JPH097862A - Power consumption device taking advantage of property of vector - Google Patents

Power consumption device taking advantage of property of vector

Info

Publication number
JPH097862A
JPH097862A JP7192394A JP19239495A JPH097862A JP H097862 A JPH097862 A JP H097862A JP 7192394 A JP7192394 A JP 7192394A JP 19239495 A JP19239495 A JP 19239495A JP H097862 A JPH097862 A JP H097862A
Authority
JP
Japan
Prior art keywords
primary
coil
magnetic flux
secondary coil
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7192394A
Other languages
Japanese (ja)
Other versions
JP3554850B2 (en
Inventor
Shinichiro Takeuchi
眞一郎 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19239495A priority Critical patent/JP3554850B2/en
Priority to JP8196876A priority patent/JPH09120923A/en
Publication of JPH097862A publication Critical patent/JPH097862A/en
Application granted granted Critical
Publication of JP3554850B2 publication Critical patent/JP3554850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE: To enable magnetic fluxes to cancel effectively each other by a method wherein a magnetic flux induced in a magnetic path when a loading current is made to flow through a secondary coil is restrained from penetrating through a primary coil which gives an inductive electromotive force to the secondary coil. CONSTITUTION: A primary electric circuit is closed, and when an exciting current 10i is made to flow through the primary circuit, a primary magnetic flux 11f interlinked with the primary coil is produced, and the primary electric circuit is balanced in voltage. As a primary magnetic flux 11f penetrates through a secondary coil 2c wound on the leg of a secondary iron core 2m, an inductive electromotive force is produced in the secondary coil 2c. The secondary coil 2c is connected to a load 21 through a switch 2s and a conductor 9, and when the switch 2s is closed, a load current flows through the secondary troll 2c. At this point, the coils wound on both the legs of the secondary iron core 2m are set equal to each other in number of turns, and the secondary coil 2c is so connected as to become negative in mutual inductance. When a load current flows through the secondary coil 2c, a secondary magnetic flux 22x and an offset magnetic flux 22y are induced in opposite directions to each other, so that, the magnetic fluxes cancel each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力装置に関する。FIELD OF THE INVENTION The present invention relates to power devices.

【0002】[0002]

【従来の技術】変圧器は磁束の通路となる鉄心と、磁束
と鎖交する電流の通路となる巻き線と、これらを絶縁す
る絶縁物及びこれらの相互位置や機械的強度を保つため
の締付装置などで変圧器本体を構成している。この変圧
器本体を基本として、絶縁強度や冷却効果を高める為の
冷却媒体である絶縁油とともに、容器内に収納したもの
が油入変圧器である。乾式変圧器では、変圧器本体、温
度計などの付属装置、必要により設けられる保護枠、風
冷装置などで構成されている。変圧器の交流電源に接続
する方の巻き線を一次コイル、負荷側に接続する巻き線
を二次コイルと言う。一次コイルを交流電源に接続し
て、無負荷の場合に一次 ている。磁束を有効に通す為に鉄心が使われる。鉄心は
励磁電流とヒステリシス損及びうず電流損を小さくする
為に、透磁率が高く、ヒステリシス係数の小さい、薄鋼
板の表面に絶縁皮膜を施して電気抵抗を大きくした材料
で、成層して仕上げられる。一般に、鉄心材料にはケイ
素鋼帯が使われ、結晶の磁化容易方向を圧延方向にそろ
えた、方向性ケイ素鋼帯と、結晶方向性の影響が実用的
に問題とならないように製造した無方向性ケイ素鋼帯と
の2種類がある。
2. Description of the Related Art A transformer is an iron core that serves as a path for magnetic flux, a winding that serves as a path for a current that links the magnetic flux, an insulator that insulates them, and a clamp for maintaining their mutual position and mechanical strength. The transformer main body is composed of attached devices. Based on this transformer main body, an oil-filled transformer is housed in a container together with insulating oil that is a cooling medium for enhancing the insulation strength and cooling effect. A dry transformer is composed of a transformer body, auxiliary devices such as a thermometer, a protective frame provided if necessary, and an air cooling device. The winding connected to the AC power supply of the transformer is called the primary coil, and the winding connected to the load side is called the secondary coil. Connect the primary coil to an AC power source and use the primary coil with no load. ing. An iron core is used to effectively pass the magnetic flux. The iron core is layered and finished with a material that has a high magnetic permeability and a small hysteresis coefficient to reduce the exciting current, hysteresis loss, and eddy current loss, and that has an electrical resistance increased by applying an insulating coating on the surface of the thin steel sheet. . Generally, a silicon steel strip is used as the core material, and a directional silicon steel strip in which the easy magnetization direction of the crystal is aligned with the rolling direction, and a non-oriented material manufactured so that the influence of the crystal orientation does not pose a practical problem. There are two types: high-strength silicon steel strip.

