JPH09294380A - Magnetic deviation suppression controller - Google Patents

Magnetic deviation suppression controller

Info

Publication number
JPH09294380A
JPH09294380A JP8106828A JP10682896A JPH09294380A JP H09294380 A JPH09294380 A JP H09294380A JP 8106828 A JP8106828 A JP 8106828A JP 10682896 A JP10682896 A JP 10682896A JP H09294380 A JPH09294380 A JP H09294380A
Authority
JP
Japan
Prior art keywords
transformer
converter
current
component
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8106828A
Other languages
Japanese (ja)
Inventor
Mikiya Nohara
幹也 野原
Shigeta Ueda
茂太 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8106828A priority Critical patent/JPH09294380A/en
Publication of JPH09294380A publication Critical patent/JPH09294380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to prevent in an instant overcurrent due to magnetic deviation in a transformer in whatever operation a converter is, by making correction gain variable according to the polarity of the direct-current component in the alternating-current output voltage of the converter and the polarity of the converter-side current of the transformer or the polarity of a differentiation value. SOLUTION: A three-phase power converter 1 comprising semiconductor switching elements is operated on driving signals Gp. A current detection circuit 5 and a voltage detection circuit 6 detect the converter-side current (transformer secondary current) i and the converter-side voltage V1 of a transformer 2, respectively. A magnetic deviation suppression controller 7 determines the direct- current component VIDC of the converter-side voltage V1 detected through the voltage detection circuit 6 by using a direct-current component detecting means 71. A status judging means 72 for direct-current component VIDC and transformer secondary current i is fed with direct-current component VIDC and transformer secondary current i, and outputs a signal SIG. This makes it possible to prevent in an instant overcurrent due to magnetic deviation in a transformer 2 in system failure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、交流出力を変圧器
を介して交流電源に接続して使用する大容量電力変換器
において、変圧器の偏磁による過電流を抑制する偏磁抑
制制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-capacity power converter in which an AC output is connected to an AC power source via a transformer for use, and a bias magnetism suppression control device for suppressing an overcurrent due to a bias magnetization of the transformer. Regarding

【0002】[0002]

【従来の技術】電力変換器容量の増加や高調波低減の目
的から電力変換器の交流出力を変圧器を介して電源に接
続する場合がある。電力変換器の変圧器の偏磁による過
電流を抑制する偏磁抑制制御の例として、平成7年電気
学会全国大会講演論文集1378「電圧形自励式変換器の新
しい偏磁抑制制御とその実証試験結果」に記載される技
術がある。この技術では、偏磁抑制制御として、電力変
換器の交流出力電圧の直流成分を補償する直流電圧補正
制御を使用している。この直流電圧補正制御は変換器出
力電圧に重畳される直流成分を補償して、変圧器の偏磁
を抑制する。
2. Description of the Related Art The AC output of a power converter may be connected to a power source via a transformer for the purpose of increasing the capacity of the power converter and reducing harmonics. As an example of bias suppression control that suppresses overcurrent due to bias magnetization of the transformer of the power converter, a new bias suppression control of the voltage-type self-excited converter and its demonstration are presented in the 1991 Annual Meeting of the Institute of Electrical Engineers of Japan. There is a technology described in "Test results". In this technique, a DC voltage correction control for compensating for the DC component of the AC output voltage of the power converter is used as the magnetic bias suppression control. This DC voltage correction control compensates for the DC component that is superimposed on the converter output voltage and suppresses the magnetic bias of the transformer.

【0003】[0003]

【発明が解決しようとする課題】ところが上記従来技術
では直流電圧補正制御の変換器の運転状態による影響が
考慮されていない。系統異常時の応答を良くするために
は補正ゲインを大きくすると効果的である。しかし、電
流の状態によっては、あまり補正ゲインを大きくすると
かえって過電流となる場合があるためにあまり補正ゲイ
ンを大きくすることができない。
However, the above prior art does not consider the influence of the operating state of the converter for the DC voltage correction control. It is effective to increase the correction gain in order to improve the response when the system is abnormal. However, depending on the state of the current, if the correction gain is made too large, it may result in an overcurrent, so the correction gain cannot be made too large.

【0004】本発明の目的はあらゆる変換器の運転状態
においても、変圧器偏磁による過電流を瞬時に抑制でき
る偏磁抑制制御装置を提供することにある。
An object of the present invention is to provide a bias magnetism suppression control device capable of instantaneously suppressing an overcurrent due to transformer bias magnetism even when all converters are operating.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の特徴は、変換器交流出力電圧の直流成分の極性と変
圧器の変換器側電流の極性または微分値の極性に応じて
補正ゲインを可変とする手段を備えたことにある。
The characteristics of the present invention for achieving the above object are that a correction gain is obtained in accordance with the polarity of the DC component of the converter AC output voltage and the polarity of the converter-side current of the transformer or the polarity of the differential value. There is a means for making the variable.

