JPH09318688A - System connecting system - Google Patents

System connecting system

Info

Publication number
JPH09318688A
JPH09318688A JP8135368A JP13536896A JPH09318688A JP H09318688 A JPH09318688 A JP H09318688A JP 8135368 A JP8135368 A JP 8135368A JP 13536896 A JP13536896 A JP 13536896A JP H09318688 A JPH09318688 A JP H09318688A
Authority
JP
Japan
Prior art keywords
harmonic component
interconnection
failure
detecting means
inverter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8135368A
Other languages
Japanese (ja)
Inventor
Wataru Horio
渉 堀尾
Kazuhisa Otagaki
和久 太田垣
Yasuhiro Makino
康弘 牧野
Masahiro Maekawa
正弘 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8135368A priority Critical patent/JPH09318688A/en
Publication of JPH09318688A publication Critical patent/JPH09318688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To provide a system connection system capable of diagnosing the existence of a connection relay failure during connection running and quickly restoring the failed spot when the occurrence of a failure is determined. SOLUTION: This system includes a first harmonic component detecting means 12 provided between a connection relay 6 and an insulation transformer 5 for detecting the harmonic component of the secondary side voltage of the insulation transformer 5, a second harmonic component detecting means 13 provided between the connection relay 6 and a load 4 for detecting the harmonic component of a load voltage, a failure self diagnosing means 14a for determining the occurrence of a failure in the connection relay 6 if a difference of a fixed value or higher is made in detected harmonic component levels between the first and second harmonic component detecting means 12 and 13 during connection running of an inverter circuit 2 and an inverter control means 14 for stopping the running of the inverter circuit 2 if the occurrence of a failure is determined by the failure self diagnosing means 14a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池などの直
流電源から得られる直流出力を交流出力に変換して商用
電力系統へ逆潮流する系統連系システムに関し、特に系
統連系用リレーの故障の有無を確実に検出するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grid interconnection system for converting a DC output obtained from a DC power source such as a solar cell into an AC output for reverse flow to a commercial power system, and more particularly to a failure of a grid interconnection relay. The presence or absence of is surely detected.

【0002】[0002]

【従来の技術】近年、太陽電池を用いた数kWの比較的
小容量の直流電源を、その出力を交流に変換するインバ
ータ回路を介して商用電力系統に連系し、負荷に電力を
供給する系統連系システムが種々提案されている。図2
は、従来の系統連系システムの概略構成図である。
2. Description of the Related Art In recent years, a DC power source having a relatively small capacity of several kW, which uses a solar cell, is connected to a commercial power system via an inverter circuit that converts the output of the solar cell into an AC power source to supply power to a load. Various grid interconnection systems have been proposed. FIG.
FIG. 1 is a schematic configuration diagram of a conventional system interconnection system.

【0003】図において、21は直流電源であり、太陽
光のエネルギーを直流電圧に直接変換する太陽電池素子
が多数個直並列に接続された太陽電池、22はその太陽
電池21から出力される直流電力を交流に変換するため
のインバータ回路であり、太陽電池21からの直流出力
は、インバータ回路22によって交流に変換された上、
絶縁トランス23、連系用リレー24やブレーカ25な
どの開閉手段を経て負荷26および商用電力系統27に
供給される。ここで、インバータ回路22は、インバー
タ制御回路28によって動作が制御されている。
In the figure, reference numeral 21 is a DC power source, a solar cell in which a large number of solar cell elements for directly converting the energy of sunlight into a DC voltage are connected in series and parallel, and 22 is a DC output from the solar cell 21. It is an inverter circuit for converting electric power into alternating current, and the direct current output from the solar cell 21 is converted into alternating current by the inverter circuit 22.
It is supplied to the load 26 and the commercial power system 27 via an opening / closing means such as an insulating transformer 23, an interconnection relay 24 and a breaker 25. Here, the operation of the inverter circuit 22 is controlled by the inverter control circuit 28.

