JPH09256117A - Iron-base soft-magnetic alloy, and thin magnetic element using same - Google Patents

Iron-base soft-magnetic alloy, and thin magnetic element using same

Info

Publication number
JPH09256117A
JPH09256117A JP5970396A JP5970396A JPH09256117A JP H09256117 A JPH09256117 A JP H09256117A JP 5970396 A JP5970396 A JP 5970396A JP 5970396 A JP5970396 A JP 5970396A JP H09256117 A JPH09256117 A JP H09256117A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
film
soft magnetic
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5970396A
Other languages
Japanese (ja)
Inventor
Yasuo Hayakawa
康男 早川
Teruhiro Makino
彰宏 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP5970396A priority Critical patent/JPH09256117A/en
Publication of JPH09256117A publication Critical patent/JPH09256117A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft-magnetic alloy, having high specific resistivity required of magnetic materials for, e.g. high frequency use and excellent in soft magnetism while maintaining high saturation magnetic flux density and low coercive force, and also to provide a thin magnetic element using this alloy. SOLUTION: This alloy is constituted essentially of crystal phases of <=30nm average crystalline grain size, composed essentially of Fe and having body- centered cubic structure, and amorphous phases surrounding the crystalline phases. Further, the amorphous phases are composed essentially of element M (one or >=2 elements selected from Ti, Zr, Hf, Nb, Ta, Mo, W, and rare earth elements), element T (either or both of B and C), O, and the oxide of the element M or the element T. Further, the specific resistivity of the amorphous phases is regulated so that it is higher than the specific resistivity of the crystal phases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば磁気ヘッド
用コア、薄膜インダクタ、薄膜トランス、スイッチング
素子などの磁気素子に適したFe基軟磁性合金およびそ
れを用いた薄型磁気素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-based soft magnetic alloy suitable for magnetic elements such as magnetic head cores, thin film inductors, thin film transformers and switching elements, and a thin magnetic element using the same.

【0002】[0002]

【従来の技術】磁気素子の小型化、高性能化に伴い、数
100MHz以上の周波数における透磁率の高い軟磁性
材料、特に5kG(0.5T)以上の高い飽和磁束密度
と共に、高い比抵抗を有し、かつ低い保磁力を有するも
のが求められている。中でもトランスにおいては高い比
抵抗を有するものが特に要求されている。高い飽和磁束
密度をもつ磁性材料としてはFeあるいはFeを主成分
とする合金が多く知られているが、スパッタ法などの成
膜技術によりこれらの合金の磁性膜を作成すると、飽和
磁束密度は高いものの、保磁力が大きく、また比抵抗が
小さくなってしまい良好な軟磁気特性を得ることは困難
であった。
2. Description of the Related Art With the miniaturization and high performance of magnetic elements, a soft magnetic material having a high magnetic permeability at a frequency of several 100 MHz or more, especially a high saturation magnetic flux density of 5 kG (0.5 T) or more, and a high specific resistance have been obtained. What has a low coercive force is required. Above all, a transformer having a high specific resistance is particularly required. As a magnetic material having a high saturation magnetic flux density, Fe or an alloy containing Fe as a main component is well known. However, when a magnetic film of these alloys is formed by a film forming technique such as a sputtering method, the saturation magnetic flux density is high. However, it was difficult to obtain good soft magnetic properties because the coercive force was large and the specific resistance was small.

【0003】[0003]

【発明が解決しようとする課題】また、高周波数帯域に
おける透磁率低下の原因の一つに渦電流の発生による損
失がある。従って、この高周波透磁率の低下の一因であ
る渦電流損失を防ぐために、薄膜化および薄膜の高抵抗
化を図ることが望まれている。しかしながら磁気特性を
保ったまま比抵抗を高めることは非常に難しく、センダ
スト等の合金系の軟磁性薄膜の比抵抗は、数十〜百数十
μΩcm程度と小さく、少なくとも0.5T以上の飽和磁
束密度を確保しながら比抵抗を高めた軟磁性合金の薄膜
が求められている。また、合金を薄膜として得る場合に
は、磁歪の発生などの影響により良好な軟磁気特性を得
ることはさらに困難である。
Further, one of the causes of the decrease in the magnetic permeability in the high frequency band is the loss due to the generation of eddy currents. Therefore, in order to prevent the eddy current loss that is one of the causes of the decrease in the high frequency magnetic permeability, it is desired to reduce the film thickness and the resistance of the thin film. However, it is very difficult to increase the specific resistance while maintaining the magnetic characteristics, and the specific resistance of the alloy-based soft magnetic thin film such as sendust is as small as several tens to hundreds of tens of μΩcm, and the saturation magnetic flux of at least 0.5T or more There is a demand for a thin film of a soft magnetic alloy having a high specific resistance while ensuring the density. When an alloy is obtained as a thin film, it is more difficult to obtain good soft magnetic properties due to the influence of magnetostriction and the like.

【0004】本発明は前記課題を解決するためになされ
たもので、高い飽和磁束密度と低い保磁力を維持した上
に、高周波用などの磁性材料として高い比抵抗を有し、
しかも軟磁性に優れる軟磁性合金を提供すること、およ
びそれを用いた薄型磁気素子を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and has a high specific resistance as a magnetic material for high frequencies while maintaining a high saturation magnetic flux density and a low coercive force.
Moreover, it is an object of the present invention to provide a soft magnetic alloy having excellent soft magnetism and a thin magnetic element using the same.