【0006】本発明によれば、変圧器交流出力電圧の直
流成分の極性と変圧器の変換器側電流の極性または微分
値の極性に応じて補正ゲインを可変とする事により、系
統事故時の変圧器偏磁による過電流を瞬時に抑制でき
る。
According to the present invention, the correction gain is made variable in accordance with the polarity of the DC component of the transformer AC output voltage and the polarity of the transformer-side current of the transformer or the polarity of the differential value, so that a system failure in the event of a system fault can be achieved. Instantaneous suppression of overcurrent due to transformer bias magnetism.

【0007】[0007]

【発明の実施の形態】図1に本発明の第1の実施例の構
成を示す。本実施例は電力変換器1が三相電力変換器の
場合であるが、簡略化のため、一相についてのみ説明す
る。1は半導体スイッチング素子で構成される三相の電
力変換器であり、駆動信号GP により運転する。2は変
圧器であり、一次側を三相交流電源に接続し、二次側を
変換器交流出力に接続する。3は三相交流電源である。
FIG. 1 shows the configuration of a first embodiment of the present invention. In this embodiment, the power converter 1 is a three-phase power converter, but for simplification, only one phase will be described. Reference numeral 1 denotes a three-phase power converter composed of semiconductor switching elements, which is operated by a drive signal G P. A transformer 2 has a primary side connected to a three-phase AC power source and a secondary side connected to a converter AC output. 3 is a three-phase AC power supply.

【0008】5は電流検出回路、6は電圧検出回路であ
る。それぞれ、変圧器の変換器側電流(以下、変圧器二
次電流と呼ぶ)i,変換器側電圧vI を検出する。
Reference numeral 5 is a current detection circuit, and 6 is a voltage detection circuit. The transformer-side current (hereinafter referred to as the transformer secondary current) i and the transformer-side voltage v I of the transformer are detected, respectively.

【0009】7は偏磁抑制制御装置である。電圧検出回
路6で検出したvIの直流成分vIDCを直流成分検出手段
71によって求める。vIDC は例えば(数1)に示すよ
うに現在の時刻tまでの三相交流電源の過去一周期
(T)分の平均値を求めることで求まる。
Reference numeral 7 is a magnetic bias suppression control device. The DC component v IDC of v I detected by the voltage detection circuit 6 is obtained by the DC component detecting means 71. The v IDC can be obtained, for example, by calculating an average value for the past one cycle (T) of the three-phase AC power supply until the current time t, as shown in ( Equation 1).

【0010】[0010]

【数1】 [Equation 1]

【0011】直流成分と変圧器二次電流の状態判別手段
72ではvIDC とiを入力して信号SIGを出力する。
The state determining means 72 for the DC component and the secondary current of the transformer inputs v IDC and i and outputs a signal SIG.

【0012】図2は電圧補正値と電流の状態判別手段7
2の動作を説明する図を示す。Δiを得る手段721に
電流iを入力してΔiを得る。722はΔiの極性を求
める手段でありΔi≧0なら“1”をΔi<0なら
“0”を出力する。723はvIDCの極性を求める手段
でありvIDC≧0なら“1”をvIDC<0 なら“0”を
出力する。722と723の出力を論理回路724に入
力して信号SIGが得られる。ΔiとvIDCの状態によ
るSIGの出力を表1に示す。
FIG. 2 shows a voltage correction value / current state determination means 7
The figure explaining operation | movement of 2 is shown. The current i is input to the means 721 for obtaining Δi to obtain Δi. Reference numeral 722 denotes a means for obtaining the polarity of Δi, which outputs “1” if Δi ≧ 0 and “0” if Δi <0. Reference numeral 723 is a means for obtaining the polarity of v IDC , which outputs “1” if v IDC ≧ 0 and outputs “0” if v IDC <0. The outputs of 722 and 723 are input to the logic circuit 724 to obtain the signal SIG. Table 1 shows the output of SIG depending on the states of Δi and v IDC .

【0013】[0013]

【表1】 [Table 1]

【0014】図3はΔiを得る手段721の詳細図であ
る。(a)はiの微分値を演算しΔiとする。(b)は
iをフィルタを通したあと微分値を演算しΔiとする。
FIG. 3 is a detailed view of the means 721 for obtaining Δi. (A) calculates the differential value of i and sets it as Δi. In (b), after i is filtered, the differential value is calculated to be Δi.