【0004】そして、上記連系用リレー24及びブレー
カ25は、インバータ制御回路28によって制御されて
いる。従って、負荷26の短絡や線路断線などによる地
絡発生時、及びインバータ回路22からの過電流発生時
などの場合には、連系用リレー24及びブレーカ25を
開放させて、インバータ回路22を系統27から解列す
ると共にインバータ回路22の動作を停止させる。そし
て、故障個所の復旧後に操作者により手動でブレーカ2
5を投入した後に、インバータ回路22を再起動させて
いる。
The interconnection relay 24 and breaker 25 are controlled by an inverter control circuit 28. Therefore, when a ground fault occurs due to a short circuit of the load 26 or a line break, or when an overcurrent is generated from the inverter circuit 22, the interconnection relay 24 and the breaker 25 are opened to connect the inverter circuit 22 to the system. At the same time as disconnecting from 27, the operation of the inverter circuit 22 is stopped. Then, the operator manually breaks the breaker 2 after the failure point is restored.
After turning on 5, the inverter circuit 22 is restarted.

【0005】また、夜間など日射量不足により太陽電池
21による発電電力が連系可能な程度得られない場合に
は、連系用リレー24のみを開放させて、インバータ回
路22を系統27から解列すると共にインバータ回路2
2の動作を停止させる。そして、太陽電池21から連系
可能な発電電力が得られるようになった場合に、インバ
ータ制御回路28から連系用リレー24に連系信号を送
出して、インバータ回路22を系統27に連系させると
共にインバータ回路22を再起動させている。
Further, when the generated power from the solar cell 21 cannot be obtained due to insufficient solar radiation such as at night, only the interconnection relay 24 is opened to disconnect the inverter circuit 22 from the system 27. And inverter circuit 2
The operation of 2 is stopped. Then, when the solar cell 21 can generate the generated power that can be interconnected, the inverter control circuit 28 sends an interconnecting signal to the interconnecting relay 24 to connect the inverter circuit 22 to the grid 27. In addition, the inverter circuit 22 is restarted.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述した従
来システムでは、インバータ制御回路28からの連系信
号の入力に従い、連系用リレー24が確実に閉じられて
いるかどうかを確認する方法として、連系用リレー24
の接点24a、24bの開閉と同期して動作する状態検
出用接点24cを設け、この状態検出用接点24cから
の状態信号によって連系用リレー24の状態を確認する
方法がある。
By the way, in the above-mentioned conventional system, as a method of confirming whether the interconnection relay 24 is surely closed according to the input of the interconnection signal from the inverter control circuit 28, the interconnection system is connected. System relay 24
There is a method of providing a state detection contact 24c that operates in synchronization with the opening and closing of the contacts 24a and 24b, and confirming the state of the interconnection relay 24 by a state signal from the state detection contact 24c.

【0007】しかしながら、連系用リレー24の1極の
接点24bのみが摩耗などによる接点不良等の故障によ
り接点が閉じない状態となった場合には、インバータ制
御回路28からの連系信号の入力に従い、もう1極の接
点24a及び状態検出用接点24cが閉じて連系用リレ
ー24が正常であると判断され、このような故障は直ぐ
には確認できなかった。
However, when only one contact 24b of the interconnection relay 24 is in a state in which the contact cannot be closed due to a failure such as a contact failure due to wear or the like, an interconnection signal is input from the inverter control circuit 28. Accordingly, the contact 24a of the other pole and the contact 24c for state detection were closed, and it was judged that the interconnection relay 24 was normal, and such a failure could not be immediately confirmed.

【0008】このため、連系用リレー24の上記故障を
検出することができず、その故障箇所が一向に復旧され
ないために、太陽電池21から所定出力の発電が可能な
状態であるにも拘わらず、その発電電力が負荷26及び
系統27に供給されず、太陽電池の発電電力の有効利用
が図れない虞れがあった。
Therefore, the above-mentioned failure of the interconnection relay 24 cannot be detected, and the failure location is not recovered at all, so that the solar cell 21 is in a state in which power generation with a predetermined output is possible. However, the generated power is not supplied to the load 26 and the grid 27, and the generated power of the solar cell may not be effectively used.

【0009】本発明は、斯かる点に鑑みてなされたもの
であって、連系用リレーの故障の有無を診断して、故障
発生時には即座にインバータ回路の運転を停止させ、故
障個所の復旧を行うことができる系統連系システムを提
供する。
The present invention has been made in view of the above point, and diagnoses the presence or absence of a failure of the interconnection relay, immediately stops the operation of the inverter circuit when the failure occurs, and restores the failed portion. To provide a system interconnection system capable of performing.

