのため、地絡検出装置の位相比較判定
データが不安定になり、規定の時限以上地絡が発生して
も、地絡として検出されずに、高圧配電線の適切な保護
が行えないことがあった。図6はその場合の動作を示す
タイミングチャートである。すなわち、地絡時、Voと
Ioの波形歪みが大きいと、両者の位相比較結果にエラ
ー(負荷側地絡なのに電源側地絡と判定する等)が発生
してAND出力が一部欠落し、検出時限内の有効な信号
がカウントされないことになる。その結果、合計すれば
地絡が規定時限以上発生しているにもかかわらず、個々
のAND出力期間T1,T2,T3は、いずれもタイマ
値T0より短いため、地絡として検出されない事態が生
じる。
However, this C
In an R-type analog integrating circuit, Vo and Io
If the phase difference fluctuates with time, it is difficult to detect accurately. As a result, the phase comparison determination data of the ground fault detection device becomes unstable, and even if a ground fault occurs for a specified time period or more, the ground fault is not detected and proper protection of the high-voltage distribution line may not be performed. Was. FIG. 6 is a timing chart showing the operation in that case. That is, if the waveform distortion of Vo and Io is large at the time of the ground fault, an error (such as a load-side ground fault but a power-supply-side ground fault) occurs in the phase comparison result, and the AND output is partially lost. A valid signal within the detection time limit will not be counted. As a result, despite the fact that the ground fault occurs more than the prescribed time period in total, since each of the AND output periods T1, T2, T3 is shorter than the timer value T0, a situation occurs in which the ground output is not detected as a ground fault. .

【0006】[0006]

【課題を解決するための手段】そこで上記課題を解決す
るために、請求項1の発明は、高圧配電線の零相電圧お
よび零相電流を抽出する手段と、抽出された零相電圧が
入力され所定の周波数帯域のみ通過させる零相電圧フィ
ルタと、抽出された零相電流が入力され所定の周波数帯
域のみ通過させる零相電流フィルタと、零相電圧フィル
タから出力された零相電圧レベルが一定値以上である場
合に零相電圧検出信号を出力する零相電圧検出回路と、
零相電流フィルタから出力された零相電流レベルが一定
値以上である場合に零相電流検出信号を出力する零相電
流検出回路と、零相電圧フィルタ、零相電流フィルタか
らそれぞれ出力された零相電圧と零相電流の互いの位相
を比較して、両者間の位相差に異常がある場合に位相差
異常信号を出力する零相電圧/零相電流位相比較回路と
を備えて、零相電圧検出信号と零相電流検出信号と位相
差異常信号の全ての信号が一定時間以上出力された場合
に地絡検出信号を出力する高圧配電線の地絡検出装置に
おいて、零相電圧検出信号と零相電流検出信号がともに
出力されている間に作動して、位相差異常信号が出力さ
れている延べ時間を計測し、零相電圧検出信号と零相電
流検出信号がともに出力されて所定時間が経過したとき
に、それまでに計測された位相差異常信号の出力延べ時
間を読み取り、その値が所定値を越えていれば地絡検出
信号を出力する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first aspect of the present invention provides a means for extracting a zero-sequence voltage and a zero-sequence current of a high-voltage distribution line. A zero-phase voltage filter that passes only the predetermined frequency band, a zero-phase current filter that receives the extracted zero-phase current and passes only the predetermined frequency band, and a zero-phase voltage level output from the zero-phase voltage filter is constant. A zero-phase voltage detection circuit that outputs a zero-phase voltage detection signal when the value is equal to or greater than
A zero-phase current detection circuit that outputs a zero-phase current detection signal when the zero-phase current level output from the zero-phase current filter is equal to or higher than a predetermined value; and zeros output from the zero-phase voltage filter and the zero-phase current filter, respectively. A zero-phase voltage / zero-phase current phase comparison circuit for comparing the phases of the phase voltage and the zero-phase current and outputting a phase difference abnormality signal when the phase difference between the two is abnormal; In a high-voltage distribution line ground fault detection device that outputs a ground fault detection signal when all signals of a voltage detection signal, a zero-phase current detection signal, and a phase difference abnormality signal are output for a predetermined time or more, a zero-phase voltage detection signal It operates while the zero-phase current detection signal is output, measures the total time during which the phase difference abnormal signal is output, and outputs the zero-phase voltage detection signal and the zero-phase current detection signal together for a predetermined time. Has elapsed, Has been read output total time of the phase difference error signal, the value to output a ground fault detection signal if exceeds a predetermined value.

