JPH10135051A - Voltage dropping ratio controller for auto-transformer - Google Patents

Voltage dropping ratio controller for auto-transformer

Info

Publication number
JPH10135051A
JPH10135051A JP8300931A JP30093196A JPH10135051A JP H10135051 A JPH10135051 A JP H10135051A JP 8300931 A JP8300931 A JP 8300931A JP 30093196 A JP30093196 A JP 30093196A JP H10135051 A JPH10135051 A JP H10135051A
Authority
JP
Japan
Prior art keywords
autotransformer
switch
mode
down ratio
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8300931A
Other languages
Japanese (ja)
Inventor
Osami Nasuno
長三 那須野
Norihiro Takahashi
則博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Co Ltd
Original Assignee
Taisei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Co Ltd filed Critical Taisei Co Ltd
Priority to JP8300931A priority Critical patent/JPH10135051A/en
Priority to KR1019970054778A priority patent/KR100326960B1/en
Publication of JPH10135051A publication Critical patent/JPH10135051A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/02Auto-transformers

Abstract

PROBLEM TO BE SOLVED: To obtain an extremely high power saving efficiency by selecting one mode out of first, second, and third modes by controlling a switching means by means of a voltage-detecting and controlling means according to the output voltage of an auto-transformer. SOLUTION: A voltage-detecting and controlling circuit 12 controls switches SW1-SW5 according to the output voltage Vo of an auto-transformer (across the terminals (r) and (t) of the transformer). Upon detecting the output voltage Vo, the circuit sets a first mode in which the input and output of the transformer is nearly connected to each other by removing common windings W2 and W3 from the transformer, to a second mode in which the voltage dropping ratio of the transformer is set at a first voltage dropping ratio by inserting the windings W2 and W3 into the transformer, or to a third mode in which the voltage dropping ratio is set at a second voltage dropping ratio, which is larger than the first ratio by inserting either one of the second windings W2 and W3 into the transformer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単巻変圧器(auto
-transformer)の降圧比を単巻変圧器の出力電圧に応じ
て制御する装置に関する。
The present invention relates to an autotransformer (automatic
-transformer) according to the output voltage of the autotransformer.

【0002】本発明によれば、単巻変圧器の2次側に接
続された電気機器に印加される電圧を自動的に適切な値
に調節することができる。従って、負荷である電気機器
に必要以上の高電圧を加えることがないために極めて良
好な節電効果が可能である。
According to the present invention, the voltage applied to the electric equipment connected to the secondary side of the autotransformer can be automatically adjusted to an appropriate value. Therefore, an extremely high power saving effect can be achieved because an unnecessarily high voltage is not applied to the electric device as a load.

【0003】[0003]

【従来の技術】無駄な電力消費を避けることは、地球資
源の有効利用、環境保全の観点から望ましいだけでな
く、電力使用料を少なくする点で需要家の強い関心を引
く問題である。中規模及び小規模の電力需要家、例え
ば、スーパーマーケット、コンビニエンスストア、事務
所、一般家庭等では、電力供給会社が供給する電圧をそ
のまま電気機器に印加して使用しているのが普通であ
る。この場合の節電は、不要な電気機器の電源をこまめ
に切って全体の電力使用料を低くするという消極的な対
応である。
2. Description of the Related Art Avoiding useless power consumption is not only desirable from the viewpoint of effective use of earth resources and environmental protection, but also a problem that draws a strong interest from consumers in reducing power consumption. In medium- and small-scale power consumers, for example, supermarkets, convenience stores, offices, ordinary homes, and the like, it is common to apply the voltage supplied by the power supply company to the electrical equipment as it is. Power saving in this case is a passive measure of reducing the overall power usage fee by frequently turning off the power of unnecessary electrical devices.

【0004】他の節電方法は、電気機器の定格電圧に幅
があることに着目し、入力電圧を一律に下げる方法であ
る。しかし、この方法は、入力電圧の変動に考慮が払わ
れていないため入力電圧が一時的であっても異常に低下
した場合には、電気機器の動作の信頼性が保証されない
という問題があった。
[0004] Another power saving method is a method in which the input voltage is reduced uniformly, noting that there is a range in the rated voltage of the electric equipment. However, this method has a problem in that the reliability of the operation of the electric device is not guaranteed if the input voltage temporarily drops abnormally even if the input voltage is temporary because no consideration is given to the fluctuation of the input voltage. .

【0005】[0005]

【発明が解決しようとする課題】本発明は、単巻変圧器
の出力電圧に応じてこの単巻変圧器の降圧比を制御し、
常時適切な電圧を単巻変圧器の負荷(電気機器)に加え
ることにより極めて高い節電効率を実現することであ
る。
SUMMARY OF THE INVENTION The present invention controls the step-down ratio of an autotransformer in accordance with the output voltage of the autotransformer.
It is to realize extremely high power saving efficiency by always applying an appropriate voltage to the load (electric equipment) of the autotransformer.

【0006】更に、本発明は、単巻変圧器の降圧比を変
更するスイッチ切換の際に発生する突入電流及び逆起電
力誘気の抑制を図ると共に、スイッチの誤動作による単
巻変圧器の分路巻線の焼損を防止することである。
Further, the present invention aims to suppress inrush current and counter electromotive force induced at the time of switch switching for changing the step-down ratio of the autotransformer, and to shunt the autotransformer due to malfunction of the switch. The purpose is to prevent burning of the winding.