【0005】[0005]

【課題を解決するための手段】請求項1記載の軟磁性合
金は、Feを主成分とする体心立方構造を有する平均結
晶粒径30nm以下の結晶相と、それらを取り囲む非晶
質相を主体としてなり、前記非晶質相が、Ti,Zr,
Hf,Nb,Ta,Mo,Wおよび希土類元素から選ば
れる1種または2種以上の元素Mと、B,Cのうち1種
または2種の元素Tと、Oと、元素Mもしくは元素Tの
酸化物を主成分としてなり、この非晶質相の比抵抗を前
記結晶相の比抵抗よりも高くしてなるものである。請求
項2記載の発明は、前記Fe基軟磁性合金を下記の組成
式で示されるものとしたものである。 Fexyz
w ただし、組成比を示すx,y,z,wはat%で、50≦x
≦75、5≦y≦30、15≦z≦25、0<w≦5、1
5≦z+w≦30なる関係を満足するものとする。請求項
3記載の発明は、前記組成比を示すwを、0.3≦w≦3.
0の範囲としたものである。
The soft magnetic alloy according to claim 1 comprises a crystalline phase having a body-centered cubic structure containing Fe as a main component and having an average crystal grain size of 30 nm or less, and an amorphous phase surrounding them. The main component of the amorphous phase is Ti, Zr,
Of one or more elements M selected from Hf, Nb, Ta, Mo, W and rare earth elements, one or two elements T of B and C, O, and elements M or T An oxide is a main component, and the resistivity of the amorphous phase is higher than that of the crystalline phase. According to the invention of claim 2, the Fe-based soft magnetic alloy is represented by the following composition formula. Fe x M y O z
T w However, x, y, z, and w, which indicate the composition ratio, are at% and 50 ≦ x
≦ 75, 5 ≦ y ≦ 30, 15 ≦ z ≦ 25, 0 <w ≦ 5, 1
The relation of 5 ≦ z + w ≦ 30 is satisfied. In the invention according to claim 3, w representing the composition ratio is 0.3 ≦ w ≦ 3.
The range is 0.

【0006】請求項4記載の発明は、基板上にスパイラ
ル状の平面コイルと、絶縁膜と、軟磁性合金の磁性膜を
積層し、前記軟磁性合金の磁性膜として、組成式Fex
yzwで示され、Mは、Ti,Zr,Hf,Nb,
Ta,Mo,Wおよび希土類元素から選ばれる1種また
は2種以上の元素を示し、TはB,Cのうち1種または
2種を示し、組成比x,y,z,wはat%で、50≦x≦
75、5≦y≦30、15≦z≦25、0<w≦5、15
≦z+w≦30なる関係を満足する磁性膜としたものであ
る。
According to a fourth aspect of the present invention, a spiral planar coil, an insulating film, and a magnetic film of a soft magnetic alloy are laminated on a substrate, and the composition film Fe x is used as the magnetic film of the soft magnetic alloy.
M y O z T w , M is Ti, Zr, Hf, Nb,
Ta, Mo, W, and one or more elements selected from rare earth elements, T represents one or two of B and C, and the composition ratio x, y, z, w is at%. , 50 ≦ x ≦
75, 5 ≦ y ≦ 30, 15 ≦ z ≦ 25, 0 <w ≦ 5, 15
The magnetic film satisfies the relationship of ≦ z + w ≦ 30.

【0007】[0007]

【発明の実施の形態】本発明に係る軟磁性合金は、Fe
を主成分とする体心立方構造を有する平均結晶粒径30
nm以下の結晶相と、それらを取り囲む非晶質相を主体
としてなり、前記非晶質相が、Ti,Zr,Hf,N
b,Ta,Mo,Wおよび希土類元素から選ばれる1種
または2種以上の元素Mと、B,Cのうち1種または2
種の元素Tと、Oと、元素Mもしくは元素Tの酸化物を
主成分としてなり、この非晶質相の比抵抗を前記結晶相
の比抵抗よりも高くしてなるものである。本発明の軟磁
性合金において、Feは主成分であり、磁性を担う元素
である。高飽和磁束密度を得るためにFeは多いほど好
ましいが、75at%以上であると他の添加成分が少な
くなり、比抵抗が小さくなってしまう。一方、Feが本
発明の範囲未満であると比抵抗を大きくすることはでき
るものの、飽和磁束密度が小さくなってしまう。以上の
ような関係から、Feの含有量は、飽和磁束密度を0.
5T(テスラ)以上とするためには、50〜75at
%、飽和磁束密度を1T以上にするためには、60〜7
5at%の範囲とすることがより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The soft magnetic alloy according to the present invention is Fe alloy.
Average grain size 30 having a body-centered cubic structure containing
mainly composed of a crystalline phase of nm or less and an amorphous phase surrounding the crystalline phase, and the amorphous phase is composed of Ti, Zr, Hf, N
one or more elements M selected from b, Ta, Mo, W and rare earth elements, and one or two of B and C
The seeds consist mainly of the elements T and O, and the oxide of the element M or the element T, and the resistivity of this amorphous phase is higher than that of the crystalline phase. In the soft magnetic alloy of the present invention, Fe is a main component and is an element responsible for magnetism. In order to obtain a high saturation magnetic flux density, more Fe is more preferable, but if it is 75 at% or more, other additive components are reduced and the specific resistance is reduced. On the other hand, when Fe is less than the range of the present invention, the specific resistance can be increased, but the saturation magnetic flux density decreases. From the above relationship, the Fe content has a saturation magnetic flux density of 0.1.
50-75 at in order to achieve 5T (tesla) or more
%, In order to make the saturation magnetic flux density 1T or more, 60 to 7
The range of 5 at% is more preferable.

【0008】希土類元素(すなわち、周期表の3A族に
属するSc,Y,あるいは、La,Ce,Pr,Nd,
Pm,Sm,Eu,Gd,Td,Dy,Ho,Er,T
m,Yb,Luなどのランタノイド)、および、Ti,
Zr,Hf,V,Nb,Ta,Wをはじめとする周期表
の4A族,5A族,6A族の元素の1種または2種以上
を示すMは、軟磁気特性を得るために必要なものであ
る。これらは酸素と結合し易く、結合することで非晶質
中に酸化物を形成する。この酸化物の含有量を調整する
ことによって比抵抗を高めることができる。なお、この
非晶質相は、元素Mと後述するBもしくはCの酸化物が
主成分であるが、これら酸化物の他には元素M、B、C
あるいはFeを少量含んでいる。
Rare earth elements (ie, Sc, Y, or La, Ce, Pr, Nd, which belong to Group 3A of the periodic table,
Pm, Sm, Eu, Gd, Td, Dy, Ho, Er, T
lanthanoids such as m, Yb, and Lu), and Ti,
M, which represents one or more elements of the 4A group, 5A group, and 6A group of the periodic table including Zr, Hf, V, Nb, Ta and W, is necessary for obtaining soft magnetic properties. Is. These easily combine with oxygen, and when they combine, they form an oxide in an amorphous material. The specific resistance can be increased by adjusting the content of this oxide. The amorphous phase is mainly composed of the element M and an oxide of B or C which will be described later. In addition to these oxides, the elements M, B and C are also included.
Alternatively, it contains a small amount of Fe.