【0007】請求項2の発明は、請求項1の発明におい
て、零相電圧検出信号と零相電流検出信号がともに出力
されている間に、2値化された位相差異常信号の値を周
期的にサンプリングし、値が1の場合にカウントアップ
し値が0の場合にカウントダウンするアップダウンカウ
ンタを備え、所定時間経過後にアップダウンカウンタの
カウント値を読み取り、その値が正である場合に地絡検
出信号を出力する。
According to a second aspect of the present invention, in the first aspect of the present invention, while the zero-phase voltage detection signal and the zero-phase current detection signal are both being output, the value of the binarized phase difference abnormal signal is cycled. An up-down counter that counts up when the value is 1 and counts down when the value is 0, reads the count value of the up-down counter after a predetermined time has elapsed, and reads the count value when the value is positive. Outputs a fault detection signal.

【0008】[0008]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は、本発明の実施形態の概略構成を
示すブロック図である。この図1に示された構成は、図
4に示した従来の構成の一部を変更したものであり、共
通部分についての説明を省略し、異なる部分についての
み説明する。零相電圧レベル検出回路4および零相電流
レベル検出回路5から出力された検出結果が、NAND
ゲート9に入力され、その2入力の論理積の反転値が規
定時間平均化回路10へ入力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention. The configuration shown in FIG. 1 is a modification of the conventional configuration shown in FIG. 4, and a description of common parts is omitted, and only different parts will be described. The detection results output from the zero-phase voltage level detection circuit 4 and the zero-phase current level detection circuit 5
The input is input to the gate 9, and the inverted value of the logical product of the two inputs is input to the specified time averaging circuit 10.

【0009】また、零相電圧/零相電流位相比較回路6
の比較結果も、規定時間平均化回路10へ入力される。
回路10は、NANDゲート9からの入力が0すなわち
零相電圧および零相電流がともに検出されている場合に
作動を開始して、回路6からの入力値が1である時間を
計測しその計測時間と計測開始時点からの経過時間との
比を算出し、その値を判別回路11へ送る。ここで求め
られる比は、0から1までの値をとり、零相の位相差異
常発生時間が長いほど大きい値となる。判別回路11
は、回路10の動作が開始されて所定時間経過したとき
に、回路10から出力値が所定値、ここでは0.5より
も大きいか否かを判別し、大きい場合は地絡検出信号を
出力する。
Also, a zero-phase voltage / zero-phase current phase comparison circuit 6
Is also input to the specified time averaging circuit 10.
The circuit 10 starts operation when the input from the NAND gate 9 is 0, that is, when both the zero-phase voltage and the zero-phase current are detected, measures the time when the input value from the circuit 6 is 1, and measures the time. The ratio between the time and the elapsed time from the start of the measurement is calculated, and the value is sent to the determination circuit 11. The ratio obtained here takes a value from 0 to 1, and becomes larger as the zero-phase phase difference abnormality occurrence time is longer. Discrimination circuit 11
Determines whether the output value is greater than a predetermined value, here 0.5, from the circuit 10 when a predetermined time has elapsed after the operation of the circuit 10 is started, and outputs a ground fault detection signal if the output value is larger than 0.5. I do.

【0010】図2は図1の規定時間平均化回路10およ
び判別回路11部分の具体的な構成を示すブロック図で
あり、図3は図2の各部に入出力される信号を示すタイ
ミングチャートである。以下、図3のタイミングチャー
トを参照しながら、図2中の各部の動作を説明する。図
2中のフリップフロップ(F/F)21は、図1の零相
電圧/零相電流位相比較回路6に相当し、端子Dに零相
電圧位相aが、端子Cに零相電流位相bが入力される。
NANDゲート9には、零相電圧レベルcと零相電流レ
ベルdが入力され、その出力eがF/F21、アップダ
ウンカウンタ22およびカウンタ23のリセット端子R
に入力される。
FIG. 2 is a block diagram showing a specific configuration of the specified time averaging circuit 10 and the discriminating circuit 11 shown in FIG. 1, and FIG. 3 is a timing chart showing signals input to and output from each section shown in FIG. is there. Hereinafter, the operation of each unit in FIG. 2 will be described with reference to the timing chart of FIG. A flip-flop (F / F) 21 in FIG. 2 corresponds to the zero-phase voltage / zero-phase current phase comparison circuit 6 in FIG. Is entered.
The zero-phase voltage level c and the zero-phase current level d are input to the NAND gate 9, and the output e thereof is output to the F / F 21, the up / down counter 22, and the reset terminal R of the counter 23.
Is input to

【0011】すなわち、F/F21、カウンタ22,2
3は、NANDゲート9の入力c,dがともに1となり
出力eが0に反転すると、それぞれリセットが解除され
て動作を開始する。F/F21は、動作を開始すると、
零相電流位相bのアップエッジのタイミングで零相電圧
位相aの値をF/F出力fとして次段のカウンタ22へ
送る。ここでF/F出力fは、零相の電圧と電流の互い
の位相差が地絡のため異常である場合に1となる。
That is, the F / F 21 and the counters 22 and 2
In the case of No. 3, when the inputs c and d of the NAND gate 9 both become 1 and the output e is inverted to 0, the reset is released and the operation starts. When the F / F 21 starts operation,
At the timing of the rising edge of the zero-phase current phase b, the value of the zero-phase voltage phase a is sent to the next-stage counter 22 as the F / F output f. Here, the F / F output f becomes 1 when the phase difference between the zero-phase voltage and the current is abnormal due to a ground fault.

【0012】アップダウンカウンタ22も出力eが0に
反転すると動作を開始し、サンプリングクロックgのタ
イミングでF/F出力fの値をアップダウンカウント
し、カウント値が0または正の間は出力hを1とし、負
の間は0として出力する。すなわち、F/F出力fの値
が1である間はカウント値をインクリメントし、0の間
はデクリメントすることにより、F/F出力fが1であ
る期間が全体の半分を越えている状態で、カウンタ出力
hが1となる。このカウンタ22の出力hは、F/F2
4に入力される。
The up / down counter 22 also starts operating when the output e is inverted to 0, counts up / down the value of the F / F output f at the timing of the sampling clock g, and outputs h while the count value is 0 or positive. Is set to 1 and 0 is output during a negative period. That is, the count value is incremented while the value of the F / F output f is 1, and decremented while the value of the F / F output f is 0, so that the period during which the F / F output f is 1 exceeds half of the whole. , The counter output h becomes 1. The output h of this counter 22 is F / F2
4 is input.

【0013】また、カウンタ23はタイマとして機能
し、出力eが0に反転すると動作を開始し、時間カウン
ト用クロックを所定数カウントすると、カウンタ出力i
を1に反転して、次段のF/F24のC端子に入力す
る。F/F24は、カウンタ23の出力iが1に反転し
たタイミングでカウンタ22の出力hの値を、地絡検出
出力jとして出力する。
The counter 23 functions as a timer, and starts operating when the output e is inverted to 0. When a predetermined number of time counting clocks are counted, the counter output i
Is inverted to 1 and input to the C terminal of the next stage F / F 24. The F / F 24 outputs the value of the output h of the counter 22 as a ground fault detection output j at the timing when the output i of the counter 23 is inverted to 1.