【0010】[0010]

【課題を解決するための手段】本発明に係る系統連系シ
ステムは、インバータから出力される交流電力を2次側
に絶縁伝達する絶縁トランスと、該絶縁トランスの2次
側に接続され、前記インバータ回路を商用電力系統に連
系または解列させる連系用リレーと、該連系用リレーと
前記絶縁トランスとの間に設けられ、絶縁トランスの2
次側電圧の高調波成分を検出する第1高調波成分検出手
段と、前記連系用リレーと前記負荷との間に設けられ、
負荷電圧の高調波成分を検出する第2高調波成分検出手
段と、前記インバータ回路の連系運転時に、前記第1高
調波成分検出手段及び第2高調波成分検出手段の検出高
調波成分レベルが一定値以上相違する際には、前記連系
用リレーの故障発生と判断する故障自己診断手段と、該
故障自己診断手段によって故障発生と判断した場合に、
前記インバータ回路の運転を停止させるインバータ制御
手段とを備えている。
A system interconnection system according to the present invention is an insulation transformer for insulatingly transmitting AC power output from an inverter to a secondary side, and is connected to the secondary side of the insulation transformer. An interconnecting relay for connecting or disconnecting the inverter circuit to the commercial power system, and an insulating transformer provided between the interconnecting relay and the insulating transformer.
A first harmonic component detecting means for detecting a harmonic component of the secondary voltage; and a relay provided between the interconnection relay and the load,
During the interlocking operation of the second harmonic component detecting means for detecting the harmonic component of the load voltage and the inverter circuit, the detected harmonic component levels of the first harmonic component detecting means and the second harmonic component detecting means are When the difference is equal to or more than a predetermined value, a failure self-diagnosis unit that determines that a failure has occurred in the interconnection relay, and a failure self-diagnosis unit determines that a failure has occurred,
And an inverter control means for stopping the operation of the inverter circuit.

【0011】この構成を用いることにより、連系運転時
に連系用リレーの故障の有無を診断して、故障発生時に
は即座にインバータ回路の運転を停止させ、故障個所の
復旧を行うことが可能となる。
By using this configuration, it is possible to diagnose the presence or absence of a failure of the interconnection relay during interconnection operation, immediately stop the operation of the inverter circuit when a failure occurs, and restore the failed portion. Become.

【0012】具体的構成としては、前記第1高調波成分
検出手段及び第2高調波成分検出手段は第3次高調波成
分を検出するものであり、前記直流電源は太陽電池であ
る。この構成を用いることにより、連系用リレーの故障
発生時には、第1高調波成分検出手段及び第2高調波成
分検出手段による検出高調波成分の相違が顕著に現れ、
連系用リレーの故障有無を確実に診断することができ
る。また、太陽電池の発電電力の有効利用を図ることが
できる。
Specifically, the first harmonic component detecting means and the second harmonic component detecting means detect a third harmonic component, and the DC power source is a solar cell. By using this configuration, when a failure occurs in the interconnection relay, the difference between the detected harmonic components by the first harmonic component detecting means and the second harmonic component detecting means becomes noticeable.
The failure of the interconnection relay can be reliably diagnosed. In addition, it is possible to effectively use the generated power of the solar cell.

【0013】[0013]

【発明の実施の形態】以下、本発明の系統連系システム
の一実施の形態を示す図面に基づいて詳細に説明する。
図1は本発明を適用させた太陽電池を用いた系統連系シ
ステムの概略構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION A detailed description will be given below with reference to the drawings showing an embodiment of a grid interconnection system of the present invention.
FIG. 1 is a schematic configuration diagram of a grid interconnection system using a solar cell to which the present invention is applied.

【0014】同図において、本発明の系統連系システム
は、太陽光のエネルギーを直流電力に変換する複数個の
太陽電池素子を直並列に接続して構成された直流電源と
しての太陽電池1(本実施形態では、最適動作電圧20
0V,最適動作電力3kW)と、その太陽電池1の直流
電力を交流電力に電力変換して所定交流電圧を供給する
インバータ回路2を中心に構成されており、商用電力系
統3と連系して配電線に接続された各種家電製品などの
負荷4に対して電力を供給している。
In the figure, the grid interconnection system of the present invention is a solar cell 1 (a DC power source, which is constituted by connecting a plurality of solar cell elements for converting sunlight energy into DC power in series and in parallel, as a DC power source. In this embodiment, the optimum operating voltage 20
0 V, optimum operating power 3 kW), and the inverter circuit 2 for converting the DC power of the solar cell 1 into AC power and supplying a predetermined AC voltage, and is connected to the commercial power system 3 Electric power is supplied to the load 4 such as various home appliances connected to the distribution line.