【0003】[0003]

【発明が解決しようとする課題】電磁誘導作用によって
コイルCに誘起する起電力Eの方向は、コイルC
を貫通する磁束Φの変化を妨げる方向に生じ、誘起起
電力Eによって、コイルCに電流が流れると、磁束
Φの変化を妨げる方向に磁束Φが生じ、磁束Φ
相殺され、誘起電力Eは消滅する。この電気回路から
電力を消費出来ない。但し、変圧器の様に、一次負荷電
流を利用して磁束Φを相殺すれば、電力を消費出来る
回路に変わる。所が、常伝導状態、又は、超伝導状態で
動作する場合のどちらでも、磁束Φが一次コイルC
を常時、互いに逆向きの方向から貫通するか、又は、常
時、貫通しなければ、一次負荷電流は生じない。しか
し、一次負荷電流を利用しないで、磁束Φを相殺して
も、電力を消費出来る回路に変わる。又、従来の変圧器
は電源側に交流発電機が接続され、この交流電源に外部
から供給されるエネルギーと二次側電気回路で消費され
るエネルギーが等しいと考え、一次側電気回路の考察は
一次側から二次側に電力が伝達されるとしている。むし
ろ、これは、本来に帰って、一次側電気回路で消費され
るエネルギー(発電機の導体を流れる電流が発電機を逆
に回転させているエネルギー)が一次側電気回路の交流
電源に供給されると考えるべきである。その上で、一次
側と二次側の二つの独立した電気回路が電磁結合してい
ると、考えるべきである。
The direction of the electromotive force E 2 induced in the coil C 2 by the electromagnetic induction action is the direction of the coil C 2
Occurs in the direction to inhibit any changes of magnetic flux [Phi 0 passing through the by induced electromotive force E 2, a current flows through the coil C 2, the magnetic flux [Phi 2 is generated in the direction to inhibit any changes of magnetic flux [Phi 0, the magnetic flux [Phi 0 is canceled Then, the induced power E 2 disappears. Power cannot be consumed from this electrical circuit. However, like the transformer, if the magnetic flux Φ 2 is canceled by using the primary load current, it becomes a circuit that can consume power. However, the magnetic flux Φ 2 causes the primary coil C 1 to operate either in the normal conduction state or in the superconducting state.
Always pass through in opposite directions, or if they do not always pass through, no primary load current occurs. However, even if the magnetic flux Φ 2 is canceled without using the primary load current, the circuit is changed to a power consuming circuit. Further, in the conventional transformer, an AC generator is connected to the power supply side, and it is considered that the energy supplied from the outside to this AC power supply is equal to the energy consumed in the secondary side electric circuit. Power is said to be transmitted from the primary side to the secondary side. Rather, it is essentially that the energy consumed in the primary electrical circuit (the energy flowing through the generator's conductors causing the generator to rotate in reverse) is supplied to the alternating current power supply of the primary electrical circuit. Should be considered. Moreover, it should be considered that the two independent electric circuits on the primary side and the secondary side are electromagnetically coupled.

【0004】本発明は二次コイルを負荷電流が流れると
磁路に生じる磁束が、二次コイルに誘起起電力を与えて
いる一次コイルを貫通しないで、この磁束を効率良く相
殺する電力消費装置を得る事を目的としている。
According to the present invention, a magnetic flux generated in a magnetic path when a load current flows through a secondary coil does not penetrate through the primary coil which gives an induced electromotive force to the secondary coil, and efficiently cancels the magnetic flux. The purpose is to get.