【0007】[0007]

【課題を解決するための手段】本発明に係る単巻変圧器
の降圧比制御装置は、第1直列巻線と、第1及び第2分
路巻線と、第2直列巻線とを直列接続して1次巻線と
し、上記第1及び第2分路巻線を2次巻線とする単相3
線単巻変圧器と;上記第1及び第2分路巻線を上記単巻
変圧器から除去して該単巻変圧器の入出力間を略々直結
する第1モードとし、或いは上記第1及び第2分路巻線
を上記単巻変圧器に挿入して該単巻変圧器の降圧比を第
1の降圧比とする第2モードとし、又は上記第1及び第
2分路巻線の何れか一方を上記単巻変圧器に挿入して該
単巻変圧器の降圧比を上記第1の降圧比よりも大きい第
2の降圧比とする第3モードとする複数のスイッチを有
するスイッチ手段と;上記単巻変圧器の出力電圧に応じ
て上記スイッチ手段を制御して上記第1、第2及び第3
モードの何れかを選択する電圧検出制御手段とを有す
る。
A step-down ratio control device for an autotransformer according to the present invention includes a first series winding, first and second shunt windings, and a second series winding. Single-phase 3 which is connected to form a primary winding and the first and second shunt windings are made to be secondary windings
A line autotransformer; a first mode in which the first and second shunt windings are removed from the autotransformer to substantially directly connect the input and output of the autotransformer; or And a second mode in which the step-down ratio of the autotransformer is set to the first step-down ratio by inserting the second shunt winding into the autotransformer, or Switch means having a plurality of switches for inserting one of the switches into the autotransformer and setting a step-down ratio of the autotransformer to a third mode in which the step-down ratio is larger than the first step-down ratio. And controlling the switch means according to the output voltage of the autotransformer to control the first, second and third switches.
Voltage detection control means for selecting one of the modes.

【0008】更に、上記スイッチ手段は、モード切換の
際の突入電流を防止するためにモード切換の際に所定の
短時間だけオフ状態となりその後オン状態を続ける第1
スイッチと、モード切換の際の逆起電力の誘起を防止す
るために上記第1スイッチのオフ及びオン状態に対応し
て夫々オン状態及びオフ状態となる第2スイッチと、上
記第1及び第2直列巻線のインピーダンスを略々ゼロと
するために上記第1モードでオン状態となる第3スイッ
チと、上記第2及び第3モードで夫々オン状態となる第
4及び第5スイッチとを有する。
Further, the first switching means is turned off for a predetermined short time at the time of mode switching in order to prevent an inrush current at the time of mode switching, and the first is kept on.
A switch, a second switch that is turned on and off in response to the off and on states of the first switch to prevent induction of back electromotive force at the time of mode switching, and the first and second switches, respectively. A third switch is turned on in the first mode to make the impedance of the series winding substantially zero, and a fourth switch and a fifth switch are turned on in the second and third modes, respectively.

【0009】[0009]

【実施例】以下、本発明の実施例を添付の図面を参照し
て説明する。以下の説明において交流電圧は実効値を示
す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, the AC voltage indicates an effective value.

【0010】図1は、本発明を単相3線の配電線路に接
続した実施例を説明するブロック図である。図1におい
て、単巻変圧器は、直列巻線W1と、分路巻線W2及び
W3と、直列巻線W4とを有する。単巻変圧器の入力端
子Rは直列巻線W1を介して出力端子rに接続し、他の
入力端子Tは直列巻線W4を介して他の出力端子tに接
続している。更に他の入力端子Nは中性線10を介して
出力端子nに直結している。
FIG. 1 is a block diagram for explaining an embodiment in which the present invention is connected to a single-phase three-wire distribution line. In FIG. 1, the autotransformer has a series winding W1, shunt windings W2 and W3, and a series winding W4. The input terminal R of the autotransformer is connected to an output terminal r via a series winding W1, and the other input terminal T is connected to another output terminal t via a series winding W4. Still another input terminal N is directly connected to an output terminal n via a neutral wire 10.

【0011】本発明に係る単巻変圧器の降圧比制御装置
は、電圧検出制御回路12、スイッチSW1〜SW6、
及び補助端子付き過電流保護遮断器(ブレーカ)14等
から成る。尚、過電流保護遮断器14は図面では2つに
分離して示されているが実際には単体であり、2つの主
接点を有して夫々直列巻線W1及びW4側の過電流遮断
を同時に行う。
The step-down ratio control device for an autotransformer according to the present invention comprises a voltage detection control circuit 12, switches SW1 to SW6,
And an overcurrent protection circuit breaker (breaker) 14 with an auxiliary terminal. Although the overcurrent protection circuit breaker 14 is shown as being separated into two in the drawing, it is actually a single unit, and has two main contacts to interrupt overcurrents on the series windings W1 and W4, respectively. Perform at the same time.

【0012】電圧検出制御回路12は、単巻変圧器の出
力電圧Vo(端子r及びt間の電圧)に応じてスイッチ
SW1〜SW5を制御する。更に、制御回路12は過電
流保護遮断器14の補助端子からの信号C7に応答して
スイッチSW6を制御する。以下、単巻変圧器の降圧比
の制御について説明する。尚、スイッチSW1、SW
2、SW6、及び過電流保護遮断器14は、単巻変圧器
の降圧比変更自体には直接関係しない。
The voltage detection control circuit 12 controls the switches SW1 to SW5 according to the output voltage Vo (voltage between terminals r and t) of the autotransformer. Further, the control circuit 12 controls the switch SW6 in response to the signal C7 from the auxiliary terminal of the overcurrent protection circuit breaker 14. Hereinafter, control of the step-down ratio of the autotransformer will be described. The switches SW1, SW
2, SW6 and the overcurrent protection circuit breaker 14 are not directly related to the step-down ratio change of the autotransformer itself.

【0013】電圧検出制御回路12は出力電圧Voを検
出して、分路巻線W2及びW3を単巻変圧器から除去し
て単巻変圧器の入出力間を略々直結する第1モード(0
%降圧)とし、或いは分路巻線W2及びW3を単巻変圧
器に挿入して降圧比を第1の降圧比にする第2モード
(例えば3%降圧)とし、又は第2分路巻線W2及びW
3の何れか一方を上記単巻変圧器に挿入して降圧比を上
記第1の降圧比よりも大きい第2の降圧比にする第3モ
ード(例えば6%)とする。
The voltage detection control circuit 12 detects the output voltage Vo, removes the shunt windings W2 and W3 from the autotransformer, and substantially directly connects the input and output of the autotransformer (see the first mode). 0
% Step-down), or by inserting the shunt windings W2 and W3 into the autotransformer to set the step-down ratio to the first step-down ratio in the second mode (for example, 3% step-down), or the second shunt winding W2 and W
3 is inserted into the autotransformer to set a step-down ratio to a second mode in which the step-down ratio is set to a second step-down ratio larger than the first step-down ratio (for example, 6%).