【0015】そして、インバータ回路2の出力側には、
巻線比1:1の絶縁トランス5と、自動復帰型の連系用
リレー6と、手動復帰型のブレーカ7とが順次設けられ
ている。また、太陽電池1とインバータ回路2との間に
は、太陽電池1の出力電圧を検出する太陽電池電圧検出
手段8と、太陽電池1の出力電流を検出する太陽電池電
流検出手段9とが設けられている。
On the output side of the inverter circuit 2,
An insulating transformer 5 having a winding ratio of 1: 1, an automatic restoration type interconnection relay 6, and a manual restoration type breaker 7 are sequentially provided. Further, between the solar cell 1 and the inverter circuit 2, a solar cell voltage detecting means 8 for detecting the output voltage of the solar cell 1 and a solar cell current detecting means 9 for detecting the output current of the solar cell 1 are provided. Has been.

【0016】一方、インバータ回路2の出力側には、そ
の出力電流を検出するインバータ電流検出手段10と、
系統3との連系点における電圧(負荷電圧)を検出する
連系点電圧検出手段11とがそれぞれ設けられている。
また、絶縁トランス5と連系用リレー6との間には絶縁
トランス5の2次側電圧の3次高調波成分を検出する第
1高調波成分検出手段12が、連系用リレー6とブレー
カ7との間には負荷電圧の3次高調波成分を検出する第
2高調波成分検出手段13がそれぞれ設けられている。
On the other hand, on the output side of the inverter circuit 2, an inverter current detecting means 10 for detecting the output current thereof,
An interconnection point voltage detecting means 11 for detecting a voltage (load voltage) at an interconnection point with the system 3 is provided.
Further, between the isolation transformer 5 and the interconnection relay 6, there is provided a first harmonic component detection means 12 for detecting a third harmonic component of the secondary voltage of the isolation transformer 5, and the interconnection relay 6 and the breaker. Second harmonic component detecting means 13 for detecting the third harmonic component of the load voltage is provided between the second and third harmonic components.

【0017】そして、太陽電池電圧検出手段8で検出さ
れる太陽電池電圧Vnと、太陽電池電流検出手段9で検
出される太陽電池電流Inと、連系点電圧検出手段11
で検出される連系点電圧Saと、インバータ電流検出手
段10で検出されるインバータ出力電流Sbは、マイク
ロコンピュータから構成されるインバータ制御回路(イ
ンバータ制御手段)14へ供給され、これによって電流
指令値(制御電流値)Ioが作成される。この電流指令
値Ioは、デジタルシグナルプロセッサから構成される
PWM制御回路15へ供給され、これによってインバー
タ回路2を構成する各スイッチング素子に対する駆動信
号が作成される。
Then, the solar cell voltage Vn detected by the solar cell voltage detecting means 8, the solar cell current In detected by the solar cell current detecting means 9, and the interconnection point voltage detecting means 11
The interconnection point voltage Sa detected by the inverter and the inverter output current Sb detected by the inverter current detecting means 10 are supplied to an inverter control circuit (inverter control means) 14 composed of a microcomputer, whereby the current command value (Control current value) Io is created. The current command value Io is supplied to the PWM control circuit 15 composed of a digital signal processor, and thereby a drive signal for each switching element forming the inverter circuit 2 is created.

【0018】具体的には、インバータ制御回路14は、
太陽電池1の動作点を最大電力の得られる最適動作点に
向けて段階的に変化せしめる最大電力点追尾機能を有し
ている。即ち、インバータ回路2の出力電圧Sa及び出
力電流Sbから出力電力を算出すると共に、動作電圧を
規定するための電圧指令値を微小量だけ増減させて、出
力電力の増減を判定し、出力電力が増加する方向にイン
バータ出力電流の電流指令値(制御電流値)Ioを変化
させて、太陽電池1の動作点を段階的に最適動作点へ近
づけるのである。
Specifically, the inverter control circuit 14 is
It has a maximum power point tracking function that gradually changes the operating point of the solar cell 1 toward the optimum operating point where the maximum power can be obtained. That is, the output power is calculated from the output voltage Sa and the output current Sb of the inverter circuit 2, and the voltage command value for defining the operating voltage is increased or decreased by a very small amount to determine whether the output power is increased or decreased. By changing the current command value (control current value) Io of the inverter output current in the increasing direction, the operating point of the solar cell 1 is gradually approached to the optimum operating point.