【0009】次に、Oは15at%以上必要であり、1
5at%未満であると300μΩcm以上の高い比抵抗
が得られないが、25at%を超えると0.5T以上の
高い飽和磁束密度を得ることができない。更に、B,C
の1種または2種を示すTを6at%を超えて含有する
と0.5T以上の飽和磁束密度が得られなくなるので6
at%以下の含有量が好ましい。また、300μΩcm
以上の比抵抗を広い組成範囲で確実に得るためには、
0.3〜3.0at%の範囲が好ましい。次に、O+Tの
値において、15at%未満であると、高い比抵抗が得
られない。また、30at%よりも多くなると、0.5
T以上の飽和磁束密度が得られない。また、15〜30
at%の範囲を外れるとbccFe+非晶質の組織が得
られ難くなる。O+Tの値を適切にすることにより、抵
抗値を高く維持したままでFeの濃度をなるべく高くし
て飽和磁束密度を高くすることができる。一方、本願発
明の組成範囲とするならば、320〜229110μΩ
cmの範囲の高い比抵抗を得ることができ、比抵抗を高
めることで渦電流損失を低減することができ、高周波透
磁率の低下を抑制でき、高周波特性を改善できる。
Next, O must be 15 at% or more, and 1
If it is less than 5 at%, a high specific resistance of 300 μΩcm or more cannot be obtained, but if it exceeds 25 at%, a high saturation magnetic flux density of 0.5 T or more cannot be obtained. Furthermore, B, C
If the content of T, which represents one or two of the above, in excess of 6 at%, a saturation magnetic flux density of 0.5 T or more cannot be obtained.
A content of at% or less is preferable. Also, 300 μΩcm
In order to reliably obtain the above specific resistance in a wide composition range,
The range of 0.3 to 3.0 at% is preferable. Next, when the value of O + T is less than 15 at%, a high specific resistance cannot be obtained. Also, if it exceeds 30 at%, 0.5
A saturation magnetic flux density of T or more cannot be obtained. Also, 15 to 30
When it is out of the range of at%, it becomes difficult to obtain a bccFe + amorphous structure. By appropriately setting the value of O + T, it is possible to increase the Fe concentration and increase the saturation magnetic flux density while maintaining the resistance value high. On the other hand, within the composition range of the present invention, 320 to 229110 μΩ
It is possible to obtain a high specific resistance in the range of cm, and it is possible to reduce eddy current loss by increasing the specific resistance, suppress a decrease in high frequency magnetic permeability, and improve high frequency characteristics.

【0010】次に、本発明の合金にあっては、300〜
600℃での熱処理を施すことにより合金膜の内部応力
が除去された状態で優れた軟磁気特性を得ることができ
る。即ち、300〜600℃の所定の温度で前記組成の
軟磁性合金を熱処理するならば、飽和磁束密度を高い値
に向上させるか、高い値に維持しながら、保磁力と比抵
抗の値を調整することができる。よって、熱処理温度を
適宜設定することにより、高い飽和磁束密度を備え、用
途に応じた保磁力と比抵抗値を有する軟磁性合金を得る
ことができる。
Next, in the alloy of the present invention,
By performing the heat treatment at 600 ° C., excellent soft magnetic characteristics can be obtained in a state where the internal stress of the alloy film is removed. That is, if the soft magnetic alloy having the above composition is heat-treated at a predetermined temperature of 300 to 600 ° C., the coercive force and the specific resistance are adjusted while the saturation magnetic flux density is increased or maintained at a high value. can do. Therefore, by appropriately setting the heat treatment temperature, it is possible to obtain a soft magnetic alloy having a high saturation magnetic flux density and a coercive force and a specific resistance value depending on the application.

【0011】上記組成の合金からなる磁性膜を作成する
には、合金膜をスパッタ、蒸着等の薄膜形成技術により
作成する。スパッタ装置としてはRF2極スパッタ、D
Cスパッタ、マグネトロンスパッタ、3極スパッタ、イ
オンビームスパッタ、対向ターゲット式スパッタ等の既
存のものを使用することができる。軟磁性合金膜中にO
(酸素)を添加する方法としては、Ar等の不活性ガス
中にO2ガスを混合した(Ar+O2)混合ガス雰囲気中
でスパッタを行なう反応性スパッタが有効である。ま
た、Feのターゲット上に希土類元素等の酸化物の各種
ペレットを配置した複合ターゲットを用いてAr等の不
活性ガス中で製作することもできる。
To form a magnetic film made of an alloy having the above composition, the alloy film is formed by a thin film forming technique such as sputtering or vapor deposition. As a sputtering device, RF bipolar sputtering, D
Existing ones such as C sputter, magnetron sputter, tripolar sputter, ion beam sputter, and facing target sputter can be used. O in the soft magnetic alloy film
As a method of adding (oxygen), reactive sputtering is effective in which sputtering is performed in a (Ar + O 2 ) mixed gas atmosphere in which O 2 gas is mixed in an inert gas such as Ar. It is also possible to manufacture it in an inert gas such as Ar using a composite target in which various pellets of oxides of rare earth elements or the like are arranged on the Fe target.

【0012】更に、軟磁性合金の組織において、一部に
bccのFeの微結晶相を含み残部が非晶質相であるこ
とが好ましい。微結晶相の結晶粒径が大きく結晶相の割
合の高いものは、比較的比抵抗が低くなり、酸素を多量
に含む非晶質相が組織の大半を占めるものは、比抵抗が
大きくなる傾向がある。一方、前記の優れた磁気特性と
比抵抗を具備する軟磁性合金の磁性膜を用いて基板上に
スパイラル状の平面コイルを形成するならば、優れた磁
気特性を発揮する薄型(平面型)磁気素子が得られる。
Further, in the structure of the soft magnetic alloy, it is preferable that a part of the microcrystalline phase of bcc Fe is contained and the rest is an amorphous phase. If the crystal grain size of the microcrystalline phase is large and the proportion of the crystalline phase is high, the resistivity is relatively low, and if the amorphous phase containing a large amount of oxygen occupies most of the structure, the resistivity tends to be high. There is. On the other hand, if a spiral planar coil is formed on a substrate using a magnetic film of a soft magnetic alloy having the above-mentioned excellent magnetic characteristics and specific resistance, a thin (planar) magnetic layer that exhibits excellent magnetic characteristics. The device is obtained.