【0005】[0005]

【課題を解決するための手段】磁界中の鉄棒内の磁気双
極子はN極が磁界の方向を向くから、鉄棒全体としては
磁界方向の端がN極、反対の端がS極になる様に磁化す
る。この為、鉄棒内部には加えた磁界と反対向さに磁界
(反磁界)を生じる。反磁界は、例えば、鉄棒の磁界方
向の寸法が短い時にはN,S極間が短いので、大きい。
この様な鉄棒は例え、その透磁率がどんなに大きくて
も、磁化しにくい。実は、磁束や磁束密度はこの反磁界
を無視出来る様な場合にだけ成り立つ。例えば、十分長
い鉄棒をその長さの方向に磁化させる場合や、円形の鉄
心を磁化する場合、更に、鉄環の一部に空隙がある場合
には反磁界が殆ど現れない。円形の鉄心の場合、磁束が
輪の様になるが、これを磁気回路と言い、途中に空気の
部分の無い、閉じた磁気回路が出来ると反磁界が生じな
い為、磁気回路の磁化を弱めない。三輪光雄:物理,昇
龍堂出版(昭和39年) 磁気回路の鉄心と鉄心の途中に空隙があると、殆どの磁
束は鉄心の積み方向に直交して貫通するが、空隙の端の
ところの磁束はフリンジングして、ほぼ鉄心の積み方向
に貫通し、大きなうず電流が流れ、鉄心はいたずらに加
熱してしまう。これを防ぐには、鉄心端部を積み方向に
段々に積層する。磯部昭二:電気工学の周辺,開発社
(1992) 鉄心が入らない時は、コイルの巻き方によって、外部磁
界の様子は異なるけれども、鉄心が入ると磁束は殆ど外
部の空中へは出ない。(社)日本電気協会編集:電気理
論(1),(社)日本電気協会(昭和56年) 鉄片を磁石に付けると、鉄粉にて示される磁力線は非常
に少なくなり、鉄片と磁石の回りの磁気力が非常に弱ま
り、他の鉄片は引き付けない。原正人:電気の理論,啓
学出版(1977) 上記を整理して考察すると、鉄心は反磁界を無視出来る
場合に相当するものである。途中に空隙のない鉄心は磁
気回路を作り、この鉄心にコイルを巻いて電流を流して
も、この鉄心の周りに在る鉄心に向かう磁力線は生じな
い。磁気回路の一部分で、鉄心と鉄心の途中に空隙があ
っても、鉄心端部を鉄心の積み方向に段々に積層すれ
ば、磁束が鉄心を貫通する事に問題は無い。
In the magnetic dipole in the iron rod in a magnetic field, the N pole faces the direction of the magnetic field, so that the iron rod as a whole has an N pole at the end in the magnetic field direction and an S pole at the opposite end. Magnetize to. For this reason, a magnetic field (demagnetizing field) is generated inside the iron bar in the opposite direction to the applied magnetic field. The demagnetizing field is large because the distance between the N and S poles is short when the dimension of the iron rod in the magnetic field direction is short, for example.
Even if such a steel bar has a high magnetic permeability, it is difficult to magnetize. In fact, magnetic flux and magnetic flux density are valid only when this demagnetizing field can be ignored. For example, when a sufficiently long iron rod is magnetized in the direction of its length, when a circular iron core is magnetized, and when there is a void in a part of the iron ring, the demagnetizing field hardly appears. In the case of a circular iron core, the magnetic flux becomes like a ring, but this is called a magnetic circuit.If a closed magnetic circuit with no air in the middle is created, the demagnetizing field does not occur, so the magnetization of the magnetic circuit is weakened. Absent. Miwa Miwa: Physics, Shoryudo Publishing (1939) If there is a gap between the iron core and the iron core of the magnetic circuit, most of the magnetic flux penetrates perpendicularly to the stacking direction of the iron core, but at the end of the void. The magnetic flux fringes, penetrates almost in the stacking direction of the iron core, and a large eddy current flows, and the iron core is unnecessarily heated. In order to prevent this, the end portions of the core are stacked in the stacking direction. Shoji Isobe: Around Electrical Engineering, Development Company (1992) When the iron core does not enter, the external magnetic field changes depending on the winding method of the coil, but when the iron core enters, almost no magnetic flux is emitted to the outside air. (Japan) Japan Electric Association edit: Electric theory (1), (Japan) Japan Electric Association (1981) When iron pieces are attached to magnets, the magnetic lines of force shown by iron powder are very small, and the iron pieces and magnets are surrounded. Has a very weak magnetic force and does not attract other iron pieces. Masato Hara: Theory of Electricity, Keigaku Shuppan (1977) When the above is arranged and considered, the iron core corresponds to the case where the demagnetizing field can be ignored. An iron core without a void in the middle forms a magnetic circuit, and even if a coil is wound around this iron and an electric current is passed through it, magnetic lines of force around the iron core toward the iron core do not occur. Even if there is a gap between the iron core and the iron core in a part of the magnetic circuit, there is no problem that the magnetic flux penetrates the iron core if the iron core end portions are stacked in the stacking direction of the iron core.