【0014】なお、本発明における位相判定は、Voと
Ioの零クロス点を検出し、一定振幅にクリップした矩
形波信号に変換し、一方の信号の立ち上がり・立ち下が
りタイミングで他方の信号状態を判定し、両者の所定位
相関係(この場合、負荷側で地絡事故が発生した位相関
係)にあわせて、フリップフロップなどを用いてエッジ
検出し、位相判定結果を出力する。また、NAND出力
の立ち下がりからNAND出力の立ち上がり迄の時間を
検出時限カウンタでカウントし、検出時限成立時点のア
ップダウンカウンタ平均値データを参照し、地絡方向を
決定する。
In the phase determination in the present invention, the zero cross point of Vo and Io is detected, converted into a rectangular wave signal clipped to a constant amplitude, and the state of the other signal is changed at the rise / fall timing of one signal. Judgment is made, an edge is detected using a flip-flop or the like in accordance with a predetermined phase relationship between the two (in this case, a phase fault in which a ground fault has occurred on the load side), and a phase judgment result is output. The time from the fall of the NAND output to the rise of the NAND output is counted by the detection time counter, and the ground fault direction is determined with reference to the average data of the up / down counter at the time when the detection time is satisfied.

【0015】このようにして、Vo及びIoの波形欠け等
により、正負いずれにも判定できないデータが発生した
場合であっても、検出時限内の正、負のデータ数によ
り、多数決検定を行い、正データ数が半数以上であれ
ば、地絡事故発生と判定することができる。なお、上述
した実施形態では、NAND出力を一定時間平均化する
ことにより、出力を判定することができる。例えば、1
/0データを10msのサンプリングで多数決をとる等
の容易な処理で対応可能である。また、本発明における
平均化の処理は、ソフトウエアによっても実現可能であ
り、平均化の判定しきい値についても、正、負データを
同数とした以外の、他の比率に設定することも可能であ
る。
In this way, even if data that cannot be determined to be positive or negative occurs due to lack of waveforms of Vo and Io, a majority test is performed based on the number of positive and negative data within the detection time period. If the number of positive data is half or more, it can be determined that a ground fault has occurred. In the above-described embodiment, the output can be determined by averaging the NAND output for a certain period of time. For example, 1
This can be dealt with by simple processing such as taking a majority decision with sampling of / 0 data at 10 ms. Also, the averaging process in the present invention can be realized by software, and the averaging determination threshold can be set to another ratio other than the same number of positive and negative data. It is.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、アー
クを伴う地絡事故のように、零相電圧と零相電流の位相
差が経時的に変化して検出されるために位相差異常が不
連続となる場合でも、確実に地絡の検出が可能となり、
地絡検出装置の信頼性を向上させることが可能になる。
As described above, according to the present invention, the phase difference between the zero-sequence voltage and the zero-sequence current changes with time and is detected as in a ground fault accident involving an arc. Even if the abnormality becomes discontinuous, the ground fault can be reliably detected,
It is possible to improve the reliability of the ground fault detecting device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の概略構成を示すブロック図
である。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.

【図2】図1の要部の具体的な構成を示すブロック図で
ある。
FIG. 2 is a block diagram showing a specific configuration of a main part of FIG. 1;

【図3】図2の各部に入出力される信号を示すタイミン
グチャートである。
FIG. 3 is a timing chart showing signals input to and output from each unit in FIG. 2;

【図4】従来例を示すブロック図である。FIG. 4 is a block diagram showing a conventional example.

【図5】図4における動作を示すタイミングチャートで
ある。
FIG. 5 is a timing chart showing the operation in FIG.

【図6】図4における動作を示すタイミングチャートで
ある。
FIG. 6 is a timing chart showing the operation in FIG.