【0013】図1(a)、(b)は、前記組成の軟磁性
合金の磁性膜を用いて作成されたインダクタ(薄型磁気
素子)の第1の構造例を示す。この例のインダクタBに
おいては、基板1の両面にスパイラル状の平面コイル
2、2が形成され、各コイル2、2と基板面を覆って絶
縁膜3が設けられ、各絶縁膜3の上に磁性膜4が被覆さ
れ、基板1の中央部分に形成したスルーホール5を介し
てコイル2、2の中心部分が電気的に接続されている。
また、基板1の両面のコイル2、2からそれぞれ端子6
が基板1の外方に出されている。この構成のインダクタ
Bにおいては、平面コイル2、2をそれぞれ絶縁膜3を
介して磁性膜4、4で挟むことにより、端子6、6間に
インダクタが構成されるようになっている。
1A and 1B show a first structural example of an inductor (thin magnetic element) formed by using a magnetic film of a soft magnetic alloy having the above composition. In the inductor B of this example, spiral planar coils 2 and 2 are formed on both surfaces of a substrate 1, and an insulating film 3 is provided to cover each of the coils 2 and 2 and the substrate surface. The magnetic film 4 is covered, and the central portions of the coils 2 and 2 are electrically connected through a through hole 5 formed in the central portion of the substrate 1.
In addition, the terminals 6 are respectively connected to the coils 2 and 2 on both sides of the substrate 1.
Are exposed to the outside of the substrate 1. In the inductor B having this configuration, the planar coils 2 and 2 are sandwiched between the magnetic films 4 and 4 with the insulating film 3 interposed therebetween, whereby the inductors are configured between the terminals 6 and 6.

【0014】前記基板1は、セラミック材料からなる基
板、Siウェハの基板あるいは樹脂基板などからなる。
セラミック材料で基板1を構成する場合は、アルミナ、
ジルコニア、炭化珪素、窒化珪素、窒化アルミニウム、
ステアタイト、ムライト、コージライト、フォルステラ
イト、スピネルなどの各種のものを適宜選択して用いる
ことができるが、熱膨張率をSiの熱膨張率に近づける
ために、熱電導率が大きく、曲げ強度も大きい窒化アル
ミニウムなどを用いることが好ましい。
The substrate 1 is a substrate made of a ceramic material, a Si wafer substrate, a resin substrate, or the like.
When the substrate 1 is made of a ceramic material, alumina,
Zirconia, silicon carbide, silicon nitride, aluminum nitride,
Various types such as steatite, mullite, cordierite, forsterite, and spinel can be appropriately selected and used, but in order to make the coefficient of thermal expansion close to the coefficient of thermal expansion of Si, the thermal conductivity is large, and the bending strength is large. It is preferable to use aluminum nitride or the like having a large size.

【0015】平面コイル2は、銅、銀、金、アルミニウ
ムあるいはこれらの合金などの良導電性金属材料からな
り、インダクタンス、直流重畳特性、サイズ等に応じ
て、電気的に直列に、縦にあるいは横に絶縁膜を介して
適宜配置することができる。また、平面コイル2を並列
的に複数設けることでトランスを構成できる。更に、平
面コイル2は、導電層を基板上に形成後、フォトエッチ
ングすることにより各種の形状に作成できる。導電層の
製膜方法としては、プレス圧着、メッキ、金属溶射、真
空蒸着、スパッタリング、イオンプレーティング、スク
リーン印刷焼成法等の適宜の方法を用いれば良い。
The plane coil 2 is made of a highly conductive metal material such as copper, silver, gold, aluminum or an alloy thereof, and is electrically connected in series, vertically or in accordance with the inductance, the DC superposition characteristic, the size and the like. It can be arranged laterally with an insulating film interposed therebetween. Further, a transformer can be configured by providing a plurality of planar coils 2 in parallel. Further, the planar coil 2 can be formed into various shapes by photoetching after forming the conductive layer on the substrate. As a method for forming the conductive layer, an appropriate method such as press-compression bonding, plating, metal spraying, vacuum deposition, sputtering, ion plating, or screen printing firing method may be used.

【0016】絶縁膜3は、平面コイル2への通電時にお
いて、磁性膜4と導通してショートすることを防止する
ために設けられている。絶縁膜3は、ポリイミド等の高
分子フィルム、SiO2、ガラス、硬質炭素膜等の無機
質膜からなるものを用いることが好ましい。この絶縁膜
3は、ペースト印刷後に焼成する方法、溶融メッキ法、
溶射、気相メッキ、真空蒸着、スパッタリング、イオン
プレーティングなどの方法により形成される。磁性膜4
は、先に説明した組成の軟磁性合金の軟磁性膜から構成
されている。具体的には、Fexyzwなる組成式で
示され、組成比を示すx,y,z,wはat%で50≦x≦
75、5≦y≦30、15≦z≦25、0<w≦5、15
≦z+w≦30なる関係を満足するものとする。
The insulating film 3 is provided to prevent a short circuit due to conduction with the magnetic film 4 when the flat coil 2 is energized. The insulating film 3 is preferably made of a polymer film such as polyimide, or an inorganic film such as SiO 2 , glass or hard carbon film. The insulating film 3 is formed by a method of firing after printing paste, a hot dipping method,
It is formed by a method such as thermal spraying, vapor phase plating, vacuum deposition, sputtering, or ion plating. Magnetic film 4
Is composed of the soft magnetic film of the soft magnetic alloy having the composition described above. Specifically, indicated by Fe x M y O z T w a composition formula, x indicating the composition ratio, y, z, w is 50 ≦ x ≦ with at%
75, 5 ≦ y ≦ 30, 15 ≦ z ≦ 25, 0 <w ≦ 5, 15
It is assumed that the relation ≦ z + w ≦ 30 is satisfied.

【0017】前記の如く構成されたインダクタBに周波
数数百kHz、振幅数mAの正弦波交流を加えることで
インダクタンスを測定することができ、数百μHの測定
値が得られる。また、前記構成のインダクタBは、小型
かつ薄型で軽量であり、優れた磁気特性を有する磁性膜
4を有しているので、平面型磁気素子の小型軽量化に寄
与するとともに、優れたインダクタンスを示す。
The inductance can be measured by applying a sinusoidal alternating current having a frequency of several hundred kHz and an amplitude of several mA to the inductor B constructed as described above, and a measured value of several hundred μH can be obtained. Further, the inductor B having the above-mentioned configuration is small, thin and lightweight, and has the magnetic film 4 having excellent magnetic characteristics, which contributes to the reduction in size and weight of the planar magnetic element and the excellent inductance. Show.

【0018】次に図2は、前記組成の軟磁性合金の磁性
膜を用いて構成されたインダクタの第2構造例を示す。
この例のインダクタ(薄型磁気素子)Cにおいては、基
板10の上に酸化膜11と磁性膜12と絶縁膜13とが
順次積層され、絶縁膜13上に平面コイル14が形成さ
れ、平面コイル14と絶縁膜13を覆って絶縁膜15が
形成され、絶縁膜15上に磁性膜16が形成されてい
る。前記基板10は先の例の基板1と同等の材料からな
り、磁性膜12は先の例の磁性膜4と同等の材料からな
り、絶縁膜13は先の例の絶縁膜3と同等の材料からな
る。前記酸化膜11は、基板10に例えばSiウェハの
基板を用いた場合に、Siウェハを加熱して熱酸化する
ことにより形成できる。ただし、この酸化膜11は必須
のものではなく、省略しても差し支えない。この例の構
成のインダクタCにおいても先に説明した例のインダク
タBと同様に、優れたインダクタンスを示し、小型かつ
軽量であり、薄型磁気素子の小型軽量化に寄与する。
Next, FIG. 2 shows a second structural example of an inductor constituted by using a magnetic film of a soft magnetic alloy having the above composition.
In the inductor (thin magnetic element) C of this example, the oxide film 11, the magnetic film 12, and the insulating film 13 are sequentially stacked on the substrate 10, the planar coil 14 is formed on the insulating film 13, and the planar coil 14 is formed. An insulating film 15 is formed so as to cover the insulating film 13, and a magnetic film 16 is formed on the insulating film 15. The substrate 10 is made of the same material as the substrate 1 of the previous example, the magnetic film 12 is made of the same material as the magnetic film 4 of the previous example, and the insulating film 13 is made of the same material as the insulating film 3 of the previous example. Consists of. The oxide film 11 can be formed by heating a Si wafer to thermally oxidize it when a substrate such as a Si wafer is used as the substrate 10. However, the oxide film 11 is not essential and may be omitted. Similar to the inductor B of the above-described example, the inductor C of the configuration of this example also exhibits excellent inductance, is small and lightweight, and contributes to reduction in size and weight of the thin magnetic element.

【0019】[0019]

【実施例】【Example】

(1)成膜 RFマグネトロンスパッタ装置を用いて、Feターゲッ
ト上に本発明のMまたはTの各元素の各種ペレットを配
置した複合ターゲットを用い、Ar+0.1 〜1.0%
Oの雰囲気中でスパッタを行ない、膜厚が約2μmにな
るようにスパッタ時間を調整した。また、得ようとする
膜中にB、Cを添加する場合は、ターゲット上にBある
いはCのペレットを配置した複合ターゲットを用いた。
なお、Cを添加する場合はスパッタ雰囲気中にCOガス
を導入しても良い。主なスパッタ条件を以下に示す。 予備排気:1×10-6Torr以下 高周波電力:400W Arガス圧:6〜8×10-3Torr 基板:結晶化ガラス基板(間接水冷) 電極間距離:72mm
(1) Film formation Using an RF magnetron sputtering device, a composite target in which various pellets of each element of M or T of the present invention are arranged on a Fe target is used, and Ar + 0.1 to 1.0%
Sputtering was performed in an O 2 atmosphere, and the sputtering time was adjusted so that the film thickness was about 2 μm. When B and C were added to the film to be obtained, a composite target in which B or C pellets were placed on the target was used.
When C is added, CO gas may be introduced into the sputtering atmosphere. The main sputtering conditions are shown below. Pre-evacuation: 1 × 10 -6 Torr or less High frequency power: 400 W Ar gas pressure: 6-8 × 10 -3 Torr Substrate: Crystallized glass substrate (indirect water cooling) Distance between electrodes: 72 mm

【0020】(2)熱処理 成膜後、膜の軟磁性を改善するため、真空加熱炉中で、
無磁場あるいは磁場中で300〜600℃の温度範囲で
60〜360分間保持し徐冷するアニール処理を行なっ
た。 (3)測定 得られた合金磁性膜の組成を不活性ガス融解赤外線吸収
法により求めた。また、上記熱処理(2)後の合金磁性
膜の飽和磁束密度(Bs)と保磁力(Hc)をVSMに
より測定した。また、比抵抗(ρ)を4端子法により測
定した。それらの結果を以下の表1と表2に併せて示
す。
(2) Heat treatment After film formation, in order to improve the soft magnetism of the film, in a vacuum heating furnace,
Annealing treatment was carried out in which there is no magnetic field or in a magnetic field, and the temperature is kept in the temperature range of 300 to 600 ° C. for 60 to 360 minutes and gradually cooled. (3) Measurement The composition of the obtained alloy magnetic film was determined by an inert gas melting infrared absorption method. The saturation magnetic flux density (Bs) and coercive force (Hc) of the alloy magnetic film after the heat treatment (2) were measured by VSM. The specific resistance (ρ) was measured by a four-terminal method. The results are also shown in Tables 1 and 2 below.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】次に、図3に、Fe90.4Hf9.319.7
0.6なる組成の軟磁性合金膜試料と、Fe68.9Hf10.2
19.91.0なる組成の軟磁性合金膜試料について成膜
のままの状態でX線分析により走査分析した結果を示
す。これらの結果から、bccFeの(110)面のピ
ークとアモルファス相に特有のハローパターンが含まれ
ていることがわかる。
Next, referring to FIG. 3, Fe 90.4 Hf 9.3 O 19.7 C
A soft magnetic alloy film sample having a composition of 0.6 and Fe 68.9 Hf 10.2
The results of scanning analysis by X-ray analysis in the as-deposited state of a soft magnetic alloy film sample having a composition of O 19.9 B 1.0 are shown. From these results, it is understood that the peak of the (110) plane of bccFe and the halo pattern peculiar to the amorphous phase are included.

【0024】次に、FexHfyzwで示される合金膜
において、各組成比の合金の熱処理前の飽和磁束密度と
比抵抗を調べた測定結果を図4に示す。なお、図4にお
いて組成比を示す各ポイント(〜)の下部に付して
ある2段の値のうち、上段の値が飽和磁化(Is:単位
T(テスラ))であり、下段の値が比抵抗(ρ:単位μ
Ωcm)である。また、図4と図5において鎖線で示す比
抵抗値の境界は、Bを含有していないFeHfO3元系
合金の比抵抗の値である。図4、5および表1と表2の
結果から、Feは少ない方が比抵抗は増加することがわ
かる。したがって、本発明では比抵抗を高めつつ少なく
とも0.5T以上の飽和磁束密度を保つために、Feの
含有量の下限値を50原子%とした。また、FeHfO
の3元系よりもBを添加した系の方が、高Fe濃度(B
sが高い)であっても高い比抵抗を得ることができるこ
とも判明した。
Next, in the alloy film represented by Fe x Hf y O z B w , the measurement results of the saturation magnetic flux density and the specific resistance before heat treatment of the alloys of each composition ratio are shown in FIG. In FIG. 4, among the values of the two steps attached to the bottom of each point (-) indicating the composition ratio, the value of the upper step is the saturation magnetization (Is: unit T (Tesla)) and the value of the lower step is Specific resistance (ρ: unit μ
Ωcm). The boundary between the specific resistance values shown by the chain line in FIGS. 4 and 5 is the specific resistance value of the FeHfO ternary alloy containing no B. From FIGS. 4 and 5 and the results of Tables 1 and 2, it can be seen that the smaller the Fe content, the higher the specific resistance. Therefore, in the present invention, the lower limit of the Fe content is set to 50 atomic% in order to increase the specific resistance and maintain the saturation magnetic flux density of at least 0.5T or more. In addition, FeHfO
In the system with B added, the Fe concentration (B
It was also found that a high specific resistance can be obtained even when (s is high).

【0025】次に、外部磁界の周波数を変化させて透磁
率(μoff)を測定した。試験に供したサンプルは、F
68.9Hf10.21.019.9なる組成の軟磁性合金膜を
使用し、回転磁場中で400℃で6時間の熱処理を施し
た。測定結果を図6に示す。なお、図6において、μ’
は透磁率の実数部、μ''は透磁率の虚数部を示し、この
試料の飽和磁化Isは1.4Tであった。図6に示す結
果から、本発明範囲内のFe68.9Hf10.21.019.9
なる組成の軟磁性合金であれば、高周波帯域であっても
高い透磁率を維持していることが明白であり、高周波用
磁性材料として非常に優れていることがわかる。また、
透磁率の実数部の値と虚数部の値が等しくなる、即ちQ
の値が1になるのは、200MHzを若干超えた帯域で
あり、(透磁率の実数部/透磁率の虚数部)の値として
得られるQの値を高い周波数帯域まで維持できることが
明らかである。
Next, the magnetic permeability (μ off ) was measured by changing the frequency of the external magnetic field. The sample used for the test is F
e A soft magnetic alloy film having a composition of 68.9 Hf 10.2 B 1.0 O 19.9 was used and heat treated at 400 ° C. for 6 hours in a rotating magnetic field. The measurement result is shown in FIG. In FIG. 6, μ ′
Indicates the real part of magnetic permeability, μ ″ indicates the imaginary part of magnetic permeability, and the saturation magnetization Is of this sample was 1.4T. From the results shown in FIG. 6, Fe 68.9 Hf 10.2 B 1.0 O 19.9 within the scope of the present invention is obtained.
It is clear that the soft magnetic alloy having the following composition maintains a high magnetic permeability even in a high frequency band, and it is understood that it is very excellent as a magnetic material for high frequency. Also,
The value of the real part and the value of the imaginary part of permeability become equal, that is, Q
The value of becomes 1 in a band slightly exceeding 200 MHz, and it is clear that the value of Q obtained as the value of (real part of permeability / imaginary part of permeability) can be maintained up to a high frequency band. .

【0026】次に、Fe76Hf24とFe54.9Hf11.0
34.1とFe54.9Hf11.034.1の各組成の合金試料にお
けるX線光分光分析結果を図7に示す。なお、図中
( )内のOの濃度(%)は、流量比を示すものであ
り、Ar2とO2の和に占めるO2の比である。この図か
らわかるようにFeに関してはFe-Oに相当するピー
クはなく、Oが添加されてもFeの酸化物が析出してい
ないのに対し、Hfに関してはOを加えるのに従ってH
f単体ではほとんど存在せず、Hf-Oの形で存在して
いる。このHf-Oが非晶質中に多量に含まれ、非晶質
の抵抗が高くなっているものと思われる。この事情はF
eHfOの3元系に元素M,Tを添加した多元系でも同
じであり、結晶相の部分にはFeが多く、元素MとOが
少なく、非晶質相の部分は元素MとOが多くなる。従っ
て本発明組成系においても、非晶質相中に多量に元素M
とOが含まれるので、これが高抵抗の原因である。ま
た、BとOは結合しやすい性質を有しているので、Bも
非晶質中に多く含まれているものと推定できる。
Next, Fe 76 Hf 24 and Fe 54.9 Hf 11.0 O
FIG. 7 shows the X-ray optical spectroscopy analysis results for alloy samples of each composition of 34.1 and Fe 54.9 Hf 11.0 O 34.1 . The concentration of O in in FIG. () (%) Shows the flow ratio is the ratio of O 2 occupying the sum of Ar 2 and O 2. As can be seen from this figure, there is no peak corresponding to Fe-O for Fe, and the oxide of Fe does not precipitate even if O is added, whereas for Hf, as O is added, H
It hardly exists in f alone, but exists in the form of Hf-O. It is considered that this Hf-O is contained in a large amount in the amorphous material, and the resistance of the amorphous material is increased. This situation is F
The same applies to a multi-element system in which the elements M and T are added to the ternary system of eHfO. The crystal phase part contains a large amount of Fe, the element M and O are small, and the amorphous phase part contains a large number of elements M and O. Become. Therefore, even in the composition system of the present invention, a large amount of the element M is contained in the amorphous phase.
This is the cause of the high resistance, since it contains O and O. Further, since B and O have a property of easily bonding, it can be presumed that B is also contained in the amorphous material in a large amount.

【0027】[0027]

【発明の効果】以上説明したように本発明の軟磁性合金
は、特定の組成と特定の組成比からなるFe系合金であ
り、高い飽和磁束密度と低い保磁力、そして高い比抵抗
を実現した軟磁性合金であるので、薄膜トランス、磁気
ヘッド用のコア、薄膜インダクタ、スイッチング素子な
どの磁気素子の小型軽量化、高性能化に大きく寄与する
ものである。更に、本発明に係る軟磁性合金ならば、3
20〜2×105の高い比抵抗を得ることができるの
で、本発 明に係る軟磁性合金を用いて磁気素子を構成
した場合、高周波領域における渦電流損失を抑えること
ができ、渦電流損失の少ない磁気素子を提供できる。
As described above, the soft magnetic alloy of the present invention is an Fe-based alloy having a specific composition and a specific composition ratio, and has achieved high saturation magnetic flux density, low coercive force, and high specific resistance. Since it is a soft magnetic alloy, it greatly contributes to reduction in size and weight and improvement in performance of magnetic elements such as thin film transformers, cores for magnetic heads, thin film inductors, and switching elements. Further, if the soft magnetic alloy according to the present invention is 3
Since a high specific resistance of 20 to 2 × 10 5 can be obtained, when a soft magnetic alloy according to the present invention is used to form a magnetic element, it is possible to suppress eddy current loss in the high frequency region and to reduce eddy current loss. It is possible to provide a magnetic element with less power consumption.

【0028】また、本発明に係る軟磁性合金において、
BとCの1種または2種を0.3〜3.0at%の範囲で
含有させることにより、特に高い比抵抗を確実に得るこ
とができるようになり、高周波帯域において渦電流損失
の小さいものを確実に得ることができる。
In the soft magnetic alloy according to the present invention,
By including one or two of B and C in the range of 0.3 to 3.0 at%, it becomes possible to reliably obtain a particularly high specific resistance, and a small eddy current loss in the high frequency band. Can be surely obtained.

【0029】更に、基板に平面コイルを形成し、前記平
面コイルを絶縁膜で覆い、前記組成の軟磁性合金の磁性
膜を平面コイルと絶縁膜を覆わせて設け、インダクタな
どの平面型磁気素子を構成するならば、低保磁力かつ高
飽和磁束密度で高い比抵抗を有する優れた軟磁性合金の
磁性膜を磁気素子に適用できるので、小型軽量かつ高性
能の平面型磁気素子を提供することができる。よって、
小型軽量化した平面型磁気素子を提供できる。
Further, a plane coil is formed on the substrate, the plane coil is covered with an insulating film, and a magnetic film of a soft magnetic alloy having the above composition is provided so as to cover the plane coil and the insulating film. The magnetic film of an excellent soft magnetic alloy having a low coercive force, a high saturation magnetic flux density, and a high specific resistance can be applied to the magnetic element, so that a small-sized, lightweight and high-performance planar magnetic element can be provided. You can Therefore,
It is possible to provide a compact and lightweight planar magnetic element.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明に係る平面型磁気素子の第
1の例を示す平面図、図1(b)は図1(a)のAーA
線に沿う断面図である。
FIG. 1 (a) is a plan view showing a first example of a planar magnetic element according to the present invention, and FIG. 1 (b) is AA of FIG. 1 (a).
It is sectional drawing which follows a line.

【図2】本発明に係る平面型磁気素子の第2の例を示す
断面図である。
FIG. 2 is a sectional view showing a second example of the planar magnetic element according to the present invention.

【図3】Fe90.4Hf9.319.70.6なる組成の軟磁性
合金膜試料とFe68.9Hf10.219.91.0なる組成の
軟磁性合金膜試料について成膜のままの状態でX線分析
により走査分析した結果を示す図である。
[Fig. 3] Scanning by X-ray analysis of the soft magnetic alloy film sample having a composition of Fe 90.4 Hf 9.3 O 19.7 C 0.6 and the soft magnetic alloy film having a composition of Fe 68.9 Hf 10.2 O 19.9 B 1.0 as-formed. It is a figure which shows the result of analysis.

【図4】本発明に係るFe-Hf-O-B系の合金膜にお
いて、各元素の添加量と飽和磁化および比抵抗の関係を
示す三角組成図である。
FIG. 4 is a triangular composition diagram showing the relationship between the addition amount of each element and the saturation magnetization and the specific resistance in the Fe—Hf—O—B based alloy film according to the present invention.

【図5】本発明に係るFe-Hf-O-C系の合金膜にお
いて、各元素の含有量と飽和磁化および比抵抗の関係を
示す三角組成図である。
FIG. 5 is a triangular composition diagram showing the relationship between the content of each element and the saturation magnetization and the specific resistance in the Fe—Hf—O—C based alloy film according to the present invention.

【図6】Fe68.9Hf10.21.019.9なる組成の軟磁
性合金膜において、透磁率の実数部および虚数部の周波
数依存性を示す図である。
FIG. 6 is a diagram showing frequency dependence of a real part and an imaginary part of magnetic permeability in a soft magnetic alloy film having a composition of Fe 68.9 Hf 10.2 B 1.0 O 19.9 .

【図7】Fe76Hf24とFe54.9Hf11.034.1とFe
54.9Hf11.034.1の各組成試料におけるX線光分光分
析結果を示す図である。
FIG. 7 Fe 76 Hf 24 and Fe 54.9 Hf 11.0 O 34.1 and Fe
54.9 is a diagram showing an X-ray light spectral analysis of each composition sample Hf 11.0 O 34.1.

【符号の説明】[Explanation of symbols]

A、B インダクタ(薄型磁気素子) 1、10 基板 2、14 平面コイル 3、13、15 絶縁層 4、12、16 磁性膜 A, B Inductor (thin magnetic element) 1, 10 Substrate 2, 14 Planar coil 3, 13, 15 Insulating layer 4, 12, 16 Magnetic film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Feを主成分とする体心立方構造を有す
る平均結晶粒径30nm以下の結晶相と、それらを取り
囲む非晶質相を主体としてなり、 前記非晶質相が、Ti,Zr,Hf,Nb,Ta,M
o,Wおよび希土類元素から選ばれる1種または2種以
上の元素Mと、B,Cのうち1種または2種の元素T
と、Oと、元素Mもしくは元素Tの酸化物を主成分とし
てなり、この非晶質相の比抵抗を前記結晶相の比抵抗よ
りも高くしてなることを特徴とするFe基軟磁性合金。
1. A crystal phase mainly composed of Fe, having a body-centered cubic structure and having an average crystal grain size of 30 nm or less, and an amorphous phase surrounding the crystal phases, wherein the amorphous phase is Ti or Zr. , Hf, Nb, Ta, M
one or more elements M selected from o, W and rare earth elements, and one or two elements T of B and C
And O and an oxide of element M or element T as main components, and the specific resistance of this amorphous phase is higher than the specific resistance of the crystalline phase. .
【請求項2】 前記Fe基軟磁性合金が下記の組成式で
示されることを特徴とする請求項1記載のFe基軟磁性
合金。 Fexyzw ただし、組成比を示すx,y,z,wはat%で、50≦x
≦75、5≦y≦30、15≦z≦25、0<w≦6、1
5≦z+w≦30なる関係を満足するものとする。
2. The Fe-based soft magnetic alloy according to claim 1, wherein the Fe-based soft magnetic alloy is represented by the following composition formula. Fe x M y O z T w here, x indicating the composition ratio, y, z, w is at%, 50 ≦ x
≦ 75, 5 ≦ y ≦ 30, 15 ≦ z ≦ 25, 0 <w ≦ 6, 1
The relation of 5 ≦ z + w ≦ 30 is satisfied.
【請求項3】 前記組成比を示すwが、0.3≦w≦3.0
の範囲とされてなることを特徴とする請求項2記載のF
e基軟磁性合金。
3. The w representing the composition ratio is 0.3 ≦ w ≦ 3.0.
3. The F according to claim 2, characterized in that
e-based soft magnetic alloy.
【請求項4】 基板上にスパイラル状の平面コイルと、
絶縁膜と、軟磁性合金の磁性膜が積層され、前記軟磁性
合金の磁性膜が、 組成式Fexyzwで示され、Mは、Ti,Zr,H
f,Nb,Ta,Mo,Wおよび希土類元素から選ばれ
る1種または2種以上の元素を示し、TはB,Cのうち
1種または2種を示し、組成比x,y,z,wはat%で、
50≦x≦75、5≦y≦30、15≦z≦25、0<w≦
5、15≦z+w≦30なる関係を満足する磁性膜とされ
たことを特徴とする薄型磁気素子。
4. A spiral planar coil on a substrate,
An insulating film, magnetic film of soft magnetic alloy is laminated magnetic film of the soft magnetic alloy, is represented by a composition formula Fe x M y O z T w , M is, Ti, Zr, H
f, Nb, Ta, Mo, W and one or more elements selected from rare earth elements, T represents one or two elements of B and C, and the composition ratio x, y, z, w Is at%,
50 ≦ x ≦ 75, 5 ≦ y ≦ 30, 15 ≦ z ≦ 25, 0 <w ≦
A thin magnetic element characterized by being a magnetic film satisfying the relationship of 5, 15 ≦ z + w ≦ 30.
JP5970396A 1996-03-15 1996-03-15 Iron-base soft-magnetic alloy, and thin magnetic element using same Withdrawn JPH09256117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5970396A JPH09256117A (en) 1996-03-15 1996-03-15 Iron-base soft-magnetic alloy, and thin magnetic element using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5970396A JPH09256117A (en) 1996-03-15 1996-03-15 Iron-base soft-magnetic alloy, and thin magnetic element using same

Publications (1)

Publication Number Publication Date
JPH09256117A true JPH09256117A (en) 1997-09-30

Family

ID=13120849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5970396A Withdrawn JPH09256117A (en) 1996-03-15 1996-03-15 Iron-base soft-magnetic alloy, and thin magnetic element using same

Country Status (1)

Country Link
JP (1) JPH09256117A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532285A (en) * 1998-07-06 2003-10-28 ミッドコム インコーポレーテッド Multilayer transformer with electrical connections inside core
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532285A (en) * 1998-07-06 2003-10-28 ミッドコム インコーポレーテッド Multilayer transformer with electrical connections inside core
US7067022B2 (en) 2000-11-09 2006-06-27 Battelle Energy Alliance, Llc Method for protecting a surface
US8097095B2 (en) * 2000-11-09 2012-01-17 Battelle Energy Alliance, Llc Hardfacing material

Similar Documents

Publication Publication Date Title
JP3291099B2 (en) Soft magnetic alloy and planar magnetic element
JPH1055916A (en) Thin magnetic element and transformer
Ohnuma et al. Magnetostriction and soft magnetic properties of (Co1− xFex)–Al–O granular films with high electrical resistivity
US5656101A (en) Soft magnetic alloy thin film with nitrogen-based amorphous phase
KR910002375B1 (en) Magnetic core component and manufacture thereof
JP2004006619A (en) High-frequency magnetic thin film, compound magnetic thin film, and magnetic element using the same
KR100203525B1 (en) Soft magnetic alloy for high frrequency and flat magnetic element, antenna and radio wave absorber using the same
JPH0734207A (en) Nano-crystal alloy excellent in pulse decay characteristic, choking coil, noise filter using same, and their production
JPH11340037A (en) Soft magnetic film, soft magnetic multi-layer film, manufacture thereof, and magnetic body element using same
US6239594B1 (en) Mageto-impedance effect element
US6744342B2 (en) High performance bulk metal magnetic component
US5302469A (en) Soft magnetic thin film
JPH11340036A (en) Soft magnetic film, thin film magnetic head using the same, planar magnetic element, and filter
JPH08273930A (en) Thin-film magnetic element and its manufacture
JP2000114047A (en) Thin-film transformer and manufacture thereof
JP2000150238A (en) Planar magnetic element and manufacture of the planar magnetic element
JP2000252121A (en) HIGH-FREQUENCY Co-BASED METALLIC AMORPHOUS MAGNETIC FILM, AND MAGNETIC ELEMENT, INDUCTOR AND TRANSFORMER USING THE SAME
JPH09256117A (en) Iron-base soft-magnetic alloy, and thin magnetic element using same
JPH06120027A (en) Magnetic artificial lattice film
JPH10289821A (en) Magnetic device for high-frequency band use
JPH01169905A (en) Magnetic core for choke coil
JP3602988B2 (en) Magnetic impedance effect element
JP3251126B2 (en) Fe-based soft magnetic alloy
JPH0282601A (en) Multilayer magnetic film
JP3232592B2 (en) Magnetic head

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A761 Written withdrawal of application

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A761