【0006】鉄心入りの一次コイルが一組の場合、磁気
回路(一次磁気回路)が出来る様な、空隙のある鉄心
(一次鉄心)に一次コイルCを巻いて、交流電源とス
イッチと一次コイルCを接続する。一次鉄心の空隙の
間に、閉じた鉄心(二次鉄心)を保持し、この鉄心(二
次鉄心)の脚に磁力線を与える。鉄心の端部に入る磁力
線はフリンジングするので、鉄心端部のうず電流を防止
する為に、一次と二次の両鉄心の端部を段々に積層す
る。閉じた二次鉄心の脚に二次コイルを巻く。常伝導状
態で、2脚の鉄心の場合、磁力線を与えられた脚に巻い
た二次コイルCの他二次コイルC′を他方の脚に巻
き、同じ巻き数で、相互インダクタンスが負となる様に
接続し、電源(二次コイル電源)とする。3脚の場合、
中央脚に磁力線を与え、二次コイルCを中央脚に巻
き、電源(二次コイル電源)とする。この場合、左右の
脚にそれぞれコイルC′,C″を巻く。コイル
′とスイッチチは一次コイルCと並列に接続す
る。コイルC″とスイッチも一次コイルCと並列に
接続する。但し、コイルC′とコイルC″とは同じ
巻き数で、それぞれのコイルを励磁電流が流れると磁路
に生じる磁束は中央脚で互いに相殺する様に一次コイル
と並列に接続する。超伝導状態で、2脚の場合、磁
力線を与えられた脚に二次コイルCを巻き、電源(二
次コイル電源)とする。他方の脚に中空円筒状超導体コ
イルC′を巻く。いずれの場合も電源(二次コイル電
源)と負荷とスイッチを接続して、二次電気回路を構成
する。
When there is one set of primary coils with an iron core, the primary coil C 1 is wound around an iron core (primary iron core) having a gap so that a magnetic circuit (primary magnetic circuit) can be formed, and an AC power source, a switch, and a primary coil. Connect C 1 . A closed iron core (secondary iron core) is held between the voids of the primary iron core, and magnetic lines of force are applied to the legs of this iron core (secondary iron core). Since the magnetic lines of force entering the ends of the iron core are fringing, the ends of both the primary and secondary iron cores are stacked in layers in order to prevent eddy currents at the ends of the iron core. Wind the secondary coil around the leg of the closed secondary iron core. In normal state, when the iron core of the two legs, winding the other secondary coil C 2 'of the wound legs given magnetic lines secondary coil C 2 on the other leg, with the same number of turns, the mutual inductance is negative The power supply (secondary coil power supply). In case of 3 legs,
Magnetic lines of force are applied to the central leg, and the secondary coil C 3 is wound around the central leg to serve as a power supply (secondary coil power supply). In this case, right and left coil C 3 to the leg of the ', C 3 "wound. Coil C 3' and Suitchichi is connected in parallel with the primary coil C 1. Coil C 3" in parallel with the switch also the primary coil C 1 Connecting. However, the coil C 3 ′ and the coil C 3 ″ have the same number of turns, and are connected in parallel with the primary coil C 1 so that the magnetic fluxes generated in the magnetic path when the exciting current flows through the respective coils cancel each other at the central leg. In the superconducting state, in the case of two legs, the secondary coil C s is wound around the leg to which the magnetic field lines are given to serve as a power source (secondary coil power source), and the hollow cylindrical superconductor coil C s ′ is wound around the other leg. In any case, connect the power supply (secondary coil power supply), load and switch to form a secondary electric circuit.