【符号の説明】[Explanation of symbols]

1 零相抽出手段 2 零相電圧フィルタ 3 零相電流フィルタ 4 零相電圧レベル検出回路 5 零相電流レベル検出回路 6 零相電圧/零相電流位相比較回路 9 NANDゲート 10 規定時間平均化回路 11 判別回路 21 フリップフロップ(F/F) 22 アップダウンカウンタ 23 カウンタ 24 F/F DESCRIPTION OF SYMBOLS 1 Zero-phase extraction means 2 Zero-phase voltage filter 3 Zero-phase current filter 4 Zero-phase voltage level detection circuit 5 Zero-phase current level detection circuit 6 Zero-phase voltage / zero-phase current phase comparison circuit 9 NAND gate 10 Specified time averaging circuit 11 Discrimination circuit 21 Flip-flop (F / F) 22 Up / down counter 23 Counter 24 F / F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高圧配電線の零相電圧および零相電流を
抽出する手段と、 抽出された零相電圧が入力され所定の周波数帯域のみ通
過させる零相電圧フィルタと、 抽出された零相電流が入力され所定の周波数帯域のみ通
過させる零相電流フィルタと、 零相電圧フィルタから出力された零相電圧レベルが一定
値以上である場合に零相電圧検出信号を出力する零相電
圧検出回路と、 零相電流フィルタから出力された零相電流レベルが一定
値以上である場合に零相電流検出信号を出力する零相電
流検出回路と、 零相電圧フィルタ、零相電流フィルタからそれぞれ出力
された零相電圧と零相電流の互いの位相を比較して、両
者間の位相差に異常がある場合に位相差異常信号を出力
する零相電圧/零相電流位相比較回路と、 を備えて、零相電圧検出信号と零相電流検出信号と位相
差異常信号の全ての信号が一定時間以上出力された場合
に地絡検出信号を出力する高圧配電線の地絡検出装置に
おいて、 零相電圧検出信号と零相電流検出信号がともに出力され
ている間に作動して、位相差異常信号が出力されている
延べ時間を計測する手段と、 零相電圧検出信号と零相電流検出信号がともに出力され
て所定時間が経過したときに、それまでに計測された位
相差異常信号の出力延べ時間を読み取り、その値が所定
値を越えていれば地絡検出信号を出力する手段と、 を備えたことを特徴とする高圧配電線の地絡検出装置。
1. Means for extracting a zero-phase voltage and a zero-phase current of a high-voltage distribution line, a zero-phase voltage filter that receives the extracted zero-phase voltage and passes only a predetermined frequency band, and an extracted zero-phase current A zero-phase current filter that inputs only a predetermined frequency band and a zero-phase voltage detection circuit that outputs a zero-phase voltage detection signal when the zero-phase voltage level output from the zero-phase voltage filter is equal to or more than a certain value. A zero-phase current detection circuit that outputs a zero-phase current detection signal when the zero-phase current level output from the zero-phase current filter is equal to or greater than a certain value; and a zero-phase voltage filter and a zero-phase current filter. A zero-phase voltage / zero-phase current phase comparison circuit that compares the phases of the zero-phase voltage and the zero-phase current and outputs a phase difference abnormality signal when there is an abnormality in the phase difference between the two. Zero-phase voltage detection signal A zero-phase voltage detection signal and a zero-phase current in a high-voltage distribution line ground-fault detection device that outputs a ground-fault detection signal when all of the zero-phase current detection signal and the phase difference abnormality signal are output for a certain period of time or more. A means that operates while the detection signal is output to measure the total time during which the phase difference abnormality signal is output, and a predetermined time when both the zero-phase voltage detection signal and the zero-phase current detection signal are output. Means for reading the total output time of the phase difference abnormality signal measured up to that time, and outputting a ground fault detection signal if the value exceeds a predetermined value. Ground fault detector for high voltage distribution lines.
【請求項2】 請求項1記載の高圧配電線の地絡検出装
置において、 零相電圧検出信号と零相電流検出信号の2信号がともに
出力されている間に、2値化された位相差異常信号の値
を周期的にサンプリングし、値が1の場合にカウントア
ップし値が0の場合にカウントダウンするアップダウン
カウンタを備え、所定時間経過後にアップダウンカウン
タのカウント値を読み取り、その値が正である場合に地
絡検出信号を出力することを特徴とする高圧配電線の地
絡検出装置。
2. The ground fault detecting device for a high-voltage distribution line according to claim 1, wherein the binary phase difference is output while both the zero-phase voltage detection signal and the zero-phase current detection signal are being output. An up / down counter that periodically samples the value of the abnormal signal, counts up when the value is 1, and counts down when the value is 0, reads the count value of the up / down counter after a predetermined time has elapsed, and reads the value A ground fault detection device for a high-voltage distribution line, which outputs a ground fault detection signal when positive.
JP03900197A 1997-02-24 1997-02-24 Ground fault detector for high voltage distribution lines Expired - Fee Related JP3384481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03900197A JP3384481B2 (en) 1997-02-24 1997-02-24 Ground fault detector for high voltage distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03900197A JP3384481B2 (en) 1997-02-24 1997-02-24 Ground fault detector for high voltage distribution lines