【0015】(c)はiの微分値を演算した後、フィル
タを通しΔiとする。(b)および(c)ではフィルタ
を通すことによりiが脈動している場合でも安定した出
力Δiが得られる。(d)はiの値をそのままΔiとす
る。(e)はiをフィルタを通してΔiとする。(e)
ではフィルタを通すことでiが脈動している場合でも安
定した出力Δiが得られる。
In (c), the differential value of i is calculated and then filtered to obtain Δi. In (b) and (c), a stable output Δi can be obtained by passing a filter even when i is pulsating. In (d), the value of i is directly set as Δi. In (e), i is filtered to be Δi. (E)
Then, a stable output Δi can be obtained even when i is pulsating by passing through a filter.

【0016】こうして得られた信号SIGにより、補正
ゲイン可変手段73で補正ゲインを変化させ、直流成分
IDCに変化させた補正ゲインを乗じて電圧補正値vC
得る。出力電圧指令値補正手段74にvCを入力し出力
電圧指令値vrefを補正し、補正された出力電圧指令値
ref′ を得る。図3を用いて出力電圧指令値補正手段
74を説明する。出力電圧指令値vref は図4(1)に
示す正弦波である。補正された出力電圧指令値vref
は図4(2)に示すように電圧補正値vCを負のオフセ
ット値とした波形となる。
With the signal SIG thus obtained, the correction gain varying means 73 changes the correction gain, and the DC component v IDC is multiplied by the changed correction gain to obtain the voltage correction value v C. V C is input to the output voltage command value correction means 74 to correct the output voltage command value v ref, and the corrected output voltage command value v ref ′ is obtained. The output voltage command value correction means 74 will be described with reference to FIG. The output voltage command value v ref is a sine wave shown in FIG. Corrected output voltage command value v ref
Has a waveform in which the voltage correction value v C has a negative offset value as shown in FIG.

【0017】変換器駆動回路4では、補正された出力電
圧指令値vref′ を入力し、三相電力変換器1を駆動す
る信号GP を出力する。図5に変換器駆動回路4のPW
M制御動作の一例を示す。vref′と搬送波eCの大小を
比較し、vref′≧eCの時はGP をHighレベル、
ref′<eCの時はGPをLowレベルとし、これらを出力
する。この時の出力相電圧は補正された分、平均電圧と
して破線で示したような直流成分が重畳した波形とな
る。図5において、Ed は変換器直流電圧である。
The converter drive circuit 4 receives the corrected output voltage command value v ref ′ and outputs a signal G P for driving the three-phase power converter 1. FIG. 5 shows the PW of the converter drive circuit 4.
An example of M control operation is shown. Comparing the magnitude of v ref ′ and the carrier wave e C , and when v ref ′ ≧ e C , G P is a high level,
When v ref ′ <e C , G P is set to low level and these are output. The output phase voltage at this time has a waveform in which the DC component as shown by the broken line is superimposed as the average voltage by the corrected amount. In FIG. 5, E d is the converter DC voltage.

【0018】次に、図6,図7を用いて本実施例の動作
原理を説明する。今、ディジタル制御を行っている場合
を考え、演算周期をTS とする。以下、Δiとしてiの
微分値を使用することとし、電流iが上昇中の場合につ
いて説明する。
Next, the operating principle of this embodiment will be described with reference to FIGS. Considering the case where digital control is being performed now, the calculation cycle is T S. Hereinafter, the case where the differential value of i is used as Δi and the current i is increasing will be described.

【0019】図6(a)は補正ゲインを変化させない時
の動作である。補正値vC は直流分vIDCに一定の補正
ゲインを掛けた値である。図のようにvIDCが負の値の
方向に拡大していった時、vC により出力電圧は電流を
増加させる方向に補正される。iは上昇中であるので、
補正しない場合より補正した場合の方が電流が大きくな
り、補正ゲインがあまり大きいと、かえって過電流とな
ってしまう恐れがある。そこで図6(b)に示すよう
に、補正ゲインに信号SIGを乗じて変化させれば、直
流分vIDCが負でかつ変圧器二次電流iが上昇中には補
正値vCを“0”にして過電流となることを防ぐ。
FIG. 6A shows the operation when the correction gain is not changed. The correction value v C is a value obtained by multiplying the DC component v IDC by a constant correction gain. As shown in the figure, when v IDC expands in the direction of a negative value, the output voltage is corrected by v C in the direction of increasing the current. i is rising, so
When the correction is performed, the current becomes larger than when the correction is not performed, and when the correction gain is too large, there is a possibility that the current may become an overcurrent. Therefore, as shown in FIG. 6B, if the correction gain is multiplied by the signal SIG to change, the correction value v C becomes “0” while the direct current component v IDC is negative and the transformer secondary current i is increasing. "To prevent overcurrent.