【0019】また、インバータ制御回路14は前述の最
大電力点追尾機能による処理を行う以外に、後述の処理
を行う故障自己診断部14aと保護継電処理部14bを
有する。
Further, the inverter control circuit 14 has a fault self-diagnosis unit 14a and a protective relay processing unit 14b, which perform the processes described below, in addition to the process by the maximum power point tracking function described above.

【0020】故障自己診断部14aは、第1高調波成分
検出手段12によって検出される3次高調波成分レベル
Vaと、第2高調波成分検出手段13によって検出され
る3次高調波成分レベルVbとが入力されており、イン
バータ回路2の運転時に、その3次高調波成分レベルの
差|Va−Vb|が一定値以上となる場合に、連系用リ
レー6の故障(開放)発生と判断している。
The failure self-diagnosis unit 14a has a third harmonic component level Va detected by the first harmonic component detecting means 12 and a third harmonic component level Vb detected by the second harmonic component detecting means 13. Is input, and when the difference in the third harmonic component level | Va-Vb | becomes a certain value or more during the operation of the inverter circuit 2, it is determined that the interconnection relay 6 has failed (opened). are doing.

【0021】これは、連系用リレー6が正常である場合
には、3次高調波成分レベルVa、Vbは同一となるた
め両者の差は略零となるが、連系用リレー6が開放故障
の場合には、絶縁トランスから発生する3次高調波成分
が第1高調波成分検出手段12によって検出されるのに
対し、負荷4から発生する3次高調波成分が第2高調波
成分検出手段13によって検出されることとなり、両者
に差が生じることを利用している。
This is because when the interconnection relay 6 is normal, the third harmonic component levels Va and Vb are the same and the difference between the two is substantially zero, but the interconnection relay 6 is opened. In the case of a failure, the third harmonic component generated from the isolation transformer is detected by the first harmonic component detecting means 12, while the third harmonic component generated from the load 4 is detected as the second harmonic component. It is detected by the means 13, and the fact that there is a difference between the two is used.

【0022】そして、保護継電処理部14bでは、故障
自己診断部14aによる診断結果に応じて、連系用リレ
ー6の故障が発生しているときには、即座に連系用リレ
ー6及びブレーカ7へ解列信号を送出して系統3から完
全に解列させると共に、PWM制御回路15に停止信号
を送出してインバータ回路2へ供給すべき駆動信号にゲ
ートブロックを施し、インバータ回路2の動作を停止さ
せる。
Then, in the protective relay processing unit 14b, when a failure occurs in the interconnection relay 6 according to the diagnosis result by the failure self-diagnosis unit 14a, the interconnection relay 6 and the breaker 7 are immediately sent. A disconnection signal is sent to completely disconnect from the system 3, and a stop signal is sent to the PWM control circuit 15 to gate block the drive signal to be supplied to the inverter circuit 2 to stop the operation of the inverter circuit 2. Let

【0023】具体的には、系統中に5%程度含まれる高
調波電圧成分の中から3次高調波電圧成分を抽出し、V
a、Vbの差が顕著に表れた(本実施の形態では0.5
Vに設定)の場合に、故障自己診断部14aでは連系用
リレー6の開放故障と判断している。
Specifically, the third harmonic voltage component is extracted from the harmonic voltage components contained in the system at about 5%, and V
A significant difference between a and Vb appears (0.5 in the present embodiment).
(Set to V), the failure self-diagnosis unit 14a determines that the interconnection relay 6 has an open failure.

【0024】これにより、インバータ回路2の運転中
に、連系用リレー6の開放故障の有無を診断して、故障
発生時には即座にインバータ回路2の動作を停止させ、
故障個所の復旧を行うことが可能となる。
As a result, during the operation of the inverter circuit 2, it is diagnosed whether or not there is an open circuit failure of the interconnection relay 6, and when the failure occurs, the operation of the inverter circuit 2 is immediately stopped.
It is possible to recover the failed part.

【0025】更に、保護継電処理部14bでは、連系点
電圧Sa及びインバータ出力電流Sbに基づいて、イン
バータ回路2又は系統3の故障状態であるかどうか判断
し、故障状態時には即座に連系用リレー6及びブレーカ
7へ解列信号を送出してインバータ回路2を系統3から
解列させると共に、PWM制御回路15に停止信号を送
出してインバータ回路2の動作を停止させている。ま
た、太陽電池電圧Vnに基づいて、系統3に連系運転で
きない太陽電池1の発電電力不足状態(待機状態)であ
るかどうか判断し、待機状態時には即座に連系用リレー
6へ解列信号を送出してインバータ回路2を系統3から
解列させると共に、PWM制御回路15に停止信号を送
出してインバータ回路2の動作を停止させている。
Further, the protective relay processing unit 14b determines whether or not the inverter circuit 2 or the grid 3 is in the fault state based on the interconnection point voltage Sa and the inverter output current Sb, and immediately in the fault state, the grid interconnection is performed. A disconnection signal is sent to the relay 6 and the breaker 7 to disconnect the inverter circuit 2 from the system 3, and a stop signal is sent to the PWM control circuit 15 to stop the operation of the inverter circuit 2. Further, based on the solar cell voltage Vn, it is determined whether or not the generated electric power of the solar cell 1 that cannot be interconnected to the grid 3 is in a shortage state (standby state), and immediately in the standby state, a disconnection signal to the interconnection relay 6 Is sent to disconnect the inverter circuit 2 from the system 3, and a stop signal is sent to the PWM control circuit 15 to stop the operation of the inverter circuit 2.

【0026】尚、上記実施の形態の説明は、本発明を説
明するものであって、特許請求の範囲に記載の発明を限
定し、或いは範囲を縮減するように解すべきではない。
また、本発明の各構成は上記実施の形態に限らず、特許
請求の範囲に記載の技術的範囲内で種々変形可能であ
る。例えば、上記実施の形態では、インバータ制御回路
14に、故障自己診断部14aと保護継電処理部14b
を有している場合について説明したが、これらを別個の
構成としても構わない。また、故障自己診断部14aに
おいて、3次高調波成分レベルの差|Va−Vb|が一
定値以上となる場合に、連系用リレー6の故障発生と判
断する場合について説明したが、この他に両者に差が発
生した場合に故障発生と判断しても構わない。
It should be noted that the above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope.
Further, each configuration of the present invention is not limited to the above-described embodiment, but can be variously modified within the technical scope described in the claims. For example, in the above embodiment, the inverter control circuit 14 includes a fault self-diagnosis unit 14a and a protection relay processing unit 14b.
Although the case of having the above has been described, these may be configured separately. Further, the case where the failure self-diagnosis unit 14a determines that a failure of the interconnection relay 6 has occurred when the difference | Va-Vb | of the third harmonic component level becomes a certain value or more has been described. If there is a difference between the two, it may be determined that a failure has occurred.

【0027】[0027]

【発明の効果】以上述べた通り本発明によれば、インバ
ータ回路の連系運転時に連系用リレーの故障の有無を診
断して、故障発生時には即座にインバータ回路の運転を
停止させ、故障個所の復旧を行うことが可能となり、直
流電源の発電電力の有効利用と、システムのメンテナン
ス性の向上を図ることができる。
As described above, according to the present invention, the presence or absence of a failure of the interconnection relay is diagnosed during the interconnection operation of the inverter circuit, and when the failure occurs, the operation of the inverter circuit is immediately stopped, and the failure point is detected. This makes it possible to effectively use the generated power of the DC power supply and improve the maintainability of the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態による系統連系システムの
概略構成図である。
FIG. 1 is a schematic configuration diagram of a grid interconnection system according to an embodiment of the present invention.

【図2】従来の系統連系システムの概略構成図である。FIG. 2 is a schematic configuration diagram of a conventional system interconnection system.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 インバータ回路 3 商用電力系統 4 負荷 5 絶縁トランス 6 連系用リレー 7 ブレーカ 8 太陽電池電圧検出手段 9 太陽電池電流検出手段 10 インバータ電流検出手段 11 連系点電圧検出手段 12 第1高調波成分検出手段 13 第2高調波成分検出手段 14 インバータ制御回路(インバータ制御手段) 14a 故障自己診断部(故障自己診断手段) 14b 保護継電処理部 15 PWM制御回路 1 solar cell 2 inverter circuit 3 commercial power system 4 load 5 insulation transformer 6 interconnection relay 7 breaker 8 solar cell voltage detection means 9 solar cell current detection means 10 inverter current detection means 11 interconnection point voltage detection means 12 first harmonic Wave component detection means 13 Second harmonic component detection means 14 Inverter control circuit (inverter control means) 14a Fault self-diagnosis unit (fault self-diagnosis means) 14b Protection relay processing unit 15 PWM control circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/48 H02N 6/00 H02N 6/00 H02P 7/63 302D H02P 7/63 302 H01L 31/04 K (72)発明者 前川 正弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical location H02M 7/48 H02N 6/00 H02N 6/00 H02P 7/63 302D H02P 7/63 302 H01L 31 / 04 K (72) Inventor Masahiro Maekawa 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直流電源から発生する直流電力を系統周波
数の交流電力に変換するインバータ回路を、商用電力系
統に連系して負荷に電力を供給する系統連系システムに
おいて、 前記インバータ回路から出力される交流電力を2次側に
絶縁伝達する絶縁トランスと、 該絶縁トランスの2次側に接続され、前記インバータ回
路を商用電力系統に連系または解列させる連系用リレー
と、 該連系用リレーと前記絶縁トランスとの間に設けられ、
絶縁トランスの2次側電圧の高調波成分を検出する第1
高調波成分検出手段と、 前記連系用リレーと前記負荷との間に設けられ、負荷電
圧の高調波成分を検出する第2高調波成分検出手段と、 前記インバータ回路の連系運転時に、前記第1高調波成
分検出手段及び第2高調波成分検出手段の検出高調波成
分レベルが一定値以上相違する際には、前記連系用リレ
ーの故障発生と判断する故障自己診断手段と、 該故障自己診断手段によって故障発生と判断した場合
に、前記インバータ回路の運転を停止させるインバータ
制御手段とを備えていることを特徴とする系統連系シス
テム。
1. In a system interconnection system for converting a DC power generated from a DC power source into an AC power of a system frequency to a commercial power system to supply power to a load, the output from the inverter circuit. An isolation transformer for insulatingly transmitting the AC power to the secondary side, an interconnection relay connected to the secondary side of the isolation transformer for interconnection or disconnection of the inverter circuit to a commercial power system, and the interconnection. Provided between the relay for insulation and the isolation transformer,
First to detect the harmonic component of the secondary voltage of the isolation transformer
Harmonic component detecting means, second harmonic component detecting means provided between the relay for interconnection and the load, for detecting a harmonic component of a load voltage, and during the interconnection operation of the inverter circuit, When the detected harmonic component levels of the first harmonic component detecting means and the second harmonic component detecting means differ by a predetermined value or more, a failure self-diagnosing means for judging a failure of the interconnection relay and the failure. A system interconnection system comprising: an inverter control unit that stops the operation of the inverter circuit when the self-diagnosis unit determines that a failure has occurred.
【請求項2】前記第1高調波成分検出手段及び第2高調
波成分検出手段は、第3次高調波成分を検出することを
特徴とする請求項1記載の系統連系システム。
2. The system interconnection system according to claim 1, wherein the first harmonic component detecting means and the second harmonic component detecting means detect a third harmonic component.
【請求項3】前記直流電源は、太陽電池であることを特
徴とする請求項1または2記載の系統連系システム。
3. The grid interconnection system according to claim 1, wherein the DC power source is a solar cell.
JP8135368A 1996-05-29 1996-05-29 System connecting system Pending JPH09318688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8135368A JPH09318688A (en) 1996-05-29 1996-05-29 System connecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8135368A JPH09318688A (en) 1996-05-29 1996-05-29 System connecting system

Publications (1)

Publication Number Publication Date
JPH09318688A true JPH09318688A (en) 1997-12-12

Family

ID=15150098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8135368A Pending JPH09318688A (en) 1996-05-29 1996-05-29 System connecting system

Country Status (1)

Country Link
JP (1) JPH09318688A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035655A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd System linkage device
JP2008259295A (en) * 2007-04-04 2008-10-23 Sharp Corp System-interconnected inverter
JP2011135706A (en) * 2009-12-25 2011-07-07 Hitachi Ltd Wind power generation system and control method thereof
JP2013093949A (en) * 2011-10-25 2013-05-16 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion apparatus
JP2014049079A (en) * 2012-09-04 2014-03-17 Nagoya Electrical Educational Foundation Photovoltaic power generation power conversion system
CN103727977A (en) * 2013-12-20 2014-04-16 常州大学 Environment monitor of self-repairing photovoltaic power generation monitoring system and achieving method of environment monitor
CN104181474A (en) * 2014-07-22 2014-12-03 国家电网公司 Method for judging fault of photovoltaic grid connection inverter
JP2015100249A (en) * 2013-11-20 2015-05-28 三菱電機株式会社 Interconnection inverter device
KR20190016512A (en) * 2016-06-09 2019-02-18 스미토모덴키고교가부시키가이샤 Method for determining the operating state of the power conversion apparatus and the blocking unit
CN110299726A (en) * 2019-07-08 2019-10-01 华北电力大学 A kind of photovoltaic DC grid-connected system fault recovery control method
WO2022085678A1 (en) * 2020-10-22 2022-04-28 キヤノン株式会社 Vibration-type drive apparatus and method for driving vibration-type drive apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035655A (en) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd System linkage device
JP2008259295A (en) * 2007-04-04 2008-10-23 Sharp Corp System-interconnected inverter
JP2011135706A (en) * 2009-12-25 2011-07-07 Hitachi Ltd Wind power generation system and control method thereof
JP2013093949A (en) * 2011-10-25 2013-05-16 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion apparatus
JP2014049079A (en) * 2012-09-04 2014-03-17 Nagoya Electrical Educational Foundation Photovoltaic power generation power conversion system
JP2015100249A (en) * 2013-11-20 2015-05-28 三菱電機株式会社 Interconnection inverter device
CN103727977A (en) * 2013-12-20 2014-04-16 常州大学 Environment monitor of self-repairing photovoltaic power generation monitoring system and achieving method of environment monitor
CN104181474A (en) * 2014-07-22 2014-12-03 国家电网公司 Method for judging fault of photovoltaic grid connection inverter
KR20190016512A (en) * 2016-06-09 2019-02-18 스미토모덴키고교가부시키가이샤 Method for determining the operating state of the power conversion apparatus and the blocking unit
CN109429542A (en) * 2016-06-09 2019-03-05 住友电气工业株式会社 The method of the mode of operation of power conversion device and determining tripper
EP3471259A4 (en) * 2016-06-09 2020-03-04 Sumitomo Electric Industries, Ltd. Power conversion device and method for determining operational state of cutoff unit
CN109429542B (en) * 2016-06-09 2020-11-03 住友电气工业株式会社 Power conversion device and method for determining operating state of circuit breaking device
TWI730068B (en) * 2016-06-09 2021-06-11 日商住友電氣工業股份有限公司 Power conversion device and method for judging operation state of circuit breaker
AU2017278524B2 (en) * 2016-06-09 2021-07-29 Sumitomo Electric Industries, Ltd. Power conversion device and a method for determining operational state of breaking device
CN110299726A (en) * 2019-07-08 2019-10-01 华北电力大学 A kind of photovoltaic DC grid-connected system fault recovery control method
WO2022085678A1 (en) * 2020-10-22 2022-04-28 キヤノン株式会社 Vibration-type drive apparatus and method for driving vibration-type drive apparatus

Similar Documents

Publication Publication Date Title
CN109375099B (en) Fault detection method for grid-connected relay of photovoltaic inverter
JPH09318688A (en) System connecting system
JPH089648A (en) Operation control method for dispersed power source
JP3428005B2 (en) Operation control method of distributed interconnection system
JPH09322555A (en) System cooperation system
JPH09285015A (en) Dc ground detector of photovoltaic power generation system
JP3319264B2 (en) Solar power system
JPH09117066A (en) System interconnection power supply system
JPH06133462A (en) System interconnection system
JPH08149843A (en) Protector of system interconnection inveter
JP3407974B2 (en) Grid connection system
JP3192918B2 (en) Grid-connected power supply
JPH08275397A (en) System-interconnected system
JP2951141B2 (en) Method of improving unbalance in single-phase three-wire line and power supply device used therefor
JPH1051959A (en) Decentralized power system
JP3584613B2 (en) Distributed power system
JP2001016782A (en) System interconnecting inverter device
JPH09149554A (en) Solar-ray power generator
JPH08130883A (en) System interconnection system
CN210092959U (en) On-line AC uninterrupted power supply system
CN216649307U (en) Intelligent power supply circuit
CN112838615B (en) Control system for generator set splitting
WO2022222009A1 (en) Direct current junction box, photovoltaic power generation system, and fault detection method
JP2503399B2 (en) Interconnection device with distribution system
CN117970008A (en) Tripping and closing loop monitoring system and method for relay protection device