Publications (2)

Publication Number Publication Date
JPH10243548A true JPH10243548A (en) 1998-09-11
JP3384481B2 JP3384481B2 (en) 2003-03-10

Family

ID=12540896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03900197A Expired - Fee Related JP3384481B2 (en) 1997-02-24 1997-02-24 Ground fault detector for high voltage distribution lines

Country Status (1)

Country Link
JP (1) JP3384481B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202357A (en) * 2001-11-01 2003-07-18 Toshiba Corp Method and apparatus for insulation monitoring
JP2006262597A (en) * 2005-03-16 2006-09-28 Univ Nagoya Protection system of distribution system
JP2011217481A (en) * 2010-03-31 2011-10-27 Daihen Corp Ground fault direction detecting device
CN102623948A (en) * 2012-04-07 2012-08-01 乐清市恒亚电气有限公司 Wide-voltage range phase sequence, phase coincidence and phase failure protector
CN102928729A (en) * 2012-10-30 2013-02-13 清华大学 High-resistance ground fault detection method based on zero-sequence current zero crossing point interruption discrimination
CN103364685A (en) * 2013-07-22 2013-10-23 珠海创能科世摩电气科技有限公司 Current temperature on-line fault indicator and method for judging fault
CN103576045A (en) * 2012-07-20 2014-02-12 施耐德电器工业公司 Directional detection of a sensitive medium-voltage earth fault by linear correlation
CN104111370A (en) * 2014-06-30 2014-10-22 陕西和硕电气有限公司 Method for measuring zero-sequence current in three-phase ungrounded system
CN104166067A (en) * 2014-08-06 2014-11-26 湖南英科电力技术有限公司 Single-phase earth fault positioning detection method and device
CN105388396A (en) * 2015-11-04 2016-03-09 中国矿业大学 Method of tracing voltage sag source by using sequence active increment current direction
CN110542832A (en) * 2019-09-18 2019-12-06 南方电网科学研究院有限责任公司 Method and device for positioning high-resistance grounding fault section of power distribution network and storage medium
CN112904256A (en) * 2021-01-27 2021-06-04 胜达克半导体科技(上海)有限公司 Circuit self-checking method of automatic tester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022992A (en) * 2012-11-23 2013-04-03 山东电力集团公司 Feeder ground positioning method based on dispersion zero sequence voltage detection

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202357A (en) * 2001-11-01 2003-07-18 Toshiba Corp Method and apparatus for insulation monitoring
JP2006262597A (en) * 2005-03-16 2006-09-28 Univ Nagoya Protection system of distribution system
JP4613652B2 (en) * 2005-03-16 2011-01-19 国立大学法人名古屋大学 Distribution system protection system
JP2011217481A (en) * 2010-03-31 2011-10-27 Daihen Corp Ground fault direction detecting device
CN102623948A (en) * 2012-04-07 2012-08-01 乐清市恒亚电气有限公司 Wide-voltage range phase sequence, phase coincidence and phase failure protector
CN103576045B (en) * 2012-07-20 2017-06-23 施耐德电器工业公司 By the sensitive middle crimping earth fault of linear correlation angle detecting
CN103576045A (en) * 2012-07-20 2014-02-12 施耐德电器工业公司 Directional detection of a sensitive medium-voltage earth fault by linear correlation
CN102928729A (en) * 2012-10-30 2013-02-13 清华大学 High-resistance ground fault detection method based on zero-sequence current zero crossing point interruption discrimination
CN103364685A (en) * 2013-07-22 2013-10-23 珠海创能科世摩电气科技有限公司 Current temperature on-line fault indicator and method for judging fault
CN104111370A (en) * 2014-06-30 2014-10-22 陕西和硕电气有限公司 Method for measuring zero-sequence current in three-phase ungrounded system
CN104166067A (en) * 2014-08-06 2014-11-26 湖南英科电力技术有限公司 Single-phase earth fault positioning detection method and device
CN105388396A (en) * 2015-11-04 2016-03-09 中国矿业大学 Method of tracing voltage sag source by using sequence active increment current direction
CN105388396B (en) * 2015-11-04 2018-10-26 中国矿业大学 A method of tracing voltage sag source with the active increment current direction of sequence
CN110542832A (en) * 2019-09-18 2019-12-06 南方电网科学研究院有限责任公司 Method and device for positioning high-resistance grounding fault section of power distribution network and storage medium
CN112904256A (en) * 2021-01-27 2021-06-04 胜达克半导体科技(上海)有限公司 Circuit self-checking method of automatic tester
CN112904256B (en) * 2021-01-27 2024-05-10 胜达克半导体科技(上海)股份有限公司 Circuit self-checking method of automatic testing machine

Also Published As

Publication number Publication date
JP3384481B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
US10283956B2 (en) Direct current arc fault detector and circuit interrupter, and method of detecting an arc in a direct current power circuit
US5914663A (en) Detection of subsidence current in the determination of circuit breaker status in a power system
JP3384481B2 (en) Ground fault detector for high voltage distribution lines
US7136265B2 (en) Load recognition and series arc detection using bandpass filter signatures
US8248109B2 (en) Methods and systems for detection of zero crossings in a signal
US20060114627A1 (en) Load recognition and series arc detection using load current/line voltage normalization algorithms
CN1656359A (en) Instantaneous overcurrent element for heavily saturated current in a power system
US20140095087A1 (en) Method for generating a fault signal
JPH0882681A (en) Radiation measuring system
JPH073440B2 (en) Signal detector
US6466002B1 (en) Method for detecting a rotation direction in three-phase networks
KR100357494B1 (en) Method for selecting a optimal modal transformation of relay algorithm using high frequency signal and for detecting fault discrimination using thereof
US5477408A (en) System for detecting certain erroneous fault-indicating data in a protective relay for power systems
JP2741131B2 (en) Power monitoring recorder
KR102670482B1 (en) Partial discharge measurement method for insulation diagnosis of high-voltage rotating machine
US20020041474A1 (en) Method for protection of an electrical power line
JPH06300812A (en) Method for detecting partial discharge of high voltage device
JP4019347B2 (en) Method and apparatus for detecting phase loss of three-phase power supply
JPH0538038A (en) Overcurrent protective relay
KR20230075670A (en) Partial discharge measurement method for insulation diagnosis of high-voltage rotating machine
JP2643119B2 (en) Flow measurement device
JPS6235729A (en) Hit analyzer for digital circuit
JPH0789070B2 (en) Electromagnetic flow meter
JPH06284560A (en) System anomaly detection method
JPH07298475A (en) Circuit breaker

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021211

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees