JPH09135536A - Power system interconnection system - Google Patents

Power system interconnection system

Info

Publication number
JPH09135536A
JPH09135536A JP7288358A JP28835895A JPH09135536A JP H09135536 A JPH09135536 A JP H09135536A JP 7288358 A JP7288358 A JP 7288358A JP 28835895 A JP28835895 A JP 28835895A JP H09135536 A JPH09135536 A JP H09135536A
Authority
JP
Japan
Prior art keywords
power
transmission means
information transmission
information
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7288358A
Other languages
Japanese (ja)
Inventor
Yoshimi Sakurai
芳美 櫻井
Keijiro Sakai
慶次郎 酒井
Yasuaki Suzuki
安昭 鈴木
Hideyasu Umetsu
秀恭 梅津
Tsutomu Inayama
努 伊奈山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP7288358A priority Critical patent/JPH09135536A/en
Publication of JPH09135536A publication Critical patent/JPH09135536A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To optimize the relation between the amount of output power and the amount of consumed power of an AC power source by allowing a second information transmission means to receive the information about the power used by a plurality of power consumers and the amount of power generation of distributed power supplies from a third information transmission means and transmit that information to a first information transmission means. SOLUTION: A first information transmission means 1 is located uppermost in the load-dispatch instruction transmission system and sends an instruction for adjusting the supply and demand balance to a second and a third information transmission means 2, 3. The second information transmission means 2, being located in a transformer station 11 for power distribution, monitors the amount of power generation, the amount of power consumption, etc., of a distributed power supply in each group based on the instruction received from the first information transmission means 1 and then outputs to the third information transmission means 3 the appropriate information and control signals which are obtained from the instruction of the first information transmission means 1 and the relation among the amount of power generation, the amount of power consumption, etc., of each distributed power supply. By this method, the relation between the amount of power generation and the amount of power consumption of the power system can be optimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電等の発電
手段からなる交流電源を有する電力系統と、需要家等に
設けられて電力系統に連系される太陽光発電等の発電手
段からなる分散電源により構成され、交流電源の発電量
等の状況に応じて分散電源を制御して潮流制御を行い交
流電源の発電容量の平準化を図るのに好適な系統連系シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an electric power system having an AC power source composed of power generation means such as thermal power generation, and a power generation means such as photovoltaic power generation provided in a consumer or the like and connected to the electric power system. The present invention relates to a system interconnection system that is composed of distributed power sources and is suitable for controlling the distributed power sources according to the situation such as the amount of power generation of the AC power source to control the power flow to equalize the power generation capacity of the AC power source.

【0002】[0002]

【従来の技術】近年、太陽光発電・燃料電池発電等を用
いた電源が開発されている。
2. Description of the Related Art In recent years, power sources using solar power generation, fuel cell power generation, etc. have been developed.

【0003】しかし、太陽光発電はその出力が天候に左
右され易く、かつ夜間発電ができないという扱い難さが
ある。また、燃料電池発電では点検のための停止期間が
あるので、これらの電源を単独で用いると需要家に安定
した電力を供給できないという問題がある。そこで、従
来は交流電源を有する電力系統に上記の発電手段を分散
電源として連系させて利用し安定した電力の供給を行う
ようにしている。
However, the output of solar power generation is easily affected by the weather, and it is difficult to generate power at night. Further, in the fuel cell power generation, since there is a suspension period for inspection, there is a problem in that it is impossible to supply a stable power to the customer if these power sources are used alone. Therefore, conventionally, a stable supply of electric power is performed by connecting the above-mentioned power generation means to a power system having an AC power source as a distributed power source for use.

【0004】この場合、連系のために太陽光発電から出
力される直流電圧を交流電圧に変換するための直交変換
手段と、電力系統との連系に必要な保護装置,開閉器,
フィルタ等からなる連系手段により電力系統と連系して
電力供給を行うようにしている。同様のシステムは、例
えば特開平6−14461号公報に記載されている。
In this case, the orthogonal conversion means for converting the DC voltage output from the photovoltaic power generation into the AC voltage for interconnection, and the protection device, switch and switch necessary for interconnection with the electric power system,
Electric power is supplied by an interconnection means such as a filter, which is connected to the electric power system. A similar system is described in, for example, Japanese Patent Laid-Open No. 6-14461.

【0005】[0005]

【発明が解決しようとする課題】これまで、分散電源か
ら電力系統への逆潮流は規制によりできなかった。しか
し、今後は電力系統と分散電源が正常な状態で連系され
ているとき、分散電源の余剰電力を電力系統へ逆潮流
し、電力会社に売電できることになる。
Up to now, the reverse flow from the distributed power source to the electric power system has not been possible due to regulations. However, from now on, when the power system and the distributed power source are interconnected in a normal state, the surplus power of the distributed power source can be reversely flowed to the power system and sold to the power company.

【0006】しかし、従来の系統連系システムではこの
逆潮流については考慮されておらず、電力系統に連系さ
れる分散電源の数が多くなると分散電源により電力系統
に与える電力変動が大きくなる。特に太陽光発電による
分散電源の場合、その出力が天候に左右されるため、電
力系統に与える電力変動は非常に大きくなり、電力系統
にとって大きな問題となる。そこで、電力系統に連系し
た分散電源を制御してこのような問題を回避し、交流電
源の発電容量の平準化を図ることが重要な課題となる。
However, in the conventional system interconnection system, this reverse power flow is not taken into consideration, and when the number of distributed power sources connected to the power system increases, the power fluctuation given to the power system by the distributed power sources increases. In particular, in the case of a distributed power source using solar power generation, its output depends on the weather, so that the power fluctuation given to the power system becomes very large, which is a big problem for the power system. Therefore, it is important to control the distributed power sources connected to the power system to avoid such a problem and to level the power generation capacity of the AC power source.

【0007】本発明の目的は、発電手段を有する交流電
源の電力系統に、発電手段の発電量に対応し安定した電
力を逆潮流することができると共に、需要家に安定した
電力を供給することができ、かつ、交流電源の発電電力
量と消費電力量との関係を最適化できる系統連系システ
ムを提供することにある。
An object of the present invention is to supply a stable electric power to a customer while being able to reversely flow a stable electric power corresponding to the amount of electric power generated by the electric power generating means to an electric power system of an AC power source having an electric power generating means. Another object of the present invention is to provide a system interconnection system capable of achieving the above, and optimizing the relationship between the power generation amount of the AC power supply and the power consumption amount.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明の特徴とするところは、発電手段を備えた交流
電源を有する電力系統と、それぞれ分散電源を有する複
数の電力需要家とを、系統連系手段により連系した系統
連系システムにおいて、前記交流電源の発電に関する情
報を発生する第1の情報伝達手段と、前記第1の情報伝
達手段から前記発電に関する情報を受け取り、この情報
に応じて前記複数の電力需要家が有する分散電源の潮流
制御を行う制御信号を発生する第2の情報伝達手段と、
前記複数の電力需要家の使用電力と分散電源の発電量に
関する情報を発生して前記第2の情報伝達手段に送り、
前記第2の情報伝達手段から前記潮流制御を行う制御信
号を受け取り、この制御信号に応じて前記分散電源の潮
流制御,負荷群の負荷率制御を行う第3の情報伝達手段
とを有し、前記第2の情報伝達手段は、前記第3の情報
伝達手段から前記複数の電力需要家の使用電力と分散電
源の発電量に関する情報を受け取り、これを前記第1の
情報伝達手段に送る系統連系システムにある。
To achieve the above object, the present invention is characterized in that an electric power system having an AC power source equipped with a power generation unit and a plurality of electric power consumers each having a distributed power source. In a system interconnection system interconnected by a system interconnection means, first information transmission means for generating information about power generation of the AC power source, and information about the power generation from the first information transmission means are received. Second information transmission means for generating a control signal for controlling the power flow of the distributed power sources of the plurality of electric power consumers according to
Generating information about the power used by the plurality of power consumers and the power generation amount of the distributed power source and sending the information to the second information transmitting means;
A third information transmission means for receiving a control signal for performing the power flow control from the second information transmission means, and performing a power flow control of the distributed power source and a load factor control of a load group according to the control signal, The second information transmission means receives from the third information transmission means information regarding the electric power used by the plurality of electric power consumers and the power generation amount of the distributed power source, and sends the information to the first information transmission means. System.

【0009】[0009]

【発明の実施の形態】本発明の一実施例を図1に示す。FIG. 1 shows an embodiment of the present invention.

【0010】図1において、1は第1の情報伝達手段、
2は第2の情報伝達手段、3は第3の情報伝達手段、1
0は火力発電等の発電手段からなる交流電源、11は配
電用変電所、12は遮断器、13は柱上変圧器である。
In FIG. 1, 1 is a first information transmission means,
2 is a second information transmission means, 3 is a third information transmission means, 1
Reference numeral 0 is an AC power source including power generation means such as thermal power generation, 11 is a distribution substation, 12 is a circuit breaker, and 13 is a pole transformer.

【0011】交流電源10の発電電力は配電用変電所1
1によってその電圧が6.6kV に降圧され、配電用変
電所11から配電系統14により分岐されてグループ
1,グループ2,……,グループnの各グループに配電
される。各配電系統14の分岐電力は、遮断器12,配
電系統15を介して各グループに設けられた柱上変圧器
13に供給される。柱上変圧器13に供給された電力
は、柱上変圧器13でその電圧が200Vあるいは10
0Vに降圧されて需要家20等に供給される。
The power generated by the AC power source 10 is distributed to the substation 1 for distribution.
The voltage is stepped down to 6.6 kV by 1 and is branched from the distribution substation 11 by the distribution system 14 and distributed to each group of group 1, group 2, ..., Group n. The branch power of each distribution system 14 is supplied to the pole transformer 13 provided in each group via the circuit breaker 12 and the distribution system 15. The power supplied to the pole transformer 13 has a voltage of 200 V or 10 at the pole transformer 13.
It is stepped down to 0V and supplied to the customers 20 and the like.

【0012】21は分散電源として需要家A20,需要
家B20のそれぞれに設置された太陽電池、22は太陽
電池21から出力される直流電圧を交流電圧に変換する
直交変換器、30は交流電圧で作動するエアコン,電
灯,冷蔵庫等の負荷群である。23は太陽電池21から
負荷群30に供給される電力が十分でない場合、電力系
統からの電力を負荷群30に供給できるようにすると共
に、電力系統異常等を検出する保護装置24,電力系統
異常時に太陽電池21の分散電源を解列する開閉器25
により構成される系統連系装置である。
Numeral 21 is a solar cell installed in each of the customers A20 and B20 as a distributed power source, 22 is an orthogonal converter for converting the DC voltage output from the solar cell 21 into an AC voltage, and 30 is an AC voltage. It is a load group such as air conditioners, lights, and refrigerators that operate. When the electric power supplied from the solar cell 21 to the load group 30 is not sufficient, the reference numeral 23 makes it possible to supply the electric power from the electric power system to the load group 30, and a protection device 24 for detecting an electric power system abnormality, an electric power system abnormality. Switch 25 for disconnecting the dispersed power source of the solar cell 21 at times
It is a system interconnection device configured by.

【0013】さらに、需要家A,需要家Bに設置する太
陽電池21からなる分散電源とは別に、電力貯蔵機能を
有する蓄電池40を分散電源とし、蓄電池40から出力
される直流電圧を交流電圧に変換する直交変換器41及
びこの分散電源と電力系統との連系手段である系統連系
装置42を設置している。ここで図1の1点鎖線で囲ん
で示すように、柱上変圧器13からの配電系統16に接
続される各需要家20等を1つのグループとして構成す
る。
Further, in addition to the distributed power source including the solar cells 21 installed in the customers A and B, the storage battery 40 having a power storage function is used as a distributed power source, and the DC voltage output from the storage battery 40 is converted into an AC voltage. An orthogonal converter 41 for conversion and a system interconnection device 42 which is an interconnection means for connecting the distributed power source and the electric power system are installed. Here, as surrounded by the alternate long and short dash line in FIG. 1, each customer 20 connected to the distribution system 16 from the pole transformer 13 is configured as one group.

【0014】図1において、第1の情報伝達手段1は給
電指令の最上位に位置し、需給調整用の指令を第2の情
報伝達手段2及び第3の情報伝達手段3に出力する。下
位の第2の情報伝達手段2は配電用変電所11に位置
し、第1の情報伝達手段1からの指令に基づいて各グル
ープの分散電源の発電量,消費電力量などを監視し、第
1の情報伝達手段1からの指令と、分散電源の発電量,
消費電力量などの関係から第3の情報伝達手段3に適切
な情報、制御信号を出力するように実行する。第3の情
報伝達手段3は管轄電力系統である配電系統16に接続
される需要家20等の運転操作指令を担当しており、配
電系統16に応じて複数、即ちプループの数だけ設けら
れており、需要家20の制御装置26と直接制御信号と
のやり取りを行う。
In FIG. 1, the first information transmission means 1 is located at the top of the power supply command and outputs a demand / supply adjustment command to the second information transmission means 2 and the third information transmission means 3. The lower second information transmission means 2 is located in the distribution substation 11, and monitors the power generation amount, the power consumption amount, etc. of the distributed power sources of each group based on the command from the first information transmission means 1, Command from the information transmission means 1 of No. 1 and the power generation amount of the distributed power source
It is executed so as to output appropriate information and control signals to the third information transmission means 3 in relation to the power consumption and the like. The third information transmitting means 3 is in charge of driving operation commands for the customers 20 and the like connected to the power distribution system 16 which is a jurisdiction power system, and is provided according to the power distribution system 16 by a plurality, that is, by the number of groups. And directly exchanges control signals with the control device 26 of the customer 20.

【0015】図2,図3,図4により、図1に示した本
発明の一実施例について説明する。図2は第1の情報伝
達手段1,第2の情報伝達手段2及び第3の情報伝達手
段3の関係を示したものである。図3は本発明の図1の
実施例における需要家20の詳細構成と、第3の情報伝
達手段と制御装置26との情報,制御信号により需要家
20の動作を説明する図面である。図4は情報,制御信
号に従って実行される処理のフローを示す図面である。
An embodiment of the present invention shown in FIG. 1 will be described with reference to FIGS. 2, 3 and 4. FIG. 2 shows the relationship among the first information transmitting means 1, the second information transmitting means 2 and the third information transmitting means 3. FIG. 3 is a diagram for explaining the operation of the customer 20 according to the detailed configuration of the customer 20 in the embodiment of FIG. 1 of the present invention, the information of the third information transmission means and the control device 26, and the control signal. FIG. 4 is a drawing showing the flow of processing executed in accordance with information and control signals.

【0016】図1,図3に示すように第3の情報伝達手
段3は、需要家20の制御装置26に上位の第1の情報
伝達手段1,第2の情報伝達手段2からの情報,制御信
号に応じた指令を制御装置26に出力すると共に、制御
装置26からの情報,制御信号を上位の第1,第2の情
報伝達手段に出力するといったように情報,制御信号の
授受を行い、分散電源の発電量の制御,潮流制御や負荷
の投入,解列を行わせるように第1の情報伝達手段1か
ら制御装置26まで図1に示すごとく情報網を組んでい
る。
As shown in FIG. 1 and FIG. 3, the third information transmission means 3 has the information from the first information transmission means 1 and the second information transmission means 2, which are superior to the control device 26 of the customer 20. Information and control signals are exchanged such that a command corresponding to the control signal is output to the control device 26, and information and control signals from the control device 26 are output to upper first and second information transmitting means. As shown in FIG. 1, an information network is constructed from the first information transmission means 1 to the control device 26 so as to control the power generation amount of the distributed power source, control the power flow, apply the load, and disconnect.

【0017】例えば、夏の電力消費ピーク時などで交流
電源10の発電電力量が不足した場合、あるいは発電電
力量が少ない場合や、逆に交流電源10の発電電力量が
各需要家の消費電力量より大きく、余る場合が有る。こ
のような現象は季節、あるいは時間帯によっても生じ、
時々刻々変化する消費電力量に応じて発電量を制御する
ことは困難となる。また、電力系統にとっても負荷変動
が大きいことは、発電電力量の平準化を図る上でも好ま
しくない。そこで第1の情報伝達手段1,第2の情報伝
達2、及び第3の情報伝達手段3により、図1に示すグ
ループ内の分散電源の発電量と消費電力量などの情報を
もとに図4に示す処理フローにしたがって制御信号の授
受を行いグループ内の需要家20の分散電源の発電量,
潮流制御,負荷群30の負荷率を制御する。以下、図4
を用いて具体的な動作について説明する。
For example, when the amount of power generated by the AC power source 10 is insufficient, such as during peak summer power consumption, or when the amount of power generated is small, or conversely, the amount of power generated by the AC power source 10 is consumed by each consumer. It is larger than the quantity and may be left over. Such phenomena occur depending on the season or the time of day,
It is difficult to control the amount of power generation according to the amount of power consumption that changes moment by moment. Also, large load fluctuations in the power system are not preferable in order to level the amount of generated power. Therefore, the first information transmission unit 1, the second information transmission unit 2, and the third information transmission unit 3 are used to map the information such as the power generation amount and the power consumption amount of the distributed power sources in the group shown in FIG. According to the processing flow shown in FIG. 4, the control signal is transmitted / received, and the power generation amount of the distributed power source of the customers 20 in the group,
The power flow control and the load factor of the load group 30 are controlled. Hereinafter, FIG.
A specific operation will be described using.

【0018】処理500で交流電源10の発電電力量を
算出し、この発電電力量と第2の情報伝達手段2から第
1の情報伝達手段1に送られる配電用変電所11以降の
配電系統14での消費電力量とを処理501で比較し、
発電電力量が多い場合は処理502の処理を実行し、発
電電力量が少ない場合は処理507の処理を実行する。
In process 500, the amount of power generated by the AC power source 10 is calculated, and the amount of generated power and the power distribution system 14 after the distribution substation 11 that is sent from the second information transmission means 2 to the first information transmission means 1. Power consumption in step 501,
If the generated power amount is large, the process of step 502 is executed, and if the generated power amount is small, the process of step 507 is executed.

【0019】処理502では季節、あるいは時間に応じ
て予め設定した設定発電量を超えているか否かを判断
し、超えている場合は処理503で発電電力量を抑制す
るように第1の情報伝達手段1に指令を出力し、交流電
源10の発電電力量を抑制する。設定発電量を超えてい
ない場合は、第3の情報伝達手段3から第2の情報伝達
手段2に送られてくる需要家20の分散電源の発電量や
負荷群30での消費電力量等の情報から、グループ内の
各需要家20から電力系統が買電している買電量を処理
504で算出し、処理505で買電量が契約値より大き
いか否かを判断し買電量が契約値より少ない場合は処理
503によって設定発電量を抑制する。買電量がその契
約値より大きい場合は第3の伝達手段3を介して制御装
置26に、第2の情報伝達手段2からの指令を出力し、
処理506に示すように買電量がその契約値より大きい
グループ内の需要家で売電量の多い分散電源の発電量を
制御、あるいは解列を行い潮流制御を行う。このような
処理フローを実行することにより電力系統の発電量と消
費量との最適化を図ることが可能となる。
In process 502, it is determined whether or not the preset power generation amount has been exceeded according to the season or time, and if it exceeds, the first information transmission is performed in process 503 so as to suppress the power generation amount. A command is output to the means 1 to suppress the amount of power generated by the AC power supply 10. If the set power generation amount is not exceeded, the power generation amount of the distributed power source of the customer 20 and the power consumption amount in the load group 30 sent from the third information transmitting unit 3 to the second information transmitting unit 2 From the information, the amount of power purchased by the power system from each customer 20 in the group is calculated in process 504, and it is determined in process 505 whether the amount of power purchased is greater than the contract value, and the amount of power purchased is less than the contract value. When it is small, the set power generation amount is suppressed by the process 503. When the power purchase amount is larger than the contract value, a command from the second information transmission means 2 is output to the control device 26 via the third transmission means 3,
As shown in process 506, the power generation amount of the distributed power source with a large power sale amount is controlled or disconnected by the customers in the group whose power purchase amount is larger than the contract value, and power flow control is performed. By executing such a processing flow, it becomes possible to optimize the power generation amount and the power consumption amount of the power system.

【0020】ここで、分散電源の解列し潮流を制御する
具体的な方法については後述するが、例えば図3に示す
ように系統連系装置23の保護装置24を制御装置26
で制御し開閉器25を開くことにより実現できる。ま
た、分散電源の発電量は制御装置26からの指令に応じ
直交変換器22を制御することで実現できる。
Here, a specific method of disconnecting the distributed power sources and controlling the power flow will be described later. For example, as shown in FIG. 3, the protection device 24 of the grid interconnection device 23 is replaced by the control device 26.
It is possible to realize it by controlling with the switch and opening the switch 25. Further, the power generation amount of the distributed power source can be realized by controlling the orthogonal transformer 22 according to a command from the control device 26.

【0021】一方、消費電力量が多く交流電源10の発
電電力量が不足している場合は処理507を実行する。
すなわち、各グループごとに予め設定している電力量と
グループの消費電力量とを比較し、消費電力量が多いグ
ループは、処理510で不足電力量を算出し、その大き
さにより処置511で負荷の解列が可能か否かを判断
し、可能な場合は負荷を解列する指令を第3の情報伝達
手段3に出力し、負荷群30を優先順位に従って制御装
置26からの制御信号により必要な電力量になるまで負
荷群30の負荷を解列し負荷率を制御する。負荷群30
の負荷1,…,nの解列は、予め負荷に優先順位をつけ
ておき、図3に示すごとく制御装置26からの制御信号
により開閉器32,33、及び34を開くことによって
優先順位の低い負荷を順次解列することができる。しか
し、状況により負荷群30の解列ができずに、あるいは
解列できる限度の負荷を解列しても電力が不足する場合
は電力供給の要求を処理513に示すように制御装置2
6から第3の情報伝達手段3に出力する。これらに対
し、処理507でグループ内の消費電力量が少なく電力
が余っているグループの場合は、処理508で余剰電力
量の算出を行い処理509で余剰電力を電力系統に逆潮流
し買電する。また、この余剰電力は電力を要求している
グループに供給することも可能となる。これらによっ
て、グループ間で電力の需給調整することにより電力系
統の発電電力量と消費電力量との最適化を図ることが可
能となる。ここで買電とは電力会社が電力を買上げてく
れることをいう。
On the other hand, if the amount of power consumption is large and the amount of power generated by the AC power source 10 is insufficient, then step 507 is executed.
That is, the amount of power set in advance for each group is compared with the amount of power consumption of the group, and for a group with a large amount of power consumption, the amount of power shortage is calculated in step 510, and the load is taken in step 511 according to the magnitude. Of the load is determined, and if it is possible, a command to disconnect the load is output to the third information transmission means 3, and the load group 30 is required by the control signal from the control device 26 according to the priority order. The load of the load group 30 is disconnected and the load factor is controlled until the amount of electric power becomes appropriate. Load group 30
The loads 1, ..., N of the load train are prioritized in advance and the switches 32, 33, and 34 are opened by a control signal from the control device 26 as shown in FIG. Low loads can be released in sequence. However, depending on the situation, if the load group 30 cannot be disconnected, or if the power is insufficient even if the load at the limit that can be disconnected is insufficient, the controller 2 is requested to supply power as shown in process 513.
6 to the third information transmission means 3. On the other hand, in the case of the group in which the power consumption amount in the group is small and the power is surplus in the process 507, the surplus power amount is calculated in the process 508, and the surplus power is reversely flowed to the power system in the process 509 to purchase the power. . Also, this surplus power can be supplied to the group requesting the power. As a result, it becomes possible to optimize the amount of power generated and the amount of power consumed in the power system by adjusting the supply and demand of electric power between the groups. Here, power purchase means that the power company purchases power.

【0022】以上の本実施例によれば、交流電源10に
接続される各グループ内の分散電源の発電量や潮流、負
荷群30の負荷率を制御装置26によって制御すること
により、系統の電力変動を抑え発電手段の発電量に対応
し安定した電力を電力系統に逆潮流することができると
共に、需要家に安定した電力を供給することができる。
さらに、グループ間で電力需給の調整が可能となり、需
要家に安定した電力を供給できる。従って、交流電源1
0の発電電力量に応じて配電系統14で消費する電力量
との関係を最適にできるため、交流電源10の発電電力
量の平準化が図れるという効果がある。
According to the present embodiment described above, the control unit 26 controls the power generation amount and power flow of the distributed power sources in each group connected to the AC power source 10, and the load factor of the load group 30 to control the power of the grid. It is possible to suppress fluctuations and to flow stable power corresponding to the amount of power generated by the power generation means in the reverse direction to the power system, and to supply stable power to consumers.
Furthermore, it becomes possible to adjust the supply and demand of electric power between the groups, and it is possible to supply stable electric power to customers. Therefore, AC power supply 1
Since the relationship with the amount of power consumed by the distribution system 14 can be optimized according to the amount of generated power of 0, there is an effect that the amount of generated power of the AC power supply 10 can be leveled.

【0023】図5,図6及び図7を用いて本発明の他の
実施例を説明する。
Another embodiment of the present invention will be described with reference to FIGS. 5, 6 and 7.

【0024】本実施例では、図4に示す処理509をグ
ループ内の需要家の状況に応じて処理を変更する。例え
ばグループ1は消費電力量が少なく余剰電力が有り、電
力系統に逆潮流できる。これに対し、グループ2が処理
513によって制御装置26から第3の情報制御手段3
に電力供給を要求しているとする。この場合、電力系統
が需要家20からの余剰電力を必要としているか否かに
よって図5に示すごとく処理を変更する。
In the present embodiment, the processing 509 shown in FIG. 4 is changed according to the situation of the customers in the group. For example, group 1 has a small amount of power consumption and surplus power, and can flow backward to the power system. On the other hand, the group 2 is processed by the process 513 from the control device 26 to the third information control means 3
Suppose you are requesting a power supply to. In this case, the process is changed as shown in FIG. 5 depending on whether or not the power system needs the surplus power from the customer 20.

【0025】すなわち、電力系統がグループ1の余剰電
力を必要としている場合はそのまま処理515に示すご
とく電力系統に逆潮流する。これに対し、電力系統が必
要としない、または必要としなくなった場合は、処理5
16で電力不足の需要家がグループ内で有るか否かを判
断し、図6の実線、及び2点鎖線の矢印で示すように消
費電力が多く電力が不足している需要家が有ればその余
剰電力を不足している需要家に供給する。すなわち、図
6に示すごとく例えば需要家Aが電力不足で需要家Bが
余剰電力が有る場合はその余剰分を実線矢印で示すルー
プで、需要家Bが電力不足で需要家Aが余剰電力が有る
場合はその余剰分を2点鎖線の矢印で示すループで電力
を供給し、グループ内の需要家間で電力を融通する。ま
た、電力不足の需要家がないか、あるいは余剰電力を供
給してもなおかつ電力が余る場合などは電力系統に逆潮
流すると共に、図7の実線に示すようにその電力を同一
グループ内に設けた電力貯蔵機能を有する共通の蓄電池
40に供給し備蓄しておく。そこで、電力系統からの電
力供給が不足した場合は、二点鎖線で示すように蓄電池
40の直流電力を直交変換器41で交流に変換し系統連
系装置42を介してグループ内の需要家20に供給す
る。このようにグループ内の需要家間及び電力貯蔵機能
を有する蓄電池40により電力需給の調整ができるよう
にすることで電力系統の発電電力量と消費電力量の最適
化を図ることが可能となる。
That is, when the power system needs the surplus power of the group 1, the reverse flow is directly performed to the power system as shown in process 515. On the other hand, if the power system does not need it or does not need it anymore, the process 5
In 16 it is determined whether there is a power-deficient customer in the group, and if there is a customer consuming a large amount of power and having a shortage of power, as indicated by the solid line in FIG. Supply the surplus electricity to the shortage customers. That is, as shown in FIG. 6, for example, when the customer A has a power shortage and the customer B has surplus power, the surplus portion is a loop shown by a solid arrow, and the customer B has a power shortage and the customer A has a surplus power. If there is, the surplus power is supplied by a loop indicated by a two-dot chain line arrow, and the power is exchanged between the customers in the group. In addition, when there is no customer who lacks power, or when surplus power is supplied and there is still power, reverse power flow is performed in the power system and that power is provided in the same group as shown by the solid line in FIG. It is supplied to a common storage battery 40 having a power storage function and stored. Therefore, when the power supply from the power system is insufficient, the DC power of the storage battery 40 is converted into AC by the orthogonal converter 41 as indicated by the chain double-dashed line, and the consumers 20 in the group are connected via the grid interconnection device 42. Supply to. In this way, by adjusting the power supply and demand between the customers in the group and the storage battery 40 having the power storage function, it becomes possible to optimize the generated power amount and power consumption amount of the power system.

【0026】以上の本発明の他の実施例によれば、交流
電源10に接続される各グループ内の分散電源の発電量
や潮流制御、負荷群30の負荷率を制御装置26によっ
て制御することにより、系統の電力変動を抑え発電手段
の発電量に対応し安定した電力を電力系統に逆潮流する
ことができ、需要家に安定した電力を供給することがで
きる。また、交流電源10に接続される各グループ内の
需要家間で余剰電力を融通することが可能となり、さら
に電力不足のときに余剰電力を貯蔵した蓄電池40から
電力供給を受けることができるなど、電力をグループ内
で融通し電力需給の調整が可能となる。したがって、電
力系統からの電力供給を制御することができるために、
交流電源10の発電電力量に応じて消費電力量を最適に
できるため交流電源10の発電電力の平準化が図れると
いう効果がある。
According to another embodiment of the present invention described above, the controller 26 controls the power generation amount of the distributed power sources in each group connected to the AC power source 10, the power flow control, and the load factor of the load group 30. As a result, it is possible to suppress power fluctuations in the grid and to supply a stable power corresponding to the amount of power generated by the power generation means to the power grid in the reverse direction, and to supply a stable power to the customer. In addition, surplus power can be exchanged between customers in each group connected to the AC power supply 10, and power can be supplied from the storage battery 40 that stores surplus power when power is insufficient. It becomes possible to adjust the power supply and demand by exchanging electric power within the group. Therefore, in order to control the power supply from the power grid,
Since the power consumption amount can be optimized according to the power generation amount of the AC power source 10, there is an effect that the power generation amount of the AC power source 10 can be leveled.

【0027】図8に分散電源の潮流制御を実現する具体
的な方法を示す。
FIG. 8 shows a concrete method for realizing the power flow control of the distributed power source.

【0028】図8において第3の情報伝達手段3からの
制御信号と制御装置26からの制御信号を入力し、これ
らの制御信号の論理積を取り制御信号を出力する信号論
理回路27を設けている。すなわち、信号論理回路27
は、第3の情報伝達手段3からの制御信号と、制御装置
26から分散電源の稼働状況、あるいは発電量などをコ
ード化した信号を取り込み、両者の信号の論理積をとる
ことにより、条件の一致した場合に出力される制御信号
により系統連系装置23の開閉器25を開閉することに
より分散電源の潮流制御ができることになる。
In FIG. 8, a signal logic circuit 27 is provided for inputting a control signal from the third information transmitting means 3 and a control signal from the control device 26, logically multiplying these control signals and outputting the control signal. There is. That is, the signal logic circuit 27
Takes in the control signal from the third information transmission means 3 and the signal encoding the operating condition of the distributed power source or the power generation amount from the control device 26, and obtains the logical product of both signals to obtain the condition By opening and closing the switch 25 of the grid interconnection device 23 by the control signal output when they match, the power flow control of the distributed power source can be performed.

【0029】なお、図3に示すごとく第3の情報伝達手
段3からの制御信号を需要家の制御装置26に直接取り
込み、制御装置26内でその制御信号と分散電源の稼働
状況、あるいは発電量などをコード化した信号との論理
積をとることにより、状況に応じた制御信号を制御装置
26から系統連系装置23に出力し、系統連系装置23
の開閉器25を開閉することにより分散電源の潮流制御
ができることになる。また、分散電源の発電量の制御は
図示は省略しているが直交変換器22の出力を検出し、
制御装置26で出力を制御することで可能である。
As shown in FIG. 3, the control signal from the third information transmitting means 3 is directly taken into the consumer's control unit 26, and the control signal and the operating condition of the distributed power source or the amount of power generation are set in the control unit 26. A control signal corresponding to the situation is output from the control device 26 to the grid interconnection device 23 by taking a logical product with a signal obtained by encoding
By opening and closing the switch 25, the power flow of the distributed power source can be controlled. Further, although control of the power generation amount of the distributed power source is omitted in the figure, the output of the orthogonal transformer 22 is detected,
This is possible by controlling the output with the control device 26.

【0030】さらに、図3に示す直交変換器22に例え
ばアクティブフィルタ機能や無効電力補償機能を持たせ
て運転することによって電力系統への高調波の流出防
止,電力系統の安定度改善等ができる。したがって、電
力系統からの指令に応じて分散電源を開閉し潮流制御を
行うこと、分散電源の発電量の制御が可能であり、分散
電源が電力系統に接続されたり解列された場合の電力変
動や電力品質の低下を防止できる。
Further, by operating the quadrature converter 22 shown in FIG. 3 with, for example, an active filter function and a reactive power compensation function, it is possible to prevent harmonic outflow to the power system and improve the stability of the power system. . Therefore, it is possible to open / close the distributed power sources according to the command from the power system to control the power flow, and to control the power generation amount of the distributed power sources, and the power fluctuations when the distributed power sources are connected to or disconnected from the power system. And deterioration of power quality can be prevented.

【0031】[0031]

【発明の効果】本発明によれば、交流電源の発電量等を
監視する上位の情報伝達手段からの制御信号に応じて交
流電源に接続される分散電源の発電量や潮流制御、負荷
群の負荷率を各グループ内の需要家の制御装置により制
御することにより系統の電力変動を抑え発電手段の発電
量に対応し安定した電力を電力系統に逆潮流することが
でき、グループ間で電力需給の調整が可能となり需要家
に安定した電力を供給することができる。したがって、
交流電源の発電電力量に応じて配電系統で消費する電力
量との関係を最適にでき、交流電源の発電電力の平準化
が図れる効果がある。
According to the present invention, according to the control signal from the upper information transmission means for monitoring the power generation amount of the AC power source, the power generation amount of the distributed power source connected to the AC power source, the power flow control, and the load group. By controlling the load factor by the control device of the customers in each group, it is possible to suppress fluctuations in the power of the grid and to flow a stable amount of power in the reverse direction to the grid, corresponding to the amount of power generated by the power generation means. Can be adjusted, and stable power can be supplied to customers. Therefore,
The relationship with the amount of power consumed by the distribution system can be optimized according to the amount of power generated by the AC power supply, and there is the effect that the power generated by the AC power supply can be leveled.

【0032】さらに、交流電源に接続される各グループ
内の分散電源の発電量,潮流制御及び負荷群を、負荷率
を制御装置によって制御することにより、交流電源に接
続される各グループ内の需要家間で余剰電力を融通しあ
うこと、さらには余剰電力を電力貯蔵機能を有する蓄電
池に貯蔵することが可能となり、需要家が電力不足のと
きに余剰電力を貯蔵した蓄電池から電力供給を受けるこ
とができる。このようにグループ内で電力の需給調整が
可能となり、電力をグループ内で融通することが可能に
なる。したがって、電力系統からの電力供給を制御する
ことができ、交流電源の発電電力量に応じて消費電力量
を最適にできるため、交流電源の発電電力の平準化が図
れるという効果がある。
Furthermore, by controlling the load factor of the power generation amount, the power flow control and the load group of the distributed power sources in each group connected to the AC power source by the control device, the demand in each group connected to the AC power source. Excessive power can be shared between households, and it is possible to store excess power in a storage battery that has a power storage function, so that when a customer lacks power, power is supplied from the storage battery that stores excess power. You can In this way, it becomes possible to adjust the supply and demand of electric power within the group, and it becomes possible to accommodate electric power within the group. Therefore, the power supply from the power system can be controlled, and the power consumption amount can be optimized according to the power generation amount of the AC power supply, so that the power generation of the AC power supply can be leveled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図面である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1実施例の動作を説明する図面である。FIG. 2 is a diagram for explaining the operation of the embodiment in FIG.

【図3】図1実施例の動作を説明する図面である。FIG. 3 is a diagram for explaining the operation of the embodiment in FIG.

【図4】図3実施例の動作を説明する図面である。FIG. 4 is a drawing for explaining the operation of the embodiment in FIG.

【図5】本発明の他の実施例の動作を説明する図面であ
る。
FIG. 5 is a diagram for explaining the operation of another embodiment of the present invention.

【図6】本発明の他の実施例の動作を説明する図面であ
る。
FIG. 6 is a diagram illustrating the operation of another embodiment of the present invention.

【図7】本発明の他の実施例の動作を説明する図面であ
る。
FIG. 7 is a diagram for explaining the operation of another embodiment of the present invention.

【図8】本発明の実施例の動作を説明する図面である。FIG. 8 is a drawing for explaining the operation of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…第1の情報伝達手段、2…第2の情報伝達手段、3
…第3の情報伝達手段、10…交流電源、11…配電用
変電所、12…遮断器、13…柱上変圧器、14,1
5,16…配電系統、20…需要家、21…太陽電池、
22,41…直交変換器、23,42…系統連系装置、
24…保護装置、25…開閉器、26…制御装置、27
…信号論理回路、30…負荷群、31,32,33,3
4…開閉器、35…分電盤。
1 ... 1st information transmission means, 2 ... 2nd information transmission means, 3
... Third information transmission means, 10 ... AC power supply, 11 ... Distribution substation, 12 ... Breaker, 13 ... Pole transformer, 14,1
5, 16 ... power distribution system, 20 ... consumer, 21 ... solar cell,
22, 41 ... Orthogonal transformer, 23, 42 ... System interconnection device,
24 ... Protective device, 25 ... Switch, 26 ... Control device, 27
... Signal logic circuit, 30 ... Load group, 31, 32, 33, 3
4 ... Switch, 35 ... Distribution board.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 安昭 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 梅津 秀恭 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 伊奈山 努 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuaki Suzuki 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Hideyasu Umezu 3-chome, Saiwai-cho, Hitachi, Ibaraki No. 1 Stock company Hitachi Ltd. Hitachi factory (72) Inventor Tsutomu Inayama 3-2-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Engineering Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】発電手段を備えた交流電源を有する電力系
統と、それぞれ分散電源を有する複数の電力需要家と
を、系統連系手段により連系した系統連系システムにお
いて、 前記交流電源の発電に関する情報を発生する第1の情報
伝達手段と、 前記第1の情報伝達手段から前記発電に関する情報を受
け取り、この情報に応じて前記複数の電力需要家が有す
る分散電源の潮流制御を行う制御信号を発生する第2の
情報伝達手段と、 前記複数の電力需要家の使用電力と分散電源の発電量に
関する情報を発生して前記第2の情報伝達手段に送り、
前記第2の情報伝達手段から前記潮流制御を行う制御信
号を受け取り、この制御信号に応じて前記分散電源の潮
流制御,負荷群の負荷率制御を行う第3の情報伝達手段
とを有し、 前記第2の情報伝達手段は、前記第3の情報伝達手段か
ら前記複数の電力需要家の使用電力と分散電源の発電量
に関する情報を受け取り、これを前記第1の情報伝達手
段に送ることを特徴とする系統連系システム。
1. A system interconnection system in which an electric power system having an AC power source having a power generation unit and a plurality of electric power consumers each having a distributed power source are interconnected by a system interconnection unit, the power generation of the AC power source. And a control signal for receiving the information about the power generation from the first information transmission means and controlling the power flow of the distributed power sources of the plurality of power consumers according to the information. A second information transmitting means for generating, and generating and transmitting to the second information transmitting means information relating to the electric power used by the plurality of electric power consumers and the power generation amount of the distributed power source.
A third information transmission means for receiving a control signal for performing the power flow control from the second information transmission means, and performing a power flow control of the distributed power source and a load factor control of a load group according to the control signal, The second information transmitting means may receive information on the electric power used by the plurality of electric power consumers and the power generation amount of the distributed power source from the third information transmitting means, and may send the information to the first information transmitting means. A characteristic grid interconnection system.
【請求項2】請求項1において、前記分散電源は、電力
貯蔵機能を有する発電手段と、太陽電池・燃料電池等の
発電手段とを備えることを特徴とする系統連系システ
ム。
2. The system interconnection system according to claim 1, wherein the distributed power source includes a power generation unit having a power storage function and a power generation unit such as a solar cell or a fuel cell.
【請求項3】請求項1において、前記1の情報伝達手段
は前記交流電源、前記2の情報伝達手段は配電用変電設
備、前記1の情報伝達手段は前記複数の電力需要家のそ
れぞれに対して設けられた変圧器、に対応してそれぞれ
設けられることを特徴とする系統連系システム。
3. The information transmission means according to claim 1, wherein the first information transmission means is the AC power source, the second information transmission means is a distribution substation facility, and the first information transmission means is for each of the plurality of electric power consumers. A system interconnection system characterized in that it is provided corresponding to each transformer provided.
【請求項4】請求項1において、前記交流電源の電力が
不足した場合は、前記複数の電力需要家の負荷を解列す
るか、前記複数の電力需要家の余剰電力を前記電力系統
に逆潮流させるよう前記分散電源の潮流を制御すること
を特徴とする系統連系システム。
4. In claim 1, when the electric power of the AC power supply is insufficient, the loads of the plurality of electric power consumers are disconnected, or the surplus electric power of the plurality of electric power consumers is reversed to the electric power system. A system interconnection system characterized by controlling the power flow of the distributed power sources so as to allow the power flow.
【請求項5】請求項1において、前記交流電源の発電量
に応じた分散電源の潮流制御を実現する分散電源の開閉
手段は、前記第3の情報伝達手段からの制御信号と前記
分散電源の制御装置からの制御信号との論理積を取った
信号により開閉することを特徴とする系統連系システ
ム。
5. The opening / closing means of the distributed power source for realizing the power flow control of the distributed power source according to the power generation amount of the AC power source according to claim 1, wherein the control signal from the third information transmission means and the distributed power source A system interconnection system characterized by being opened and closed by a signal obtained by taking a logical product with a control signal from a control device.
JP7288358A 1995-11-07 1995-11-07 Power system interconnection system Pending JPH09135536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7288358A JPH09135536A (en) 1995-11-07 1995-11-07 Power system interconnection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7288358A JPH09135536A (en) 1995-11-07 1995-11-07 Power system interconnection system

Publications (1)

Publication Number Publication Date
JPH09135536A true JPH09135536A (en) 1997-05-20

Family

ID=17729178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7288358A Pending JPH09135536A (en) 1995-11-07 1995-11-07 Power system interconnection system

Country Status (1)

Country Link
JP (1) JPH09135536A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262457A (en) * 2001-02-27 2002-09-13 Sanyo Electric Co Ltd Electric power dealing method and dealing system
JP2005168297A (en) * 2000-09-11 2005-06-23 Sharp Corp Broad-based power supply system
JP2005245180A (en) * 2004-02-27 2005-09-08 Fuji Electric Systems Co Ltd Energy supply system
JP2005302460A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Control unit of fuel cell system
KR20060114087A (en) * 2005-04-27 2006-11-06 최진영 Electric power control device
JP2008185706A (en) * 2007-01-29 2008-08-14 Ricoh Co Ltd Image forming apparatus
JP2008206241A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Power conditioner and single-operation prevention system of distributed power supply using same
JP2008301641A (en) * 2007-06-01 2008-12-11 Meidensha Corp System and method for controlling distributed power source
JP2010226942A (en) * 2009-02-26 2010-10-07 Sanyo Electric Co Ltd Grid interconnection device, grid interconnection system, and power control system
JP2011193644A (en) * 2010-03-15 2011-09-29 Chugoku Electric Power Co Inc:The Method for controlling power supply system and power supply system
JP2011193645A (en) * 2010-03-15 2011-09-29 Chugoku Electric Power Co Inc:The Control method for power supply system and power supply system
JP2011229243A (en) * 2010-04-16 2011-11-10 Chugoku Electric Power Co Inc:The Method of controlling power supply system, and power supply system
EP2403093A2 (en) 2010-06-30 2012-01-04 Hitachi, Ltd. Method and apparatus for control battery and specification determining method of battery
JP2012019598A (en) * 2010-07-07 2012-01-26 Chugoku Electric Power Co Inc:The Power supply and demand adjusting system and power supply and demand adjusting method
JP2012023946A (en) * 2010-06-15 2012-02-02 Hitachi Ltd System state arithmetic unit, system control device, system state arithmetic system, distribution system's power flow simulation device, system state arithmetic method, system control method, distribution system's power flow simulation method, and program of the same
WO2012114844A1 (en) * 2011-02-23 2012-08-30 株式会社 東芝 Regional energy management system, and integrated regional energy management apparatus and integrated regional energy management method to be used therefor
JP2012196123A (en) * 2011-02-28 2012-10-11 Sekisui Chem Co Ltd In-region power demand control system
CN103208814A (en) * 2013-03-19 2013-07-17 云南电力试验研究院(集团)有限公司电力研究院 Scalable vector graphics (SVG) power quality management engineering application method based on micro-network wide-area information
JP2013192386A (en) * 2012-03-14 2013-09-26 Chugoku Electric Power Co Inc:The Supply and demand control method of power system and information processing apparatus
JP2013544484A (en) * 2010-11-08 2013-12-12 エスエムエー ソーラー テクノロジー アーゲー Operation method of photovoltaic power generation equipment for supplying power to the medium voltage power grid
CN104065073A (en) * 2014-06-18 2014-09-24 清华大学 Electric power system
US8938320B2 (en) 2011-02-23 2015-01-20 Kabushiki Kaisha Toshiba Regional energy management system, regional energy integrated management device and regional energy integrated management method used in regional energy management system
JP2015019474A (en) * 2013-07-10 2015-01-29 中電技術コンサルタント株式会社 Electric power interchange system and control procedure determination device for electric power interchange system
US9415699B2 (en) 2009-08-04 2016-08-16 Nec Corporation Energy system
JP2016178736A (en) * 2015-03-18 2016-10-06 中国電力株式会社 Frequency control method
CN106340882A (en) * 2016-09-22 2017-01-18 国电南瑞科技股份有限公司 Peer-to-peer mutual replication suitable for grid multiple-region integration
JP2018027011A (en) * 2013-07-26 2018-02-15 京セラ株式会社 Power management device, power management system, and power management method
CN107706919A (en) * 2017-11-10 2018-02-16 浙江大学 A kind of power distribution network redundancy optimization algorithm containing distributed power source based on sequence optimization

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168297A (en) * 2000-09-11 2005-06-23 Sharp Corp Broad-based power supply system
JP2002262457A (en) * 2001-02-27 2002-09-13 Sanyo Electric Co Ltd Electric power dealing method and dealing system
JP2005245180A (en) * 2004-02-27 2005-09-08 Fuji Electric Systems Co Ltd Energy supply system
JP2005302460A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Control unit of fuel cell system
KR20060114087A (en) * 2005-04-27 2006-11-06 최진영 Electric power control device
JP2008185706A (en) * 2007-01-29 2008-08-14 Ricoh Co Ltd Image forming apparatus
JP2008206241A (en) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Power conditioner and single-operation prevention system of distributed power supply using same
JP2008301641A (en) * 2007-06-01 2008-12-11 Meidensha Corp System and method for controlling distributed power source
JP2010226942A (en) * 2009-02-26 2010-10-07 Sanyo Electric Co Ltd Grid interconnection device, grid interconnection system, and power control system
US9415699B2 (en) 2009-08-04 2016-08-16 Nec Corporation Energy system
US9849803B2 (en) 2009-08-04 2017-12-26 Nec Corporation Energy system
JP2011193644A (en) * 2010-03-15 2011-09-29 Chugoku Electric Power Co Inc:The Method for controlling power supply system and power supply system
JP2011193645A (en) * 2010-03-15 2011-09-29 Chugoku Electric Power Co Inc:The Control method for power supply system and power supply system
JP2011229243A (en) * 2010-04-16 2011-11-10 Chugoku Electric Power Co Inc:The Method of controlling power supply system, and power supply system
JP2012023946A (en) * 2010-06-15 2012-02-02 Hitachi Ltd System state arithmetic unit, system control device, system state arithmetic system, distribution system's power flow simulation device, system state arithmetic method, system control method, distribution system's power flow simulation method, and program of the same
JP2012016103A (en) * 2010-06-30 2012-01-19 Hitachi Ltd Storage battery control device, control method for storage battery, and specification determination method for storage battery
EP2403093A2 (en) 2010-06-30 2012-01-04 Hitachi, Ltd. Method and apparatus for control battery and specification determining method of battery
US8831790B2 (en) 2010-06-30 2014-09-09 Hitachi, Ltd. Method and apparatus for control battery and specification determining method of battery
JP2012019598A (en) * 2010-07-07 2012-01-26 Chugoku Electric Power Co Inc:The Power supply and demand adjusting system and power supply and demand adjusting method
JP2013544484A (en) * 2010-11-08 2013-12-12 エスエムエー ソーラー テクノロジー アーゲー Operation method of photovoltaic power generation equipment for supplying power to the medium voltage power grid
US9525287B2 (en) 2010-11-08 2016-12-20 Sma Solar Technology Ag Inverter system and method for operation of a photovoltaic installation for feeding electrical power into a medium-voltage power supply grid
WO2012114844A1 (en) * 2011-02-23 2012-08-30 株式会社 東芝 Regional energy management system, and integrated regional energy management apparatus and integrated regional energy management method to be used therefor
CN102771027A (en) * 2011-02-23 2012-11-07 株式会社东芝 Regional energy management system, and integrated regional energy management apparatus and integrated regional energy management method to be used therefor
US8938320B2 (en) 2011-02-23 2015-01-20 Kabushiki Kaisha Toshiba Regional energy management system, regional energy integrated management device and regional energy integrated management method used in regional energy management system
JP2012175855A (en) * 2011-02-23 2012-09-10 Toshiba Corp Area energy management system, and area energy integrated management apparatus and area energy integrated management method used therefor
JP2012196123A (en) * 2011-02-28 2012-10-11 Sekisui Chem Co Ltd In-region power demand control system
JP2013192386A (en) * 2012-03-14 2013-09-26 Chugoku Electric Power Co Inc:The Supply and demand control method of power system and information processing apparatus
CN103208814A (en) * 2013-03-19 2013-07-17 云南电力试验研究院(集团)有限公司电力研究院 Scalable vector graphics (SVG) power quality management engineering application method based on micro-network wide-area information
JP2015019474A (en) * 2013-07-10 2015-01-29 中電技術コンサルタント株式会社 Electric power interchange system and control procedure determination device for electric power interchange system
US10698433B2 (en) 2013-07-26 2020-06-30 Kyocera Corporation Power management apparatus, power management system, and method for power management
JP2018027011A (en) * 2013-07-26 2018-02-15 京セラ株式会社 Power management device, power management system, and power management method
CN104065073A (en) * 2014-06-18 2014-09-24 清华大学 Electric power system
JP2016178736A (en) * 2015-03-18 2016-10-06 中国電力株式会社 Frequency control method
CN106340882A (en) * 2016-09-22 2017-01-18 国电南瑞科技股份有限公司 Peer-to-peer mutual replication suitable for grid multiple-region integration
CN106340882B (en) * 2016-09-22 2019-02-26 国电南瑞科技股份有限公司 A kind of mutual Preparation Method of equity suitable for the regulation of power grid multi-region integration domain
CN107706919A (en) * 2017-11-10 2018-02-16 浙江大学 A kind of power distribution network redundancy optimization algorithm containing distributed power source based on sequence optimization
CN107706919B (en) * 2017-11-10 2019-05-31 浙江大学 A kind of power distribution network redundancy optimization algorithm containing distributed generation resource based on sequence optimization

Similar Documents

Publication Publication Date Title
JPH09135536A (en) Power system interconnection system
JP5681069B2 (en) Multi-power conditioner system
KR102194001B1 (en) Microgrid system considering load environment and the Methods of operation
US6255805B1 (en) Device for electrical source sharing
JP2003284244A (en) Method and system for providing ancillary service using secondary battery
KR101127672B1 (en) Apparatus and method for controlling distributed power
JP2000116014A (en) Power storing device
US11811234B2 (en) Techniques for electric power distribution and a system implementing the same
JP6158562B2 (en) Power conversion apparatus, control system, and control method
CN110212517B (en) Distributed unified control method of medium-low voltage direct current power distribution system
WO2011042781A1 (en) Power supply system
JPH09130977A (en) System linkage system containing dispersed power supply
KR101644522B1 (en) Power supply system of ac microgrid three phase
JP5852779B2 (en) Power supply
JPH1155856A (en) Electric power system operation system and terminal equipment for consumer used in the system
JP3122815U (en) Power storage device
CN210350790U (en) Wind power, photoelectricity and generator coupled intelligent micro-grid structure with multi-energy complementation
Zhao et al. Implementation of a dual-microgrid system with flexible configurations and hierarchical control in China
JP7026419B1 (en) Power supply system
KR20140138425A (en) Convergence power generation system using the small engine power generation
JPH099506A (en) Distributed type power supply system
Barragan-Villarejo et al. Improving the controllability of microgrids through DC links
CN219937958U (en) Grid-connected and off-grid power supply system based on wind driven generator
JP7484842B2 (en) Power management system, charging equipment, server, and method for adjusting the balance of power supply and demand
Johnson et al. EHV operating problems associated with reactive control