【0014】次の表は、電圧検出制御回路12が単巻変
圧器の出力電圧を検出後、必要に応じて制御信号C1〜
C6を出力して降圧比を制御する際のスイッチのオン及
びオフ状態を示す。 [スイッチの状態を示す表] 0%降圧 3%降圧 6%降圧 SW1 OFF→ON OFF→ON OFF→ON SW2 ON→OFF ON→OFF ON→OFF SW3 ON OFF OFF SW4 OFF ON OFF SW5 OFF OFF ON SW6 OFF OFF OFF
The following table shows that after the voltage detection control circuit 12 detects the output voltage of the autotransformer, the control signals C1 to C1
FIG. 11 shows ON and OFF states of a switch when C6 is output to control the step-down ratio. [Table showing switch states] 0% step-down 3% step-down 6% step-down SW1 OFF → ON OFF → ON OFF → ON SW2 ON → OFF ON → OFF ON → OFF SW3 ON OFF OFF SW4 OFF ON OFF SW5 OFF OFF ON SW6 OFF OFF OFF

【0015】スイッチSW1は、0%降下→3%降下、
3%降下→6%降下、6%降下→3%降下、3%降下→
0%降下のモード切換直前にオフとなりモード切換後に
再度オンとなる。スイッチSW1がオフとなった後にオ
ンとなる短時間は例えば約100msである。一方、ス
イッチSW2はスイッチSW1がオフの期間だけオンと
なり、スイッチSW1がオンに戻るとオフ状態となる。
従って、スイッチSW1のオフ期間中は電流が抵抗器R
1を流れるので、分路巻線W2及び/又はW3に所謂突
入電流が流れるのを防止できる。更に、スイッチSW2
のオン期間中は電流が抵抗器R2を介して分路巻線W2
及び/又はW3に供給されるため、スイッチSW4及び
SW5が同時にオフとなったとき(3%降圧→6%降
圧、6%降圧→3%降圧)のスイッチSW4及びSW5
によって発生する逆起電力の誘起を防止できる。
The switch SW1 drops from 0% to 3%,
3% descent → 6% descent, 6% descent → 3% descent, 3% descent →
It turns off immediately before the mode switching of the 0% drop, and turns on again after the mode switching. The short time that the switch SW1 is turned on after being turned off is, for example, about 100 ms. On the other hand, the switch SW2 is turned on only while the switch SW1 is off, and is turned off when the switch SW1 returns to on.
Therefore, during the OFF period of the switch SW1, the current flows through the resistor R
1, so that a so-called inrush current can be prevented from flowing through the shunt windings W2 and / or W3. Further, the switch SW2
During the ON period of the shunt winding W2 through the resistor R2.
And / or W3, the switches SW4 and SW5 when the switches SW4 and SW5 are simultaneously turned off (3% step-down → 6% step-down, 6% step-down → 3% step-down)
This can prevent back electromotive force from being induced.

【0016】補助端子付きの過電流保護遮断器14は、
スイッチSW3、SW4及びSW5の何れか2個以上が
同時にオンとなった場合、その2つの主接点がオフとな
ると同時に補助接点が動作して制御信号C7を電圧検出
制御回路(以下単に制御回路と称する場合がある)12
に入力する。制御回路12は信号C7に応答して降圧比
(降圧モード)を強制的に0%降圧とすることにより分
路巻線W2及びW3の焼損を防止する。更に、制御回路
12は信号C7に応答して制御信号C6を出力してスイ
ッチSW6をオンすることにより更に確実に分路巻線W
2及びW3の焼損を防止することができる。但し、スイ
ッチSW6は本発明に必須の要素ではない。
The overcurrent protection circuit breaker 14 with the auxiliary terminal is
When any two or more of the switches SW3, SW4, and SW5 are turned on at the same time, the two main contacts are turned off, and at the same time, the auxiliary contact is operated, and the control signal C7 is supplied to the voltage detection control circuit (hereinafter simply referred to as the control circuit). (May be called) 12
To enter. The control circuit 12 prevents burning of the shunt windings W2 and W3 by forcibly setting the step-down ratio (step-down mode) to 0% in response to the signal C7. Further, the control circuit 12 outputs the control signal C6 in response to the signal C7 to turn on the switch SW6, thereby ensuring the shunt winding W more securely.
2 and W3 can be prevented from burning. However, the switch SW6 is not an essential element of the present invention.

【0017】過電流保護遮断器14がオフになったとき
には、分路巻線W2、W3及びスイッチSW1〜SW6
の全てが電路から分離されるため、分路巻線W2、W3
及びスイッチSW1〜SW6の何れかが中性線に短絡す
る地絡事故を防止することができる。
When the overcurrent protection circuit breaker 14 is turned off, the shunt windings W2 and W3 and the switches SW1 to SW6
Are separated from the electric circuit, the shunt windings W2, W3
Further, it is possible to prevent a ground fault accident in which any one of the switches SW1 to SW6 is short-circuited to a neutral wire.

【0018】スイッチSW1〜SW6の夫々は同一構成
としてよく、例えば図2に示すように、サイリスタ2
0、22の他に、直列接続した抵抗器24、スイッチ2
6、抵抗器28、30を有する双方向性スイッチであ
る。図1で示す制御回路12は制御信号(例えばC1)
をスイッチ22に加え、この場合にはスイッチSW1の
オン及びオフを制御する。図2の回路の動作は当業者に
とって自明なので詳細な説明は省略する。
Each of the switches SW1 to SW6 may have the same configuration. For example, as shown in FIG.
0, 22 as well as a series connected resistor 24, switch 2
6, a bidirectional switch having resistors 28 and 30. The control circuit 12 shown in FIG. 1 controls a control signal (for example, C1).
Is added to the switch 22, and in this case, the on / off of the switch SW1 is controlled. Since the operation of the circuit of FIG. 2 is obvious to those skilled in the art, detailed description will be omitted.

【0019】次に、図3を参照して本発明に係る単巻変
圧器の降圧比制御装置(図1)の動作を説明する。
Next, the operation of the step-down ratio control device (FIG. 1) for the autotransformer according to the present invention will be described with reference to FIG.

【0020】図3において、V1及びV2はしきい値電
圧であり、夫々例えば194V及び202Vに設定され
ている。尚、電力会社が需要家に供給する定格電圧は2
00Vである。電圧検出制御回路12は単巻変圧器の出
力電圧Voを上述のしきい値電圧V1及びV2と比較
し、スイッチSW1〜SW5の動作を制御する。尚、直
列巻線W1及びW4の夫々の巻線数を7、分路巻線W2
及びW3夫々の巻線数を234とする。
In FIG. 3, V1 and V2 are threshold voltages, which are set to, for example, 194V and 202V, respectively. The rated voltage supplied by the power company to the customer is 2
00V. The voltage detection control circuit 12 compares the output voltage Vo of the autotransformer with the above-described threshold voltages V1 and V2, and controls the operation of the switches SW1 to SW5. The number of windings of each of the series windings W1 and W4 is 7, and the number of shunt windings W2 is W2.
And W3 each have 234 windings.

【0021】図3に示すように、単巻変圧器への入力電
圧Vi(入力端子R及びT間の電圧)が186V以下か
ら直線状に上昇すると仮定する。この場合は、電圧検出
制御回路12は入出力直結モード(0%降圧)を指示し
ている状態であり、出力電圧Voは入力電圧Viに追随
して上昇する。現在の0%降圧モードでは、スイッチS
W1はオンでありSW3もオンとなっている。スイッチ
SW1がオン状態なので分路巻線W3は短絡状態であ
り、例えば変流器等の例で当業者に周知の如くこの場合
は直列巻線W1及びW4のインピーダンスは略々ゼロで
ある。更に、スイッチSW4〜SW5は、制御回路12
により全てオフ状態となっている([スイッチ状態を示
す表]参照)。尚、0%降圧モードでは入出力電圧Vi
及びVoは殆ど等しいが、図3では判りやすくするため
にVi及びVo間にスペースをとってある。
As shown in FIG. 3, it is assumed that the input voltage Vi (the voltage between the input terminals R and T) to the autotransformer rises linearly from 186 V or less. In this case, the voltage detection control circuit 12 is in a state of instructing the input / output direct connection mode (0% step-down), and the output voltage Vo rises following the input voltage Vi. In the current 0% step-down mode, the switch S
W1 is on and SW3 is on. Since the switch SW1 is turned on, the shunt winding W3 is in a short-circuit state. For example, in the case of a current transformer or the like, as is well known to those skilled in the art, the impedance of the series windings W1 and W4 is substantially zero. Further, the switches SW4 to SW5 are connected to the control circuit 12
(See [Table showing switch states]). In the 0% step-down mode, the input / output voltage Vi
And Vo are almost equal, but in FIG. 3 a space is provided between Vi and Vo for clarity.

【0022】出力電圧Voがしきい値電圧V1(194
V)を通過して他のしきい値電圧V2(202V)に達
すると(時点T1)、制御回路12は出力電圧Voが約
60秒間しきい値電圧V2以上を維持し続けていること
を確認すると、以下の動作に移行する。即ち、制御回路
12は、スイッチSW1及びSW2を夫々オン及びオフ
としこの状態が続く約100msの間に、スイッチSW
3をオフとした後にスイッチSW4をオンとして入力電
圧Viを3%下げる3%降圧モードとする。即ち、巻線
W1〜W4の巻線数を夫々W1’〜W4’とすると、 (W1’+W’4)/(W2’+W3’) =14/468=0.029914... となり、降圧率は約3%となる。尚、SW5及びSW6
はオフ状態のままである([スイッチ状態を示す表]参
照)。
When the output voltage Vo is equal to the threshold voltage V1 (194)
V) and reaches another threshold voltage V2 (202V) (time T1), the control circuit 12 confirms that the output voltage Vo has maintained the threshold voltage V2 or higher for about 60 seconds. Then, the operation shifts to the following operation. That is, the control circuit 12 turns on and off the switches SW1 and SW2, respectively, and the switch SW1
After turning off the switch 3, the switch SW4 is turned on to set the 3% step-down mode in which the input voltage Vi is reduced by 3%. That is, assuming that the winding numbers of the windings W1 to W4 are W1 'to W4', respectively, (W1 '+ W'4) / (W2' + W3 ') = 14/468 = 0.029914. . . And the step-down rate is about 3%. SW5 and SW6
Remain in the off state (see [Table showing switch states]).

【0023】上述のように、制御回路12が出力電圧V
oが約60秒間しきい値電圧V2以上を維持し続けてい
ることを確認する動作は、出力電圧Vo(入力電圧V
i)の一時的な電圧上昇に応答しないようにするためで
ある。
As described above, the control circuit 12 controls the output voltage V
The operation of confirming that o maintains the threshold voltage V2 or higher for about 60 seconds is performed by the output voltage Vo (input voltage V2).
This is in order not to respond to the temporary voltage increase in i).

【0024】図3に示すように、時点T1後も入力電圧
Viは上昇し続けているので、出力電圧Voは再びしき
い値電圧V2に達する(時点T2)。制御回路12は、
現在3%降圧モードであることをスイッチ制御により知
っている(後述の場合も同様に制御回路12は現在の降
圧モードを把握している)ので、上述の場合と同様に、
制御回路12は出力電圧Voが約60秒間しきい値電圧
V2以上を維持し続けていることを確認すると、6%降
圧モードへの移行が必要であると判断する。即ち、スイ
ッチSW1及びSW2を夫々オフ及びオンとしてこれら
のスイッチSW1及びSW2がこの状態の時に(即ちス
イッチSW1及びSW2が夫々オフ及びオンした後10
0ms経過前に)、制御回路12は先ずスイッチSW4
をオフとした後にスイッチSW5をオンにし、入力電圧
Viを6%下げる6%降圧モードとする。尚、上述の1
00ms経過後、制御回路12はスイッチSW1及びS
W2を夫々再びオン及びオフに戻す。この場合、 (W1’+W’4)/W3’ =14/234=0.05982... となり、降圧率は約6%となる。尚、スイッチSW3及
びSW6はオフ状態のままである([スイッチ状態を示
す表]参照)。
As shown in FIG. 3, since the input voltage Vi continues to increase after the time T1, the output voltage Vo reaches the threshold voltage V2 again (time T2). The control circuit 12
Since it is known from the switch control that the current mode is the 3% step-down mode (the control circuit 12 also knows the current step-down mode in a case described later), similar to the above-described case,
When the control circuit 12 confirms that the output voltage Vo has maintained the threshold voltage V2 or higher for about 60 seconds, it determines that the shift to the 6% step-down mode is necessary. That is, when the switches SW1 and SW2 are turned off and on, respectively, and the switches SW1 and SW2 are in this state (that is, 10 minutes after the switches SW1 and SW2 are turned off and on, respectively).
0 ms), the control circuit 12 first switches SW4
Is turned off, the switch SW5 is turned on, and the input voltage Vi is reduced by 6% to the 6% step-down mode. Note that the above 1
After a lapse of 00 ms, the control circuit 12 sets the switches SW1 and S
W2 is turned on and off again, respectively. In this case, (W1 ′ + W′4) /W3′=14/234=0.05982. . . And the step-down rate is about 6%. Note that the switches SW3 and SW6 are kept off (see [Table showing switch states]).

【0025】その後、時点T3で入力電圧Viは下がり
始めるので出力電圧Voも自動的に下がり始める。出力
電圧Voが時点T4でしきい値電圧V1(194V)に
達する。制御回路12は出力電圧Voが例えば約5秒間
しきい値電圧V1以下を維持し続けていることを確認す
ると、以下の動作に移行する。即ち、上述の場合と同様
に、スイッチSW1及びSW2を夫々オフ及びオンとし
てこれらのスイッチSW1及びSW2がこの状態の時に
(即ちスイッチSW1及びSW2が夫々オフ及びオンと
なった後100ms経過前に)、制御回路12は先ずス
イッチSW5をオフとした後にスイッチSW4をオンに
し、入力電圧Viを3%下げる3%降圧モードとする。
尚、上述の100ms経過後、制御回路12はスイッチ
SW1及びSW2を夫々再びオン及びオフに戻す([ス
イッチ状態を示す表]参照)。
Thereafter, at time T3, the input voltage Vi starts to decrease, so that the output voltage Vo also automatically starts decreasing. The output voltage Vo reaches the threshold voltage V1 (194 V) at time T4. When the control circuit 12 confirms that the output voltage Vo has maintained the threshold voltage V1 or less for about 5 seconds, for example, it proceeds to the following operation. That is, as in the above case, the switches SW1 and SW2 are turned off and on, respectively, and the switches SW1 and SW2 are in this state (ie, 100 ms after the switches SW1 and SW2 are turned off and on, respectively). Then, the control circuit 12 first turns off the switch SW5 and then turns on the switch SW4 to set the 3% step-down mode in which the input voltage Vi is reduced by 3%.
After the elapse of 100 ms, the control circuit 12 turns the switches SW1 and SW2 back on and off, respectively (see [Switch Status Table]).

【0026】上述のように、出力電圧Voが約5秒間し
きい値電圧V1以下であることを制御回路12が確認す
る動作は、出力電圧Vo(入力電圧Vi)の短期間だけ
の電圧低下に即座に応答しないようにするためである。
しかし、この場合、出力電圧Voが194V以下になる
状態を短くするために、時点T1及びT2の場合(60
秒)に比べて電圧確認時間を短くしている。
As described above, the operation in which the control circuit 12 confirms that the output voltage Vo is equal to or lower than the threshold voltage V1 for about 5 seconds is performed by reducing the output voltage Vo (input voltage Vi) for a short period of time. This is to prevent an immediate response.
However, in this case, in order to shorten the state in which the output voltage Vo becomes 194 V or less, at the time points T1 and T2 (60
Seconds), the voltage check time is shorter.

【0027】図3に示すように、時点T4での3%降圧
モードへの移行によって出力電圧Voは上昇するが、入
力電圧Viは依然として下降し続けている。出力電圧V
oが時点T5で再びしきい値電圧V1(194V)に達
すると、制御回路12は、上述の場合と同様に、出力電
圧Voが約5秒間しきい値電圧V1以下を維持し続けて
いることを確認し、スイッチSW1及びSW2がオフ及
びオンとなっている期間中に、制御回路12はスイッチ
SW4をオフにした後にスイッチSW3をオンにし、入
出力電圧を直結する0%降圧モードとする。尚、上述の
場合と同様に、スイッチSW1及びSW2がオフ及びオ
ンとなった後100ms経過後、制御回路12はスイッ
チSW1及びSW2を夫々再びオン及びオフに戻す。ス
イッチSW5及びSW6はオフ状態のままである([ス
イッチ状態を示す表]参照)。
As shown in FIG. 3, the output voltage Vo rises due to the transition to the 3% step-down mode at time T4, but the input voltage Vi still continues to fall. Output voltage V
When o reaches the threshold voltage V1 (194 V) again at time T5, the control circuit 12 keeps the output voltage Vo below the threshold voltage V1 for about 5 seconds, as in the case described above. During the period in which the switches SW1 and SW2 are off and on, the control circuit 12 turns off the switch SW4 and then turns on the switch SW3 to set the 0% step-down mode in which the input / output voltage is directly connected. Note that, as in the case described above, the control circuit 12 returns the switches SW1 and SW2 to ON and OFF, respectively, 100 ms after the switches SW1 and SW2 are turned OFF and ON. The switches SW5 and SW6 are kept off (see [Table showing switch states]).

【0028】時点T5での0%降圧モード移行後も入力
電圧Viは下がり続けるので、出力電圧Voは194V
以下に下がる。
Since the input voltage Vi continues to drop even after the shift to the 0% step-down mode at the time T5, the output voltage Vo becomes 194V
It goes down below.

【0029】入力電圧Viは時点T6で上昇に転ずるの
で出力電圧Voも上昇し始める。出力電圧Voが時点T
7でしきい値電圧V1に達すると、制御回路12はこの
電圧上昇を検出して時点T1での動作と全く同様の動作
により0%降圧モードを3%降圧モードとする。従っ
て、出力電圧Voは一旦下降するが、上昇を続ける入力
電圧Viにより出力電圧Voも上昇する。
Since the input voltage Vi starts to increase at time T6, the output voltage Vo also starts to increase. Output voltage Vo is at time T
When the voltage reaches the threshold voltage V1 at 7, the control circuit 12 detects this voltage rise and changes the 0% step-down mode to the 3% step-down mode by the same operation as the operation at the time T1. Therefore, although the output voltage Vo once drops, the output voltage Vo also rises due to the input voltage Vi continuing to rise.

【0030】時点T8で入力電圧Viは下降するので出
力電圧Voも下降を始める。続いて時点T9で出力電圧
Voはしきい値電圧V1にまで下降すると、制御回路1
2はこの電圧下降を検出して時点T5での動作と同様に
3%降圧モードを0%降圧モードとする。従って、出力
電圧Voは入力電圧Viと共に下降することになる。
At time T8, the input voltage Vi decreases, and the output voltage Vo also starts decreasing. Subsequently, at time T9, when the output voltage Vo drops to the threshold voltage V1, the control circuit 1
2 detects this voltage drop and sets the 3% step-down mode to the 0% step-down mode as in the operation at the time T5. Therefore, the output voltage Vo decreases with the input voltage Vi.

【0031】ところで、現在の降圧モードが0%降圧で
あれば、入力電圧が急上昇した場合には急激な電圧上昇
を避けるため先ず3%降圧モードを経由して6%降圧モ
ードとし、一方、現在の降圧モードが6%降圧であれ
ば、入力電圧が急低下した場合であっても急激な電圧下
降を避けるため先ず3%降圧モードを経由して0%降圧
モードとするのがよい。
By the way, if the current step-down mode is 0% step-down, when the input voltage rises sharply, first, a 6% step-down mode is set via a 3% step-down mode in order to avoid a sudden voltage rise. If the step-down mode is 6% step-down, it is preferable to first set the mode to the 0% step-down mode via the 3% step-down mode in order to avoid a sharp voltage drop even when the input voltage drops sharply.

【0032】上述の説明において、過電流保護遮断器1
4は必ずしも補助接点を有するようにしなくても構わな
い。即ち、過電流保護遮断器14に例えば第3番目の主
接点を設けてこの第3番目の主接点を上述の補助接点の
代わりに使用してもよい。この他にも、過電流保護遮断
器14の動作を制御回路12に通知する手段は当業者に
とって容易に考えることが出来る。更に、上述のスイッ
チ動作に基づいて制御回路12を設計することは当業者
にとって容易である。更にまた、しきい値電圧V1及び
V2の値は単なる例示である。
In the above description, the overcurrent protection circuit breaker 1
4 does not necessarily have to have auxiliary contacts. That is, for example, a third main contact may be provided in the overcurrent protection circuit breaker 14, and this third main contact may be used instead of the above-mentioned auxiliary contact. In addition, means for notifying the control circuit 12 of the operation of the overcurrent protection circuit breaker 14 can be easily considered by those skilled in the art. Furthermore, it is easy for those skilled in the art to design the control circuit 12 based on the above-described switch operation. Furthermore, the values of threshold voltages V1 and V2 are merely exemplary.

【0033】[0033]

【発明の効果】本発明によれば、単巻変圧器の降圧比を
単巻変圧器の出力電圧に応じて、常時適切な電圧を負荷
(電気機器)に加えることにより極めて高い節電効率を
得ることができる。
According to the present invention, an extremely high power saving efficiency can be obtained by constantly applying an appropriate voltage to the load (electric equipment) in accordance with the step-down ratio of the autotransformer in accordance with the output voltage of the autotransformer. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の実施例に使用するスイッチの回路例を
示す図。
FIG. 2 is a diagram showing a circuit example of a switch used in an embodiment of the present invention.

【図3】本発明の実施例の動作を説明するための図。FIG. 3 is a diagram for explaining the operation of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

SW1〜SW6 スイッチ 12 電圧検出制御回路 14 補助接点付のブレーカ 20、22 サイリスタ 24、26、28、30 抵抗器 SW1 to SW6 Switch 12 Voltage detection control circuit 14 Breaker with auxiliary contact 20, 22 Thyristor 24, 26, 28, 30 Resistor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】第1直列巻線(W1)と、第1及び第2分
路巻線(W2、W3)と、第2直列巻線(W4)とを直
列接続して1次巻線とし、上記第1及び第2分路巻線を
2次巻線とする単相3線単巻変圧器と、 上記第1及び第2分路巻線を上記単巻変圧器から除去し
て該単巻変圧器の入出力間を略々直結する第1モードと
し、或いは上記第1及び第2分路巻線を上記単巻変圧器
に挿入して該単巻変圧器の降圧比を第1の降圧比とする
第2モードとし、又は上記第1及び第2分路巻線の何れ
か一方を上記単巻変圧器に挿入して該単巻変圧器の降圧
比を上記第1の降圧比よりも大きい第2の降圧比とする
第3モードとする複数のスイッチを有するスイッチ手段
と、 上記単巻変圧器の出力電圧に応じて上記スイッチ手段を
制御して上記第1、第2及び第3モードの何れかを選択
する電圧検出制御手段とを有することを特徴とする単巻
変圧器の降圧比制御装置。
1. A primary winding comprising a first series winding (W1), first and second shunt windings (W2, W3), and a second series winding (W4) connected in series. A single-phase three-wire autotransformer having the first and second shunt windings as secondary windings; and removing the first and second shunt windings from the autotransformer. A first mode in which the input and output of the winding transformer are substantially directly connected, or the first and second shunt windings are inserted into the autotransformer to set the step-down ratio of the autotransformer to the first mode. In a second mode in which the step-down ratio is set, or one of the first and second shunt windings is inserted into the autotransformer, and the step-down ratio of the autotransformer is set to be lower than the first step-down ratio. Switch means having a plurality of switches in a third mode for setting the second step-down ratio to be larger, and controlling the switch means in accordance with an output voltage of the autotransformer to control the first, second and third modes. Autotransformer step-down ratio control apparatus characterized by comprising a voltage detection control means for selecting one of the third mode.
【請求項2】上記スイッチ手段は、モード切換の際の突
入電流を防止するためにモード切換の際に所定の短時間
だけオフ状態となりその後オン状態を続ける第1スイッ
チ(SW1)と、モード切換の際の逆起電力の誘起を防
止するために上記第1スイッチのオフ及びオン状態に対
応して夫々オン状態及びオフ状態となる第2スイッチ
(SW2)と、上記第1及び第2直列巻線のインピーダ
ンスを略々ゼロとするために上記第1モードでオン状態
となる第3スイッチ(SW3)と、上記第2及び第3モ
ードで夫々オン状態となる第4及び第5スイッチ(SW
4、SW5)とを有する請求項1に記載の単巻変圧器の
降圧比制御装置。
2. A first switch (SW1) which is turned off for a predetermined short time during mode switching to keep in an on state after the mode switching in order to prevent an inrush current at the time of mode switching. A second switch (SW2) that is turned on and off corresponding to the off and on states of the first switch, respectively, in order to prevent the back electromotive force from being induced at the time of the first and second series windings. A third switch (SW3) that is turned on in the first mode to make the impedance of the line substantially zero, and a fourth switch (SW3) that is turned on in the second and third modes, respectively.
4. The step-down ratio control device for an autotransformer according to claim 1, further comprising: (4, SW5).
【請求項3】上記単巻変圧器の出力端に過電流保護遮断
器を接続し、上記第3乃至5スイッチの内の2つが同時
にオン状態となった時の過電流に応答して上記第1及び
第2分路巻線の焼損を防止する請求項2に記載の単巻変
圧器の降圧比制御装置。
3. An overcurrent protection circuit breaker is connected to an output terminal of said autotransformer, and said second circuit is responsive to an overcurrent when two of said third to fifth switches are simultaneously turned on. 3. The step-down ratio control device for an autotransformer according to claim 2, wherein the first and second shunt windings are prevented from burning.
【請求項4】上記過電流保護遮断器は自己の過電流遮断
動作を上記電圧検出制御回路に通知する動作通知手段を
有し、上記電圧検出制御手段は上記動作通知手段を介し
て上記過電流保護遮断器の動作を検知して上記単巻変圧
器の降圧モードを強制的に上記第1モードとし、上記単
巻変圧器或いは上記第1乃至第5スイッチで発生する可
能性のある地絡事故を防止する請求項3に記載の単巻変
圧器の降圧比制御装置。
4. The overcurrent protection circuit breaker has operation notifying means for notifying its own overcurrent interrupting operation to the voltage detection control circuit, and the voltage detection control means is connected to the overcurrent protection circuit via the operation notifying means. The operation of the protection circuit breaker is detected, the step-down mode of the autotransformer is forcibly set to the first mode, and a ground fault that may occur in the autotransformer or the first to fifth switches. 4. The step-down ratio control device for an autotransformer according to claim 3, wherein the step-down ratio is controlled.
【請求項5】上記第1及び第2分路巻線と並列接続した
第6スイッチを更に有し、上記電圧検出制御手段は上記
動作通知手段からの通知に応答して降圧モードを強制的
に第1モードとする際に上記第6スイッチをオン状態と
して上記第1及び第2分路巻線の焼損防止を更に確実と
する請求項4に記載の単巻変圧器の降圧比制御装置。
5. The power supply system further comprises a sixth switch connected in parallel with the first and second shunt windings, wherein the voltage detection control means forcibly switches the step-down mode in response to a notification from the operation notification means. 5. The step-down ratio control device for an autotransformer according to claim 4, wherein when the first mode is set, the sixth switch is turned on to further prevent the first and second shunt windings from burning.
【請求項6】第1直列巻線(W1)と、第1及び第2分
路巻線(W2、W3)と、第2直列巻線(W4)とを直
列接続して1次巻線とし、上記第1及び第2分路巻線を
2次巻線とする単相3線単巻変圧器と、 上記第1及び第2分路巻線を上記単巻変圧器から除去し
て該単巻変圧器の入出力間を略々直結する第1モードと
し、或いは上記第1及び第2分路巻線を上記単巻変圧器
に挿入して該単巻変圧器の降圧比を第1の降圧比とする
第2モードとし、又は上記第1及び第2分路巻線の何れ
か一方を上記単巻変圧器に挿入して該単巻変圧器の降圧
比を上記第1の降圧比よりも大きい第2の降圧比とする
第3モードとする複数のスイッチを有するスイッチ手段
と、 上記単巻変圧器の出力電圧に応じて上記スイッチ手段を
制御して上記第1、第2及び第3モードの何れかを選択
する電圧検出制御手段とを有し、 上記スイッチ手段は、モード切換の際の突入電流を防止
するためにモード切換の際に所定の短時間だけオフ状態
となりその後オン状態を続ける第1スイッチ(SW1)
と、モード切換の際の逆起電力の誘起を防止するために
上記第1スイッチのオフ及びオン状態に対応して夫々オ
ン状態及びオフ状態となる第2スイッチ(SW2)と、
上記第1及び第2直列巻線のインピーダンスを略々ゼロ
とするために上記第1モードでオン状態となる第3スイ
ッチ(SW3)と、上記第2及び第3モードで夫々オン
状態となる第4及び第5スイッチ(SW4、SW5)と
を有することを特徴とする単巻変圧器の降圧比制御装
置。
6. A primary winding comprising a first series winding (W1), first and second shunt windings (W2, W3), and a second series winding (W4) connected in series. A single-phase three-wire autotransformer having the first and second shunt windings as secondary windings; and removing the first and second shunt windings from the autotransformer. A first mode in which the input and output of the winding transformer are substantially directly connected, or the first and second shunt windings are inserted into the autotransformer to set the step-down ratio of the autotransformer to the first mode. In a second mode in which the step-down ratio is set, or one of the first and second shunt windings is inserted into the autotransformer, and the step-down ratio of the autotransformer is set to be lower than the first step-down ratio. Switch means having a plurality of switches in a third mode for setting the second step-down ratio to be larger, and controlling the switch means in accordance with an output voltage of the autotransformer to control the first, second and third modes. Voltage detection control means for selecting any one of the third modes, wherein the switch means is turned off for a predetermined short time at the time of mode switching in order to prevent an inrush current at the time of mode switching, and thereafter turned on. The first switch (SW1) that keeps the state
And a second switch (SW2) that is turned on and off corresponding to the off and on states of the first switch, respectively, in order to prevent back electromotive force from being induced at the time of mode switching;
A third switch (SW3) that is turned on in the first mode to make the impedances of the first and second series windings substantially zero, and a third switch (SW3) that is turned on in the second and third modes, respectively. A step-down ratio control device for an autotransformer, comprising: a fourth switch and a fifth switch (SW4, SW5).
【請求項7】上記単巻変圧器の出力端に過電流保護遮断
器を接続し、上記第3乃至5スイッチの内の2つが同時
にオン状態となった時の過電流に応答して上記第1及び
第2分路巻線の焼損を防止する請求項6に記載の単巻変
圧器の降圧比制御装置。
7. An overcurrent protection circuit breaker is connected to an output terminal of said autotransformer, and said second switch is responsive to an overcurrent when two of said third to fifth switches are simultaneously turned on. 7. The step-down ratio control device for an autotransformer according to claim 6, wherein the first and second shunt windings are prevented from burning.
【請求項8】上記過電流保護遮断器は自己の過電流遮断
動作を上記電圧検出制御回路に通知する動作通知手段を
有し、上記電圧検出制御手段は上記動作通知手段を介し
て上記過電流保護遮断器の動作を検知して上記単巻変圧
器の降圧モードを強制的に上記第1モードとし、上記単
巻変圧器或いは上記第1乃至第5スイッチで発生する可
能性のある地絡事故を防止する請求項7に記載の単巻変
圧器の降圧比制御装置。
8. The overcurrent protection circuit breaker has operation notifying means for notifying its own overcurrent interrupting operation to the voltage detection control circuit, and the voltage detection control means is connected to the overcurrent protection circuit via the operation notifying means. The operation of the protection circuit breaker is detected, the step-down mode of the autotransformer is forcibly set to the first mode, and a ground fault that may occur in the autotransformer or the first to fifth switches. 8. The step-down ratio control device for an autotransformer according to claim 7, wherein the step-down ratio is controlled.
【請求項9】上記第1及び第2分路巻線と並列接続した
第6スイッチを更に有し、上記電圧検出制御手段は上記
動作通知手段からの通知に応答して降圧モードを強制的
に第1モードとする際に上記第6スイッチをオン状態と
して上記第1及び第2分路巻線の焼損防止を更に確実と
する請求項8に記載の単巻変圧器の降圧比制御装置。
9. A sixth switch connected in parallel with the first and second shunt windings, wherein the voltage detection control means forcibly switches the step-down mode in response to a notification from the operation notification means. 9. The step-down ratio control device for an auto-transformer according to claim 8, wherein when the first mode is set, the sixth switch is turned on to further prevent the first and second shunt windings from burning.
JP8300931A 1996-10-25 1996-10-25 Voltage dropping ratio controller for auto-transformer Pending JPH10135051A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8300931A JPH10135051A (en) 1996-10-25 1996-10-25 Voltage dropping ratio controller for auto-transformer
KR1019970054778A KR100326960B1 (en) 1996-10-25 1997-10-24 Apparatus for controlling voltage drop ratio of auto-transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8300931A JPH10135051A (en) 1996-10-25 1996-10-25 Voltage dropping ratio controller for auto-transformer

Publications (1)

Publication Number Publication Date
JPH10135051A true JPH10135051A (en) 1998-05-22

Family

ID=17890845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8300931A Pending JPH10135051A (en) 1996-10-25 1996-10-25 Voltage dropping ratio controller for auto-transformer

Country Status (2)

Country Link
JP (1) JPH10135051A (en)
KR (1) KR100326960B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388049B1 (en) * 2000-12-21 2003-06-19 한양전설(주) Apparatus and method for power saving auto potential transformer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472282B1 (en) * 2002-06-22 2005-03-10 (주)대경일렉 Apparatus for saving power
KR100789412B1 (en) * 2005-10-05 2007-12-28 (주)신우디엔시 An Artificial Grounding Tester and Method for Locating Fault Distance Using the Same
KR101000321B1 (en) 2008-02-18 2010-12-13 이명환 Automatic voltage regulator
EP2275893A2 (en) * 2008-04-30 2011-01-19 Myung Hwan Lee Automatic voltage regulator
RU2487391C2 (en) * 2009-01-20 2013-07-10 Майунг Хван ЛИ Automatic voltage regulator and toroidal transformer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8502338A (en) * 1985-08-26 1987-03-16 Philips Nv SWITCHED POWER SUPPLY SWITCH WITH TWO STATES.
JPH077978A (en) * 1993-06-17 1995-01-10 Meidensha Corp Korndorfer method for starting motor
JP2996377B2 (en) * 1993-07-10 1999-12-27 永田 勝彦 A device that controls the step-down ratio of an autotransformer according to the AC input voltage
JP2718392B2 (en) * 1995-03-28 1998-02-25 日本電気株式会社 Drive circuit for piezoelectric transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388049B1 (en) * 2000-12-21 2003-06-19 한양전설(주) Apparatus and method for power saving auto potential transformer

Also Published As

Publication number Publication date
KR100326960B1 (en) 2002-04-17
KR19980033147A (en) 1998-07-25

Similar Documents

Publication Publication Date Title
US20040024545A1 (en) Device for monitoring a neutral and earth break and electrical switchgear apparatus comprising such a device
JP3372178B2 (en) Power saving device with three-phase automatic voltage switching device
US7280331B2 (en) Power reconnect and voltage control
WO2003061102A2 (en) Power supply filtering
JPH10135051A (en) Voltage dropping ratio controller for auto-transformer
US5932997A (en) Bit-weighted regulator
EP0732002B1 (en) Rectifier bridge apparatus
JP2912996B2 (en) Control circuit in power saving device
JPH11155135A (en) Power supply device for catv
KR200389751Y1 (en) Uninterrupted Bypass Linear AC Power Control
JP6128605B2 (en) Power supply system and power supply apparatus
JP4216627B2 (en) Automatic voltage controller
JP2001333526A (en) Power unit
US4703192A (en) Alternating current power source with improved phase adjusting capability
WO2004102781A1 (en) Ac voltage control apparatus
KR20060118930A (en) Linear AC Power Control Device Using Phase Comparison Control
KR900006947B1 (en) Devices driding alternating current in order
JPS6245767B2 (en)
JP3413346B2 (en) Protection circuit of power saving transformer with autonomous switching device
JP2986423B2 (en) Voltage controller
CN2366880Y (en) Voltage stabilization protector for ac circuit
SU1654916A1 (en) Electric power substation
JP2824369B2 (en) Power supply circuit of circuit breaker
JPS6111532B2 (en)
JPS63124766A (en) Rush current limiting circuit