【0007】[0007]

【作用】交流電源(一次電源)とスイッチと一次コイル
を接続し、この一次電気回路を閉じると、一次コイ
ルCと鎖交する磁束(一次磁気回路)が生じる。この
為、一次電気回路は電圧平衡する。一次磁気回路と鎖交
する、閉じた二次鉄心の脚に巻いた二次コイルには誘起
起電力が生じる。この二次コイルを電源として、負荷と
スイッチと接続して、この電気回路を閉じると負荷電流
が流れる。常伝導状態で、二次コイルを負荷電流が流れ
ると、閉じた鉄心(二次鉄心)に磁束(二次磁気回路)
が生じる。2脚の鉄心の場合、磁束(二次磁気回路)と
鎖交する二次コイルCと二次コイルC′は同じ巻き
数で、相互インダクタンスが負である為、磁束は相殺さ
れて、見掛け上、磁路に現れない。3脚の場合、二次コ
イルCを負荷電流が流れると、二次コイルC′及び
二次コイルC″と鎖交する磁束(二次磁気回路)が現
れる。所が、二次コイルC′も二次コイルC″も一
次コイルと並列に接続されているので、一次負荷電流と
同様に、現れた磁束を相殺する様に電流(相殺電流)が
流れる。しかも、二次コイルC′と二次コイルC
を励磁電流が流れると磁路に生じる磁束は中央脚で互い
に相殺する様に一次コイルCと接続した場合、一次電
気回路の電流の方向を基準にすると、二次コイルC
と二次コイルC″を流れる電流(相殺電流)の方向は
互いに逆であり、二次コイルC′と二次コイルC
を循環して流れ、交流電源(一次電源)を通っては流れ
ない。例えば、実験すると、二次コイルC′に有効電
流のみが流れている時、二次コイルC″には位相が逆
の有効電流が流れる。つまり、交流電源(一次電源)の
電圧の向きとは独立して、負荷電流の位相と同期して、
電流(相殺電流)が流れる。超伝導状態の場合、二次コ
イルCを負荷電流が流れると、閉じた鉄心(二次鉄
心)に磁束(二次磁気回路)が生じる。中空円筒状超伝
導体コイルC′と鎖交する磁束は遮蔽電流によって相
殺される。常伝導状態及び超伝導状態のいずれの場合
も、負荷電流が流れても、一次コイルCを常時、一方
向からのみ、貫通する磁束は生じない。その為、交流電
源(一次電源)を通って流れる一次負荷電流は生じな
い。
When the AC power supply (primary power supply), the switch and the primary coil C 1 are connected and the primary electric circuit is closed, a magnetic flux (primary magnetic circuit) interlinking with the primary coil C 1 is generated. Therefore, the primary electric circuit is voltage-balanced. Induced electromotive force is generated in the secondary coil wound around the leg of the closed secondary iron core, which is linked to the primary magnetic circuit. When this secondary coil is used as a power source and a load and a switch are connected and this electric circuit is closed, a load current flows. When the load current flows through the secondary coil in the normal conduction state, the magnetic flux (secondary magnetic circuit) is generated in the closed iron core (secondary iron core).
Occurs. In the case of a two-legged iron core, the secondary coil C 2 and the secondary coil C 2 ′ interlinking with the magnetic flux (secondary magnetic circuit) have the same number of turns and the mutual inductance is negative, so the magnetic flux is canceled out, Apparently, it does not appear in the magnetic path. For three legs, when the secondary coil C 3 load current flows, the secondary coil C 3 'and the secondary coil C 3 "and magnetic flux interlinking (secondary magnetic circuit) appears. Plant, the secondary coil Since both C 3 ′ and the secondary coil C 3 ″ are connected in parallel with the primary coil, a current (cancellation current) flows so as to cancel the generated magnetic flux, like the primary load current. Moreover, the secondary coil C 3 ′ and the secondary coil C 3
Is connected to the primary coil C 1 so that the magnetic fluxes generated in the magnetic path when the exciting current flows in the central leg cancel each other out, the secondary coil C 3 ′ is based on the current direction of the primary electric circuit.
The directions of the currents (offset currents) flowing through the secondary coil C 3 ″ and the secondary coil C 3 ″ are opposite to each other, and the secondary coil C 3 ′ and the secondary coil C 3 ″.
It does not flow through the AC power supply (primary power supply). For example, according to an experiment, when only the effective current flows in the secondary coil C 3 ′, the effective current having the opposite phase flows in the secondary coil C 3 ″. That is, the direction of the voltage of the AC power supply (primary power supply) Independent of, and in synchronism with the phase of the load current,
Current (offset current) flows. In the superconducting state, when a load current flows through the secondary coil C s , a magnetic flux (secondary magnetic circuit) is generated in the closed iron core (secondary iron core). Hollow cylindrical superconductor coil C s' and interlinkage magnetic flux is canceled by the shielding current. In both the normal conduction state and the superconducting state, even if a load current flows, a magnetic flux penetrating the primary coil C 1 is always generated only from one direction. Therefore, the primary load current flowing through the AC power supply (primary power supply) is not generated.