【0020】図7は図6とは逆に直流分vIDC が正の値
の方向に拡大していった場合を示す。この時補正値vC
によって電圧を補正すれば電流を減少させる方向に補正
されるので、偏磁による過電流を抑制できる。
FIG. 7 shows the case where the DC component v IDC expands in the direction of a positive value, contrary to FIG. At this time, the correction value v C
If the voltage is corrected by, the current is corrected so as to be reduced, so that the overcurrent due to the magnetic bias can be suppressed.

【0021】本実施例によれば、変圧器二次電流が上昇
中であれば電流を増大する方向の補正を行わず、逆に下
降中であれば電流を減少させる方向の補正を行わないの
で電流の絶対値の増大を抑制できるため、補正ゲインを
大きくすることができ、変換器出力電圧に直流成分が重
畳されることによって発生する変圧器偏磁による過電流
を瞬時に抑制する事ができる。また、iの値をそのまま
Δiとして使用する場合でも同様の効果が得られる。
According to this embodiment, if the secondary current of the transformer is rising, the correction in the direction of increasing the current is not performed, while if it is falling, the correction in the direction of decreasing the current is not performed. Since the increase of the absolute value of the current can be suppressed, the correction gain can be increased, and the overcurrent due to the transformer bias magnetization caused by the DC component superimposed on the converter output voltage can be instantaneously suppressed. . The same effect can be obtained when the value of i is used as it is as Δi.

【0022】図8は本発明の第2の実施例の構成を示
す。本実施例では、第1の実施例における出力電圧指令
値vrefを変圧器二次電流の指令値irefを制御すること
によって求める電圧制御回路8を備えている。8として
は、例えば変圧器二次電流の検出値iと指令値iref
偏差を0にする比例積分制御を行うものなどがある。第
1の実施例では変圧器二次電流の検出値の状態で補正ゲ
インを変化させていたのに対し、本実施例では変圧器二
次電流の指令値の状態で補正ゲインを変化させる所が異
なる以外は全て第1の実施例と同様の動作をする。
FIG. 8 shows the configuration of the second embodiment of the present invention. The present embodiment is provided with a voltage control circuit 8 that obtains the output voltage command value v ref in the first embodiment by controlling the command value i ref of the transformer secondary current. As 8, there is, for example, one that performs proportional-plus-integral control for making the deviation between the detected value i of the transformer secondary current and the command value i ref zero. While the correction gain is changed in the state of the detected value of the transformer secondary current in the first embodiment, the correction gain is changed in the state of the command value of the transformer secondary current in the present embodiment. The operation is the same as that of the first embodiment except that it is different.

【0023】本実施例によれば、状態を判定するのに検
出値に比べて脈動成分の少ない変圧器二次電流の指令値
を使用することで安定した信号SIGを得ることができ
る。図9に本発明の第3の実施例の構成を示す。本実施
例は、第1の実施例とは変圧器の交流電源側の電流(以
下、変圧器一次側電流と呼ぶ)の状態に応じて補正ゲイ
ンを変化させる所が異なる以外は全て同様の動作をす
る。電流検出器5は変圧器一次電流を検出し、これを電
流の状態を判定する手段72に入力する。
According to this embodiment, a stable signal SIG can be obtained by using the command value of the secondary current of the transformer, which has a smaller pulsating component than the detected value, for determining the state. FIG. 9 shows the configuration of the third embodiment of the present invention. This embodiment is the same as the first embodiment except that the correction gain is changed according to the state of the current on the AC power supply side of the transformer (hereinafter referred to as the transformer primary side current). do. The current detector 5 detects the transformer primary current and inputs it to the means 72 for determining the state of the current.

【0024】本実施例によれば、電流の状態を判定する
のに変圧器一次電流を使用するため、例えば多重電力変
換システムに適用した場合、多重数がいくらであっても
電流検出器は電源相数分で済み、装置の小型化を図れ
る。
According to the present embodiment, since the transformer primary current is used to judge the state of the current, when applied to, for example, a multiple power conversion system, the current detector is a power supply regardless of the number of multiplexes. The number of phases is enough, and the device can be downsized.

【0025】図10に本発明の第4の実施例の構成を示
す。本実施例は、第3の実施例における出力電圧指令値
refを変圧器一次電流の指令値irefを制御することに
よって求める電圧制御回路8を備えている。8として
は、例えば変圧器一次電流の検出値iと指令値iref
偏差を0にする比例積分制御を行うものなどがある。本
実施例は第3の実施例では変圧器一次電流の検出値の状
態で補正ゲインを変化させていた所を変圧器一次電流の
指令値の状態で変化させる所が異なる以外は全て第3の
実施例と同様の動作をする。
FIG. 10 shows the configuration of the fourth embodiment of the present invention. The present embodiment includes a voltage control circuit 8 that obtains the output voltage command value v ref in the third embodiment by controlling the command value i ref of the transformer primary current. As 8, there is, for example, one for performing proportional-plus-integral control for making the deviation between the detected value i of the transformer primary current and the command value i ref zero. This embodiment is the third embodiment except that the correction gain is changed in the state of the detected value of the transformer primary current in the third embodiment except that it is changed in the state of the command value of the transformer primary current. The same operation as in the embodiment is performed.

【0026】本実施例によれば、状態を判定するのに検
出値に比べて脈動成分の少ない変圧器一次電流の指令値
を使用することで、安定した信号SIGを得ることがで
きる。
According to this embodiment, a stable signal SIG can be obtained by using the command value of the transformer primary current, which has a smaller pulsating component than the detected value, for determining the state.

【0027】図11に本発明の第5の実施例の構成を示
す。本実施例は第1の実施例を多重変換システムに適用
した例である。m台の単位電力変換器11〜1mの交流
出力を多重変圧器21〜2mを介して交流電源に接続す
る。変圧器21〜2mは二次側は各単位電力変換器11
〜1mの交流出力に接続され、一次側は多重接続して三
相交流電源3に接続される。
FIG. 11 shows the configuration of the fifth embodiment of the present invention. This embodiment is an example in which the first embodiment is applied to a multiplex conversion system. The AC outputs of the m unit power converters 11 to 1m are connected to the AC power source via the multiple transformers 21 to 2m. Each of the transformers 21 to 2m has a unit power converter 11 on the secondary side.
It is connected to an AC output of ˜1 m, and the primary side is connected in multiples to the three-phase AC power supply 3.

【0028】偏磁抑制制御装置7では各電力変換器毎に
出力電圧vI1〜vImと変圧器二次電流i1〜imを検出
し、出力電圧の直流成分の極性と電流の微分値の極性に
応じて、補正ゲインを単位変換器で個別に変化させる。
偏磁抑制制御装置7では、電圧指令値vrefの単位変換
器毎に補正された電圧指令値vref1′〜vrefm′ を出
力する。駆動回路41〜4mは各単位変換器毎の駆動信
号GP1〜GPmを出力する。本実施例によれば、各単位変
換器毎に個別に直流電圧成分を補正することで、複数台
の変圧器の偏磁を個別に抑制できる。
The polarized磁抑system controller in 7 for each power converter to detect the output voltage v I1 to v Im and the transformer secondary current i 1 through i m, the differential value of the polarity and the current of the direct current component of the output voltage The correction gain is individually changed by the unit converter according to the polarity of.
The magnetic bias suppression control device 7 outputs the voltage command values v ref1 ′ to v refm ′ corrected for each unit converter of the voltage command value v ref . The drive circuits 41 to 4m output drive signals G P1 to G Pm for each unit converter. According to the present embodiment, by correcting the DC voltage component individually for each unit converter, it is possible to individually suppress the magnetic bias of a plurality of transformers.

【0029】図12に本発明の第6の実施例の構成を示
す。上記第1〜第5の実施例では補正ゲインを“0”ま
たはある一定の値で切り換えたが、本実施例は補正ゲイ
ンを連続的に変化させる場合の例である。図12では、
図1における偏磁抑制制御装置7に補正ゲインを連続的
に変化させる手段75を加えてある。75以外の他の部
分は第1の実施例と同様の動作をする。
FIG. 12 shows the configuration of the sixth embodiment of the present invention. Although the correction gain is switched to "0" or a certain fixed value in the first to fifth embodiments, this embodiment is an example in which the correction gain is continuously changed. In FIG.
A means 75 for continuously changing the correction gain is added to the magnetic bias suppression control device 7 in FIG. Other parts than 75 operate in the same manner as in the first embodiment.

【0030】補正ゲインを連続的に変化させる手段75
の動作を図13を用いて説明する。まず、751によっ
て電流検出値iの微分値Δiを求める。次に752では
Δiの絶対値|Δi|が0の時に補正ゲインKGを0と
し、|Δi|が0から大きくなるにつれてその大きさに
応じてKGを増加させ、ある任意の値KG1でKGを飽
和させる。
Means 75 for continuously changing the correction gain
The operation will be described with reference to FIG. First, the differential value Δi of the detected current value i is obtained by 751. Next, at 752, the correction gain KG is set to 0 when the absolute value of Δi | Δi | Saturate.

【0031】第2〜第5の実施例においても、補正ゲイ
ンを連続して変化させる手段75を用いることができ
る。この場合、第2の実施例および第4の実施例ではΔ
iを電流指令値iref の微分値とする。
Also in the second to fifth embodiments, the means 75 for continuously changing the correction gain can be used. In this case, in the second and fourth embodiments, Δ
Let i be the differential value of the current command value i ref .

【0032】本実施例によれば補正ゲインを電流の変化
量に応じて変化させるため、電流の変化量が大きく変圧
器偏磁の影響が大きい場合には補正ゲインを大きくして
変圧器偏磁による過電流を瞬時に抑制し、電流の変化量
が小さく変圧器偏磁の影響が小さい場合には補正ゲイン
を小さくして安定した運転ができる。
According to this embodiment, the correction gain is changed according to the amount of change in the current. Therefore, when the amount of change in the current is large and the influence of the transformer bias magnetism is large, the correction gain is increased to increase the transformer bias magnetism. The overcurrent due to is instantaneously suppressed, and when the change amount of the current is small and the influence of the transformer bias magnetism is small, the correction gain can be reduced and stable operation can be performed.

【0033】[0033]

【発明の効果】本発明によれば、変換器出力電圧の直流
成分の補正を、変圧器電流が上昇中の時には電流を増加
させる方向の補正を行わず、電流が下降中の時には電流
の減少する方向の補正を行わないことにより、補正ゲイ
ンを大きくすることによってかえって過電流になるよう
な弊害を避けることができ、変換器出力電圧に直流成分
が重畳されることによって発生する変圧器偏磁による過
電流を瞬時に抑制する事ができる。
According to the present invention, the DC component of the converter output voltage is not corrected, when the transformer current is increasing, the current is not increased, and when the current is decreasing, the current is reduced. It is possible to avoid the adverse effect of causing an overcurrent by increasing the correction gain by not compensating for the direction in which the transformer bias voltage is generated. It is possible to instantly suppress the overcurrent due to.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の構成を示す図。FIG. 1 is a diagram showing a configuration of a first embodiment.

【図2】直流成分と変圧器二次電流の状態を判別する手
段72を説明する図。
FIG. 2 is a view for explaining a means 72 for discriminating the state of a DC component and a transformer secondary current.

【図3】Δiを得る手段721を説明する図。FIG. 3 is a diagram illustrating a means 721 for obtaining Δi.

【図4】出力電圧指令値を補正する手段74を説明する
図。
FIG. 4 is a diagram illustrating a means 74 for correcting an output voltage command value.

【図5】駆動回路4の一例を示す図。FIG. 5 is a diagram showing an example of a drive circuit 4.

【図6】第1の実施例の原理を示す図。FIG. 6 is a diagram showing the principle of the first embodiment.

【図7】第1の実施例の原理を示す図。FIG. 7 is a diagram showing the principle of the first embodiment.

【図8】第2の実施例の構成を示す図。FIG. 8 is a diagram showing a configuration of a second embodiment.

【図9】第3の実施例の構成を示す図。FIG. 9 is a diagram showing a configuration of a third embodiment.

【図10】第4の実施例の構成を示す図。FIG. 10 is a diagram showing a configuration of a fourth exemplary embodiment.

【図11】第5の実施例の構成を示す図。FIG. 11 is a diagram showing a configuration of a fifth embodiment.

【図12】第6の実施例の構成を示す図。FIG. 12 is a diagram showing the configuration of a sixth embodiment.

【図13】補正ゲインを連続的に変化させる手段75の
動作を説明する図。
FIG. 13 is a view for explaining the operation of means 75 for continuously changing the correction gain.

【符号の説明】[Explanation of symbols]

1…三相電力変換器、2…変圧器、3…三相交流電源、
4…変換器駆動回路、5…電流検出回路、6…電圧検出
回路、7…偏磁抑制制御装置、8…電圧制御回路。
1 ... Three-phase power converter, 2 ... Transformer, 3 ... Three-phase AC power supply,
4 ... Converter drive circuit, 5 ... Current detection circuit, 6 ... Voltage detection circuit, 7 ... Demagnetization suppression control device, 8 ... Voltage control circuit.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】交流側を変圧器を介して交流電源に接続
し、交流を直流または直流を交流に変換する電力変換器
の、前記変圧器の偏磁による過電流を抑制する偏磁抑制
制御装置において、 該電力変換器の交流出力電圧の直流成分を検出する手段
と、該直流成分に補正ゲインを乗じた値を前記電力変換
器の出力電圧指令値の直流成分補正値として、前記交流
出力電圧の直流成分を補正する手段と、前記変圧器の変
換器側電流に応じて前記補正ゲインを可変とする手段と
を設けたことを特徴とする偏磁抑制制御装置。
1. A bias-magnetization suppression control for suppressing an overcurrent due to bias-magnetization of a transformer of a power converter, the AC side of which is connected to an AC power source via a transformer to convert AC to DC or DC to AC. In the device, means for detecting a DC component of an AC output voltage of the power converter, and a value obtained by multiplying the DC component by a correction gain as a DC component correction value of an output voltage command value of the power converter, the AC output. An eccentricity suppression control device comprising: means for correcting a direct current component of a voltage; and means for varying the correction gain according to a converter-side current of the transformer.
【請求項2】請求項1において、前記出力電圧指令値を
前記変圧器の変換器側電流指令値の制御によって求める
手段と、前記電流指令値に応じて前記補正ゲインを可変
とする手段とを設けたことを特徴とする偏磁抑制制御装
置。
2. A means for obtaining the output voltage command value by controlling a converter-side current command value of the transformer according to claim 1, and a means for varying the correction gain in accordance with the current command value. An apparatus for suppressing magnetic bias that is provided.
【請求項3】交流側を変圧器を介して交流電源に接続
し、交流を直流または直流を交流に変換する電力変換器
の、前記変圧器の偏磁による過電流を抑制する偏磁抑制
制御装置において、 該電力変換器の交流出力電圧の直流成分を検出する手段
と、該直流成分に補正ゲインを乗じた値を前記電力変換
器の出力電圧指令値の直流成分補正値として、前記交流
出力電圧の直流成分を補正する手段と、前記変圧器の交
流電源側電流に応じて前記補正ゲインを可変とする手段
とを設けたことを特徴とする偏磁抑制制御装置。
3. An eccentricity suppression control for suppressing an overcurrent due to an eccentricity of the transformer in a power converter that connects an ac side to an ac power source through a transformer and converts ac to dc or dc. In the device, means for detecting a DC component of an AC output voltage of the power converter, and a value obtained by multiplying the DC component by a correction gain as a DC component correction value of an output voltage command value of the power converter, the AC output. A bias magnetization suppression control device comprising: a unit that corrects a DC component of a voltage; and a unit that changes the correction gain according to an AC power source side current of the transformer.
【請求項4】請求項3において、前記出力電圧指令値を
前記変圧器の交流電源側電流指令値の制御によって求め
る手段と、該電流指令値に応じて前記補正ゲインを可変
とする手段とを設けたことを特徴とする偏磁抑制制御装
置。
4. A means for obtaining the output voltage command value by controlling an AC power supply side current command value of the transformer, and a means for varying the correction gain according to the current command value. An apparatus for suppressing magnetic bias that is provided.
【請求項5】請求項1から請求項4において、前記交流
出力電圧の直流成分の極性と前記変圧器の変換器側電流
の検出値または指令値もしくは前記変圧器の交流電源側
電流の検出値または指令値の極性により、前記補正ゲイ
ンを可変とする手段を設けたことを特徴とする偏磁抑制
制御装置。
5. The polarities of the DC component of the AC output voltage and the detected value or command value of the converter side current of the transformer or the detected value of the AC power source side current of the transformer according to claim 1. Alternatively, the magnetic bias suppression control device is provided with means for varying the correction gain according to the polarity of the command value.
【請求項6】請求項1から請求項4において、前記交流
出力電圧の直流成分の極性と前記変圧器の変換器側電流
の検出値または指令値もしくは前記変圧器の交流電源側
電流の検出値または指令値の微分値の極性により、前記
補正ゲインを可変とする手段を設けたことを特徴とする
偏磁抑制制御装置。
6. The polarities of the DC component of the AC output voltage and the detected value or command value of the converter-side current of the transformer or the detected value of the AC power-source-side current of the transformer according to claim 1. Alternatively, the bias suppression control device is provided with means for varying the correction gain according to the polarity of the differential value of the command value.
【請求項7】請求項1から請求項6において、前記電力
変換器は三相電力変換器であり、変圧器の変換器側電流
に応じて三相個別に前記補正ゲインを可変とする手段を
設けたことを特徴とする偏磁抑制制御装置。
7. The power converter according to any one of claims 1 to 6, wherein the power converter is a three-phase power converter, and means for varying the correction gain for each of the three phases according to the converter-side current of the transformer is provided. An apparatus for suppressing magnetic bias that is provided.
【請求項8】複数の単位電力変換器を該単位電力変換器
の交流出力を変圧器を介して多重化し、交流電源に接続
した多重電力変換システムにおいて、 請求項1〜請求項7に記載の偏磁抑制制御装置を、前記
各単位電力変換器毎に適用したことを特徴とする多重電
力変換システム。
8. A multiple power conversion system in which a plurality of unit power converters are multiplexed with AC outputs of the unit power converters via a transformer and are connected to an AC power source, according to any one of claims 1 to 7. A multiple power conversion system, wherein a bias magnetic suppression control device is applied to each of the unit power converters.
JP8106828A 1996-04-26 1996-04-26 Magnetic deviation suppression controller Pending JPH09294380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8106828A JPH09294380A (en) 1996-04-26 1996-04-26 Magnetic deviation suppression controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8106828A JPH09294380A (en) 1996-04-26 1996-04-26 Magnetic deviation suppression controller

Publications (1)

Publication Number Publication Date
JPH09294380A true JPH09294380A (en) 1997-11-11

Family

ID=14443632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8106828A Pending JPH09294380A (en) 1996-04-26 1996-04-26 Magnetic deviation suppression controller

Country Status (1)

Country Link
JP (1) JPH09294380A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154379A (en) * 1998-07-16 2000-11-28 Tdk Corporation Electric power conversion device
JP2006094629A (en) * 2004-09-24 2006-04-06 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device and its control method
JP2007189850A (en) * 2006-01-16 2007-07-26 Fuji Electric Systems Co Ltd System for preventing over-current in power converter
JP2011199939A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Power converter and control method of power converter
JP2011199938A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Power conversion apparatus and method for control of the same
WO2015092918A1 (en) * 2013-12-20 2015-06-25 東芝三菱電機産業システム株式会社 Inverter control device
CN109991281A (en) * 2018-01-02 2019-07-09 达尔生技股份有限公司 Detection device and detection method
CN110277933A (en) * 2018-03-15 2019-09-24 株式会社东芝 The control device and control method of power inverter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154379A (en) * 1998-07-16 2000-11-28 Tdk Corporation Electric power conversion device
JP2006094629A (en) * 2004-09-24 2006-04-06 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device and its control method
JP2007189850A (en) * 2006-01-16 2007-07-26 Fuji Electric Systems Co Ltd System for preventing over-current in power converter
JP2011199939A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Power converter and control method of power converter
JP2011199938A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Power conversion apparatus and method for control of the same
WO2015092918A1 (en) * 2013-12-20 2015-06-25 東芝三菱電機産業システム株式会社 Inverter control device
CN105706347A (en) * 2013-12-20 2016-06-22 东芝三菱电机产业系统株式会社 Inverter control device
JPWO2015092918A1 (en) * 2013-12-20 2017-03-16 東芝三菱電機産業システム株式会社 Inverter control device
US9948207B2 (en) 2013-12-20 2018-04-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Inverter control apparatus
CN105706347B (en) * 2013-12-20 2018-06-29 东芝三菱电机产业系统株式会社 Control device for inverter
CN109991281A (en) * 2018-01-02 2019-07-09 达尔生技股份有限公司 Detection device and detection method
CN110277933A (en) * 2018-03-15 2019-09-24 株式会社东芝 The control device and control method of power inverter

Similar Documents

Publication Publication Date Title
JP4448855B2 (en) Power converter
JP4082438B2 (en) Current-controlled power converter
WO2015178376A1 (en) Direct-current power transmission power conversion device and direct-current power transmission power conversion method
EP2077612A2 (en) System and method for suppressing DC link voltage buildup due to generator armature reaction
EP3439163B1 (en) Power converter
WO2019102587A1 (en) Parallel power supply device
US9871479B2 (en) Fault detection system for isolated two-switch exciter drive gate driver
JPH09294380A (en) Magnetic deviation suppression controller
JP5147624B2 (en) Inverter device
JPH11127542A (en) Method and device for detecting isolated operation of inverter and power conditioner
JP2008136265A (en) Controller for ac electric vehicle
JP2001197757A (en) Power converter
US10361639B1 (en) Power supply apparatus
JP3614257B2 (en) Inverter parallel controller
JP2010011613A (en) Pwm converter device
KR101936564B1 (en) Apparatus for controlling multilevel inverter
JPH0956170A (en) Controller for inverter for system linkage
JPH0974771A (en) Inverter apparatus
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JP2004320853A (en) Power converter
JPH09140164A (en) Controller for suppressing anhysteresis and power conversion system employing it
JPH1132485A (en) Control device of thyristor commutator
JP6906464B2 (en) Power converter control device and control method
JPH08251816A (en) Current-transformer circuit
JP3735646B2 (en) AC / DC converter controller