【0008】[0008]

【実施例】実施例について図面を参照して説明すると、
図1において、磁束の通路となる鉄心と、磁束と鎖交す
る電流の通路となるコイルと、これらを絶縁する絶縁物
及びこれらの相互位置や機械的強度を保つための締付装
置などで発明本体を構成しているうち、一次電気回路と
二次電気回路及び鉄心と磁束を図示している。一次電気
回路は交流電源1gと一次コイル1cと開閉器1sを導
体9で接続して構成する。二次電気回路は二次コイル2
cと負荷2lと開閉器2sを導体9で接続して構成す
る。鉄心は端部積層部8をフリンジングによる渦電流が
生じない様に、鉄心の積み方向に段々に積層する。二次
鉄心2mは結晶方向性の影響が実用的に問題とならない
様に積層する。磁束は鉄心の積み方向と直交する方向に
通す。二次鉄心2mの脚に磁力線を与えて、二次鉄心2
mに巻かれた二次コイル2cに誘起起電力を生じさせる
為に、一次鉄心1mの空隙部分に二次鉄心2mの一方の
脚を反磁界が無視出来る様に配置し、保持する。一次電
気回路を閉じて、励磁電流10iが流れると、一次コイ
ル1cと鎖交する磁気回路(一次磁束11f)が出来、
一次電気回路が電圧平衡する。二次鉄心2mの脚に巻き
付けられた二次コイル2cを一次磁束11fが貫通する
為、二次コイル2cには誘起起電力が生じる。この二次
コイル2cを負荷2lと開閉器2sと導体9で接続し
て、開閉器2sを閉じると、二次コイル2cに負荷電流
2iが流れる。二次鉄心2mの両方の脚に巻くコイルの
巻き数を同じにし、相互インダクタンスが負となる様に
二次コイル2cを結線しておくと、二次コイル2cに負
荷電流2iが流れると、二次磁束22xと相殺磁束22
yとが互いに逆向きに生じ、この磁束は相殺されて、二
次鉄心2m中に、見掛け上、現れない。
EXAMPLES Examples will be described with reference to the drawings.
1, an iron core serving as a magnetic flux path, a coil serving as a current path that links the magnetic flux, an insulator that insulates them, and a tightening device for maintaining their mutual position and mechanical strength are invented. Among the constituents of the main body, the primary electric circuit, the secondary electric circuit, the iron core and the magnetic flux are illustrated. The primary electric circuit is configured by connecting the AC power supply 1g, the primary coil 1c, and the switch 1s with the conductor 9. The secondary electric circuit is the secondary coil 2
c, the load 21 and the switch 2s are connected by the conductor 9. In the iron core, the end laminated portion 8 is laminated stepwise in the iron core stacking direction so that an eddy current due to fringing does not occur. The secondary core 2m is laminated so that the influence of crystal orientation does not pose a practical problem. The magnetic flux passes in the direction orthogonal to the stacking direction of the iron cores. The magnetic field lines are applied to the legs of the secondary iron core 2 m, and the secondary iron core 2
In order to generate an induced electromotive force in the secondary coil 2c wound around m, one leg of the secondary core 2m is arranged and held in the void portion of the primary core 1m so that the demagnetizing field can be ignored. When the primary electric circuit is closed and the exciting current 10i flows, a magnetic circuit (primary magnetic flux 11f) interlinking with the primary coil 1c is formed,
The primary electrical circuit is voltage balanced. Since the primary magnetic flux 11f penetrates the secondary coil 2c wound around the leg of the secondary iron core 2m, an induced electromotive force is generated in the secondary coil 2c. When the secondary coil 2c is connected to the load 2l and the switch 2s by the conductor 9 and the switch 2s is closed, the load current 2i flows through the secondary coil 2c. When the number of turns of the coil wound around both legs of the secondary iron core 2m is the same and the secondary coil 2c is connected so that the mutual inductance becomes negative, when the load current 2i flows through the secondary coil 2c, Next magnetic flux 22x and offset magnetic flux 22
y and y are generated in the opposite directions, and the magnetic fluxes are canceled by each other, and apparently do not appear in the secondary iron core 2m.

【0009】[0009]

【発明の効果】二次コイル2cを負荷電流2iが流れる
と、磁路に生じるベクトル量である磁束(22xと22
y)が、二次コイル2cを常時、互いに逆方向から貫通
する。互いに逆向きで大ささの等しいベクトル量の和は
常にゼロである性質をこの様に利用すると、見掛け上、
磁路に生じる磁束(22xと22y)は現れない。二次
コイルを貫通する磁束は、励磁電流10iが流れると磁
路に現れる磁束(11f)だけであるので、従来の変圧
器と同様であり、二次電気回路で電力を消費出来る。
又、一次コイル1cを常時、一方向からのみ、貫通する
磁束も生じない為、交流電源1gを通って流れる一次負
荷電流も生じない。本発明と従来の変圧器で同じ電力を
消費した場合を較べると、供給するエネルギーは本発明
の方が一次負荷電流を供給するエネルギー分少ない。本
発明は一次側電気回路で消費されるエネルギーは一次側
電気回路の交流電源に供給されるが、二次側電気回路は
独立していて、二次電気回路からの一次電気回路への電
磁結合は無い。この為、二次電気回路での電力消費は一
次電気回路からの制約を受けない。
When the load current 2i flows through the secondary coil 2c, the magnetic flux (22x and 22x) which is the vector amount generated in the magnetic path.
y) always penetrates the secondary coil 2c from mutually opposite directions. By using the property that the sum of vector quantities of opposite directions and equal in size is always zero in this way, apparently,
The magnetic flux (22x and 22y) generated in the magnetic path does not appear. Since the magnetic flux penetrating the secondary coil is only the magnetic flux (11f) that appears in the magnetic path when the exciting current 10i flows, it is similar to the conventional transformer, and power can be consumed by the secondary electric circuit.
Further, since the magnetic flux penetrating the primary coil 1c from only one direction is not generated at all times, the primary load current flowing through the AC power supply 1g is not generated. Comparing the case where the present invention and the conventional transformer consume the same electric power, the energy supplied is smaller in the present invention by the energy for supplying the primary load current. According to the present invention, the energy consumed in the primary side electric circuit is supplied to the AC power supply of the primary side electric circuit, but the secondary side electric circuit is independent, and the secondary side electric circuit is electromagnetically coupled to the primary side electric circuit. There is no. Therefore, the power consumption in the secondary electric circuit is not restricted by the primary electric circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次電気回路と二次電気回路及び鉄心と磁束を
図示している。
FIG. 1 illustrates a primary electrical circuit, a secondary electrical circuit, an iron core and a magnetic flux.

【符号の説明】[Explanation of symbols]

10i 励磁電流 2i 負荷電流 1g 交流電源 2l 負荷 1m 一次鉄心 2m 二次鉄心 1c 一次コイル 2c 二次コイル 1s 開閉器 2s 開閉器 11f 一次磁束 22x 二次磁束 22y 相殺磁束 8 端部積層部 9 導体 10i Excitation current 2i Load current 1g AC power supply 2l Load 1m Primary iron core 2m Secondary iron core 1c Primary coil 2c Secondary coil 1s Switchgear 2s Switchgear 11f Primary magnetic flux 22x Secondary magnetic flux 22y Cancellation magnetic flux 8 End laminated part 9 Conductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二次コイルを負荷電流が流れると磁路に生
じる磁束が、二次コイルに誘起起電力を与えている一次
コイルを貫通しないで、この磁束を相殺する電力消費装
置。
1. A power consuming device for canceling a magnetic flux generated in a magnetic path when a load current flows through the secondary coil without penetrating the primary coil which gives an induced electromotive force to the secondary coil.
JP19239495A 1995-06-22 1995-06-22 A power consuming device using the properties of vector quantities Expired - Fee Related JP3554850B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19239495A JP3554850B2 (en) 1995-06-22 1995-06-22 A power consuming device using the properties of vector quantities
JP8196876A JPH09120923A (en) 1995-06-22 1996-06-21 Power consuming device using vector properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19239495A JP3554850B2 (en) 1995-06-22 1995-06-22 A power consuming device using the properties of vector quantities

Publications (2)

Publication Number Publication Date
JPH097862A true JPH097862A (en) 1997-01-10
JP3554850B2 JP3554850B2 (en) 2004-08-18

Family

ID=16290582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19239495A Expired - Fee Related JP3554850B2 (en) 1995-06-22 1995-06-22 A power consuming device using the properties of vector quantities

Country Status (1)

Country Link
JP (1) JP3554850B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142565A (en) * 2010-12-15 2012-07-26 Shinichiro Takeuchi Power unit utilizing nature of vector quantity
CN113096933A (en) * 2020-01-08 2021-07-09 台达电子企业管理(上海)有限公司 Multiphase coupling inductor, multiphase coupling inductor array and two-phase counter coupling inductor
US11320879B2 (en) 2020-01-08 2022-05-03 Delta Electronics (Shanghai) Co., Ltd Power supply module and electronic device
US11621254B2 (en) 2020-01-08 2023-04-04 Delta Electronics (Shanghai) Co., Ltd. Power supply system
US11812545B2 (en) 2020-01-08 2023-11-07 Delta Electronics (Shanghai) Co., Ltd Power supply system and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142565A (en) * 2010-12-15 2012-07-26 Shinichiro Takeuchi Power unit utilizing nature of vector quantity
CN113096933A (en) * 2020-01-08 2021-07-09 台达电子企业管理(上海)有限公司 Multiphase coupling inductor, multiphase coupling inductor array and two-phase counter coupling inductor
CN113096933B (en) * 2020-01-08 2022-04-22 台达电子企业管理(上海)有限公司 Multiphase coupling inductor, multiphase coupling inductor array and two-phase counter coupling inductor
US11320879B2 (en) 2020-01-08 2022-05-03 Delta Electronics (Shanghai) Co., Ltd Power supply module and electronic device
US11621254B2 (en) 2020-01-08 2023-04-04 Delta Electronics (Shanghai) Co., Ltd. Power supply system
US11812545B2 (en) 2020-01-08 2023-11-07 Delta Electronics (Shanghai) Co., Ltd Power supply system and electronic device
US11876084B2 (en) 2020-01-08 2024-01-16 Delta Electronics (Shanghai) Co., Ltd. Power supply system

Also Published As

Publication number Publication date
JP3554850B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US7026905B2 (en) Magnetically controlled inductive device
JPH10223457A (en) Static magnet type generator
CA1231399A (en) Low core loss rotating flux transformer
JP2002218729A (en) System combined with permanent magnet excited synchronous motor and noncontact power supply
US2324634A (en) Electromagnetic inductance apparatus
JP3554850B2 (en) A power consuming device using the properties of vector quantities
CA2344815C (en) Permanent magnetic core device
KR101082576B1 (en) Controllable inductive device
TW521285B (en) Transformer, core for transformer and manufacturing method of core for transformer
Wilk et al. Nonlinear model of a wound iron core traction transformer with the account of magnetic
JP5520613B2 (en) Magnetic flux control type variable transformer
Nanato et al. Basic study for a large AC current supply with a single phase air-core Bi2223 high temperature superconducting transformer
Qian et al. Magnetic coupling enhancement for contactless power transfer with superconductors
Xu et al. A simple calculation method for center magnetic flux density of a magnetic core electromagnet with a wide air gap
JP6558715B2 (en) Electric power device effective in suppressing electromagnetic induction action
Krause et al. Low core loss rotating flux transformer
JPH11204353A (en) Static-magnet type generator
US10547218B2 (en) Variable magnetic monopole field electro-magnet and inductor
RU2393568C1 (en) Transformer
KR102139004B1 (en) Variable-capacity transformer structure using magnetic flux assist slot and manufacturing method thereof
Wilk Nonlinear modeling of traction transformer with coiled iron core for dynamic simulation
JPH1070876A (en) Power equipment utilizing property of vector quantity
JPH0855714A (en) Power generating coil device
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
RU2124776C1 (en) Multifunctional transformer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees