JPH0837317A - Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus - Google Patents

Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus

Info

Publication number
JPH0837317A
JPH0837317A JP6170730A JP17073094A JPH0837317A JP H0837317 A JPH0837317 A JP H0837317A JP 6170730 A JP6170730 A JP 6170730A JP 17073094 A JP17073094 A JP 17073094A JP H0837317 A JPH0837317 A JP H0837317A
Authority
JP
Japan
Prior art keywords
solar cell
film solar
thin film
thin
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6170730A
Other languages
Japanese (ja)
Inventor
Katsushi Kishimoto
克史 岸本
Katsuhiko Nomoto
克彦 野元
Tetsumasa Umemoto
哲正 梅本
Hitoshi Sannomiya
仁 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6170730A priority Critical patent/JPH0837317A/en
Publication of JPH0837317A publication Critical patent/JPH0837317A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a thin-film solar battery with highly radiative characteristics of infrared ray on the rear electrode side. CONSTITUTION:A transparent conductive film (transparent electrode) 2, a semiconductor conjunctive layer 3, and a rear-face electrode 4 are formed on a transparent insulating substrate 1 in a thin-film solar battery cell. An infrared- ray reflective film with reflectance of 5% or above (preferably, 50% or above) for infrared ray of 1mum to 20mum in wavelength (preferably 3mum to 5mum and 8mum to 13mum) is formed on the rear-face electrode 4 side in a spattering step with a target of SiO2. Then, radiation of infrared ray on the rear electrode side can be improved. When there is a defect of short circuit in the thin-film solar battery, the defect can be detected by thermal-image measurement carried out from the rear electrode side, because the in-plane distribution of temperatures formed when a forward current is applied is enough to detect the defective location. As a result, the defect can be detected easily and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、太陽光を直接光に変
換する薄膜太陽電池、薄膜太陽電池の欠陥検出方法、お
よび、その方法を用いた薄膜太陽電池の欠陥検出除去装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell for converting sunlight directly into light, a method for detecting a defect in a thin film solar cell, and a defect detecting and removing apparatus for a thin film solar cell using the method.

【0002】[0002]

【従来の技術】例えば、アモルファスシリコン太陽電池
のような薄膜太陽電池の製造過程において、その性能を
著しく損なう電気的短絡箇所あるいはそれに近い箇所を
検出することは、その部分を修復し、係る太陽電池製造
工程の歩留まりを飛躍的に向上させて製造コスト低減に
大きく寄与すると期待される。したがって、このような
欠陥検出除去技術は非常に重要な技術である。
2. Description of the Related Art For example, in the process of manufacturing a thin film solar cell such as an amorphous silicon solar cell, it is necessary to detect an electrically short-circuited portion or a portion close to the electrically short-circuited portion which remarkably impairs the performance of the solar cell. It is expected that the yield of the manufacturing process will be dramatically improved and the manufacturing cost will be greatly reduced. Therefore, such a defect detection and removal technique is a very important technique.

【0003】上述のような欠陥検出修復手段としては、
薄膜太陽電池の欠陥を検出する装置と検出した欠陥を除
去する装置とが必要である。従来、薄膜太陽電池の欠陥
検出方法としては、薄膜太陽電池に例えばHe−Neレー
ザーのようなレーザー光の微小スポット(〜数百ミクロ
ン)を薄膜太陽電池面内でスキャンして、発生した光電
流の面内分布を検出する方法がある(特公平5−518
7公報)。また、従来より、集積回路の分野において
は、欠陥検出に熱画像処理技術が用いられている。
As the above-mentioned defect detecting and repairing means,
There is a need for a device for detecting defects in thin film solar cells and a device for removing the detected defects. Conventionally, as a defect detection method for a thin film solar cell, a photocurrent generated by scanning a small spot (up to several hundreds of microns) of laser light such as a He-Ne laser on the thin film solar cell in the surface of the thin film solar cell. There is a method to detect the in-plane distribution of
7 gazette). Further, conventionally, in the field of integrated circuits, thermal image processing technology has been used for defect detection.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記レ
ーザースキャン法による場合には以下のような問題があ
る。すなわち、従来のレーザースキャン法においては、
サブモジュールの大きさが例えば30cm角さらには40
cm×120cmのような長尺の太陽電池の欠陥を検出する
際には長時間を要することは明白である。すなわち、例
えば、100ミクロンのスポットで30cmを1スキャン
するのに10秒を要するとすると、10mm幅の面内分布
を検出するのさえ10秒×100=1000秒かかる計
算になる。したがって、さらに検出精度を上げるために
スポット径を小さくすれば、一層長時間を要することに
なる。
However, the laser scanning method has the following problems. That is, in the conventional laser scanning method,
The size of the submodule is, for example, 30 cm square or even 40
Obviously, it takes a long time to detect a defect in a long solar cell such as cm × 120 cm. That is, for example, if it takes 10 seconds to scan 30 cm with a spot of 100 μm, it takes 10 seconds × 100 = 1000 seconds to detect an in-plane distribution of 10 mm width. Therefore, if the spot diameter is made smaller in order to further improve the detection accuracy, it will take a longer time.

【0005】そこで、上記熱画像測定を用いれば、少な
くとも検出時間に関する問題は解消される。ところが、
上記熱画像測定を用いる方法には以下のような問題があ
る。すなわち、薄膜太陽電池の光入射側として透明絶縁
性基板側が用いられることが多い。これに対して、裏面
側は、通常、赤外線放射性の低い金属膜の電極で覆われ
ている。したがって、集積回路技術において用いられて
いる熱画像測定によって薄膜太陽電池の欠陥位置を検出
する場合には、透明絶縁性基板側から検出を行うと熱画
像測定での面内温度分布が大きく(発明者の測定によれ
ば〜300ミクロン径の高温部を検出した(図6参照))
検出位置精度が悪くなる。逆に、裏面電極側から検出し
ようとすると、金属膜で覆われているために赤外線放射
性が低く、検出できないのである。尚、上記裏面電極側
からの熱画像測定によって精度よく欠陥位置を特定する
ためには、裏面電極側の赤外線放射率を、波長1μm〜
20μm(望ましくは、3μm〜5μmの波長帯及び8μm
〜13μmの波長帯)の光に対してその放射率(つまり吸
収率)が5%以上(望ましくは、50%以上)にする必要
がある。
Therefore, if the above-mentioned thermal image measurement is used, at least the problem concerning the detection time is solved. However,
The method using the thermal image measurement has the following problems. That is, the transparent insulating substrate side is often used as the light incident side of the thin film solar cell. On the other hand, the back surface side is usually covered with an electrode of a metal film having low infrared radiation. Therefore, when detecting the defect position of the thin-film solar cell by the thermal image measurement used in integrated circuit technology, if the detection is performed from the transparent insulating substrate side, the in-plane temperature distribution in the thermal image measurement becomes large (invention According to a person's measurement, a high temperature part having a diameter of ~ 300 microns was detected (see Fig. 6).
The detection position accuracy deteriorates. On the other hand, when it is attempted to detect from the back electrode side, the infrared radiation property is low because it is covered with the metal film, and it cannot be detected. In order to identify the defect position with high accuracy by measuring the thermal image from the back electrode side, the infrared emissivity on the back electrode side is set to a wavelength of 1 μm to
20 μm (preferably 3 μm to 5 μm wavelength band and 8 μm
The emissivity (that is, absorptance) of light in the wavelength band of up to 13 μm must be 5% or more (desirably 50% or more).

【0006】そこで、この発明の目的は、裏面電極側が
高い赤外線放射性を有する薄膜太陽電池、熱画像測定に
よって精度よく電気的短絡欠陥を検出できる薄膜太陽電
池の欠陥検出除去方法、および、その方法を用いた薄膜
太陽電池の欠陥検出除去装置を提供することにある。
Therefore, an object of the present invention is to provide a thin film solar cell having high infrared radiation on the back electrode side, a method for detecting and removing defects in a thin film solar cell capable of accurately detecting an electrical short circuit defect by thermal image measurement, and a method therefor. An object of the present invention is to provide a defect detection and removal device for a thin film solar cell used.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、透明絶縁性基板上に透明導
電性膜,半導体接合層及び裏面電極を順次積層して成る
薄膜太陽電池において、上記裏面電極上に赤外線放射率
が所定値より高い薄膜を形成したことを特徴としてい
る。
In order to achieve the above object, the invention according to claim 1 is a thin film solar cell comprising a transparent insulating substrate, a transparent conductive film, a semiconductor bonding layer, and a back electrode which are sequentially laminated. In the above, a thin film having an infrared emissivity higher than a predetermined value is formed on the back electrode.

【0008】また、請求項2に係る発明は、請求項1に
係る発明の薄膜太陽電池において、上記赤外線放射率が
所定値より高い薄膜はSiO2薄膜であることを特徴とし
ている。
The invention according to claim 2 is characterized in that, in the thin film solar cell of the invention according to claim 1, the thin film having an infrared emissivity higher than a predetermined value is a SiO 2 thin film.

【0009】また、請求項3に係る発明は、薄膜太陽電
池に順方向に電流を流して上記薄膜太陽電池の面内温度
分布を測定することによって,薄膜太陽電池における電
気的短絡欠陥を検出する薄膜太陽電池の欠陥検出方法に
おいて、上記薄膜太陽電池として、請求項1あるいは請
求項2に記載の薄膜太陽電池,または,裏面電極上を赤外
線放射率が所定値より高い物質で被覆した薄膜太陽電池
を用い、上記薄膜太陽電池の面内温度分布は裏面電極側
から測定することを特徴としている。
The invention according to claim 3 detects an electrical short-circuit defect in the thin film solar cell by applying a current in the forward direction to the thin film solar cell and measuring the in-plane temperature distribution of the thin film solar cell. A thin film solar cell defect detection method, wherein the thin film solar cell is the thin film solar cell according to claim 1 or claim 2, or a thin film solar cell in which a back electrode is coated with a substance having an infrared emissivity higher than a predetermined value. The in-plane temperature distribution of the thin film solar cell is measured from the back electrode side.

【0010】また、請求項4に係る発明は、請求項3に
係る発明の薄膜太陽電池の欠陥検出方法において、上記
裏面電極上を赤外線放射率が所定値より高い物質で被覆
した薄膜太陽電池は,薄膜太陽電池の裏面電極上に赤外
線放射率が所定値より高い物質のフィルムを貼り付けて
成る薄膜太陽電池であることを特徴としている。
The invention according to claim 4 is the method for detecting a defect of a thin film solar cell according to the invention according to claim 3, wherein the back electrode is coated with a substance having an infrared emissivity higher than a predetermined value. The thin-film solar cell is characterized in that a film of a substance having an infrared emissivity higher than a predetermined value is attached on the back electrode of the thin-film solar cell.

【0011】また、請求項5に係る発明は、請求項3に
係る発明の薄膜太陽電池の欠陥検出方法において、上記
裏面電極上を赤外線放射率が所定値より高い物質で被覆
した薄膜太陽電池は,薄膜太陽電池の裏面電極上に赤外
線放射率が所定値より高い流体物質を塗布して成る薄膜
太陽電池であることを特徴としている。
According to a fifth aspect of the present invention, in the defect detecting method for a thin film solar cell according to the third aspect of the invention, the thin film solar cell in which the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value is The thin film solar cell is characterized by being coated with a fluid substance having an infrared emissivity higher than a predetermined value on the back electrode of the thin film solar cell.

【0012】また、請求項6に係る発明は、請求項1あ
るいは請求項2に記載の薄膜太陽電池,または,裏面電極
上を赤外線放射率が所定値より高い物質で被覆した薄膜
太陽電池が載置されて,この載置された薄膜太陽電池を
X軸あるいはY軸方向に移動させるXYステージと、上
記XYステージ上に載置された薄膜太陽電池に順方向に
電流を流す電流供給手段と、上記XYステージ上に載置
された薄膜太陽電池の面内温度分布を裏面電極側から測
定する温度測定手段と、上記温度測定手段によって測定
された面内温度分布から薄膜太陽電池における電気的短
絡欠陥位置の座標を算出する欠陥座標算出手段と、上記
XYステージ上に載置された薄膜太陽電池における電気
的短絡欠陥を除去する欠陥除去手段と、上記XYステー
ジ,電流供給手段,温度測定手段および欠陥座標算出手段
を制御して薄膜太陽電池の電気的短絡欠陥位置の座標を
求め,この座標に基づいて,上記XYステージおよび欠陥
除去手段を制御して薄膜太陽電池の電気的短絡欠陥を除
去する制御手段を備えたことを特徴としている。
The invention according to claim 6 is the thin film solar cell according to claim 1 or 2, or the thin film solar cell in which the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value. An XY stage that is placed to move the placed thin film solar cell in the X-axis or Y-axis direction, and a current supply unit that causes a current to flow forward in the thin film solar cell placed on the XY stage, Temperature measuring means for measuring the in-plane temperature distribution of the thin film solar cell mounted on the XY stage from the back electrode side, and electrical short circuit defects in the thin film solar cell from the in-plane temperature distribution measured by the temperature measuring means. Defect coordinate calculation means for calculating position coordinates, defect removal means for removing electrical short-circuit defects in the thin film solar cell mounted on the XY stage, XY stage, current supply means, temperature The measuring means and the defect coordinate calculating means are controlled to obtain the coordinates of the position of the electrical short-circuit defect of the thin-film solar cell, and the XY stage and the defect removing means are controlled based on this coordinate to control the electrical short-circuit defect of the thin-film solar cell. It is characterized in that a control means for removing is provided.

【0013】[0013]

【作用】請求項1および請求項2に係る発明では、透明
絶縁性基板上に透明導電性膜,半導体接合層および裏面
電極を順次積層して成る薄膜太陽電池における上記裏面
電極上に、赤外線放射率が所定値より高い薄膜が形成さ
れている。したがって、上記薄膜太陽電池の面内温度分
布を上記裏面電極側から計測することが可能となり、上
記面内温度分布に基づいて上記薄膜太陽電池の電気的短
絡欠陥の位置が精度よく特定される。
In the invention according to claim 1 and claim 2, infrared radiation is radiated onto the back electrode of the thin film solar cell in which a transparent conductive film, a semiconductor bonding layer and a back electrode are sequentially laminated on a transparent insulating substrate. A thin film having a rate higher than a predetermined value is formed. Therefore, the in-plane temperature distribution of the thin-film solar cell can be measured from the back electrode side, and the position of the electrical short-circuit defect of the thin-film solar cell can be accurately specified based on the in-plane temperature distribution.

【0014】また、請求項3に係る発明では、請求項1
あるいは請求項2に記載の薄膜太陽電池または裏面電極
上を赤外線放射率が所定値より高い物質で被覆した薄膜
太陽電池に順方向に電流が流されて、上記薄膜太陽電池
の面内温度分布が上記裏面電極側から測定される。こう
して、上記薄膜太陽電池に電流が流された際の発熱の中
心位置が精度よく検出されて特定され、電気的短絡欠陥
位置が精度よく検出される。
In the invention according to claim 3, claim 1
Alternatively, an in-plane temperature distribution of the thin film solar cell according to claim 2 is applied to the thin film solar cell in which the infrared ray emissivity is higher than a predetermined value to coat a thin film solar cell on the back electrode with a material in the forward direction. It is measured from the back electrode side. In this way, the center position of heat generation when current is applied to the thin-film solar cell is accurately detected and specified, and the electrical short-circuit defect position is accurately detected.

【0015】また、請求項4に係る発明では、上記裏面
電極上を赤外線放射率が所定値より高い物質で被覆した
薄膜太陽電池は、薄膜太陽電池の裏面電極上に赤外線放
射率が所定値より高い物質のフィルムを貼り付けること
によって容易に得られる。こうして、薄膜太陽電池の電
気的短絡欠陥位置の検出が更に容易に実行される。
In the invention according to claim 4, the thin-film solar cell in which the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value has the infrared emissivity above the predetermined value on the back surface electrode of the thin-film solar cell. It is easily obtained by sticking a film of high material. In this way, the detection of the electrical short circuit defect position of the thin-film solar cell is more easily performed.

【0016】また、請求項5に係る発明では、上記裏面
電極上を赤外線放射率が所定値より高い物質で被覆した
薄膜太陽電池は、薄膜太陽電池の裏面電極上に赤外線放
射率が所定値より高い流体物質を塗布することによって
容易に得られる。こうして、薄膜太陽電池の電気的短絡
欠陥位置の検出が更に容易に実行される。
In the invention according to claim 5, the thin-film solar cell in which the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value has the infrared emissivity above the predetermined value on the back surface electrode of the thin-film solar cell. It is easily obtained by applying a high fluid substance. In this way, the detection of the electrical short circuit defect position of the thin-film solar cell is more easily performed.

【0017】また、請求項6に係る発明では、制御手段
によってXYステージ,電流供給手段,温度測定手段およ
び欠陥座標算出手段が制御されて、以下のようにして、
請求項1あるいは請求項2に記載の薄膜太陽電池または
裏面電極上を赤外線放射率が所定値より高い物質で被覆
した薄膜太陽電池における電気的短絡欠陥位置の座標が
求められる。すなわち、上記XYステージ上に載置され
た薄膜太陽電池に電流供給手段によって順方向に電流が
流され、XYステージが移動されて上記薄膜太陽電池の
面内温度分布が温度測定手段によって裏面電極側から測
定される。そして、欠陥座標算出手段によって、上記薄
膜太陽電池の面内温度分布からこの薄膜太陽電池におけ
る電気的短絡欠陥位置の座標が算出される。そうした
後、上記制御手段によって、上記算出座標に基づいて、
上記XYステージおよび欠陥除去手段が制御されて、上
記薄膜太陽電池における電気的短絡欠陥が除去される。
こうして、上記薄膜太陽電池に対する電気的短絡欠陥の
検出と検出された欠陥の除去とが行われる。
Further, in the invention according to claim 6, the control means controls the XY stage, the current supply means, the temperature measuring means and the defect coordinate calculating means, and
The coordinates of the electrical short-circuit defect position in the thin film solar cell according to claim 1 or the thin film solar cell in which the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value are obtained. That is, a current is supplied in the forward direction to the thin film solar cell mounted on the XY stage by the current supply means, the XY stage is moved, and the in-plane temperature distribution of the thin film solar cell is measured by the temperature measuring means on the back electrode side. Measured from. Then, the coordinate of the electrical short circuit defect position in the thin film solar cell is calculated by the defect coordinate calculating means from the in-plane temperature distribution of the thin film solar cell. After that, by the control means, based on the calculated coordinates,
The XY stage and the defect removing means are controlled to remove the electrical short circuit defect in the thin film solar cell.
In this way, detection of an electrical short circuit defect and removal of the detected defect are performed on the thin film solar cell.

【0018】[0018]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。 <第1実施例>本実施例は、裏面電極側が高い赤外線放
射性を有する薄膜太陽電池に関する。図1は本実施例に
よって得られる薄膜太陽電池の断面図であり、図2はそ
の際に用いる薄膜太陽電池のセル構造を示す。図2にお
いて、この薄膜太陽電池セルは、ガラス等の透明絶縁性
基板1上に透明電極としての透明導電性膜2が積層され
ており、その透明導電性膜2の面に平行なPIN接合ま
たはそのタンデム構造等を成す多重接合の半導体接合層
3が形成され、更に、その上に裏面電極(例えば、Au,
Ag,Al,Ti等)4が積層されている。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. <First Example> This example relates to a thin film solar cell having a high infrared emissivity on the back electrode side. FIG. 1 is a cross-sectional view of a thin film solar cell obtained in this example, and FIG. 2 shows a cell structure of the thin film solar cell used at that time. In this thin film solar cell, a transparent conductive film 2 as a transparent electrode is laminated on a transparent insulating substrate 1 such as glass, and a PIN junction parallel to the surface of the transparent conductive film 2 or A multi-junction semiconductor junction layer 3 having the tandem structure or the like is formed, and a back electrode (for example, Au,
(Ag, Al, Ti, etc.) 4 are laminated.

【0019】本実施例においては、上記構成を有する薄
膜太陽電池セルを用いて、以下のようにして、裏面電極
4側の赤外線放射率が波長1μm〜20μm(望ましく
は、3μm〜5μmの波長帯及び8μm〜13μmの波長
帯)の光に対してその放射率が5%以上(望ましくは、5
0%以上)を呈する薄膜太陽電池を得るのである。すな
わち、上記薄膜太陽電池セルをスパッタ装置内に設置
し、真空ポンプで2×10-6Torrまで排気した後、基
板温度を200℃まで昇温する。その後、Arガスを6
0sccmでチャンバー内に導入して圧力を5×10-6Tor
rに調整する。次に、1KWの高周波パワーをかけてSi
2ターゲットを14分間スパッタし、100nmの膜厚
を有するSiO2膜5を形成する。こうして、図1に示す
ような構造の薄膜太陽電池が得られる。但し、上記Si
2膜5は絶縁物であるので、SiO2膜5を形成するに
際して予め裏面電極4から端子を引き出しておく必要が
ある。
In this embodiment, the infrared emissivity on the back electrode 4 side is used in the wavelength range of 1 μm to 20 μm (desirably in the wavelength band of 3 μm to 5 μm) by using the thin film solar cell having the above-mentioned structure as follows. And the emissivity is 5% or more (desirably 5) for light in the wavelength band of 8 μm to 13 μm).
A thin film solar cell exhibiting 0% or more) is obtained. That is, the thin-film solar battery cell is installed in a sputtering apparatus, exhausted to 2 × 10 −6 Torr by a vacuum pump, and then the substrate temperature is raised to 200 ° C. After that, 6 Ar gas
It is introduced into the chamber at 0 sccm and the pressure is 5 × 10 -6 Tor.
Adjust to r. Next, apply high frequency power of 1 kW to Si
An O 2 target is sputtered for 14 minutes to form a SiO 2 film 5 having a film thickness of 100 nm. Thus, a thin film solar cell having a structure as shown in FIG. 1 is obtained. However, the above Si
Since the O 2 film 5 is an insulator, it is necessary to draw the terminal from the back surface electrode 4 in advance when forming the SiO 2 film 5.

【0020】上述のように、本実施例における薄膜太陽
電池は、その裏面電極4上に赤外線放射率が波長9μm
の赤外光に対して80%以上であるSiO2膜5を形成し
ている。したがって、この薄膜太陽電池に電気的短絡欠
陥がある場合には、当該薄膜太陽電池に順方向に電流を
流して裏面電極4側から熱画像測定を行った際には、電
気的短絡欠陥位置を精度よく特定できる大きさの面内温
度分布を得ることができ、容易に且つ精度よく欠陥検出
を行うことが可能となる。したがって、本実施例によれ
ば、薄膜太陽電池の歩留りを飛躍的に向上できるのであ
る。
As described above, the thin-film solar cell in this embodiment has an infrared emissivity of 9 μm at the wavelength of 9 μm on the back electrode 4.
80% or more of the infrared light of the SiO 2 film 5 is formed. Therefore, when this thin-film solar cell has an electrical short-circuit defect, when an electric current is passed through the thin-film solar cell in the forward direction and thermal image measurement is performed from the back electrode 4 side, the position of the electrical short-circuit defect is determined. It is possible to obtain an in-plane temperature distribution of a size that can be accurately specified, and it is possible to easily and accurately detect defects. Therefore, according to this embodiment, the yield of the thin film solar cell can be dramatically improved.

【0021】上述のようにして検出された電気的短絡欠
陥部分は、レーザーで蒸発させることによって容易に取
り除くことができる。ところが、その際に、あまりSi
2膜5の膜厚が薄すぎると上記欠陥部分を除去するこ
とができない。そこで、最適なSiO2膜5の膜厚として
は1ミクロン以下、望ましくは200nm以下である必要
がある。また、本実施例においては高い赤外線放射性を
有する膜としてSiO2膜5を用いたが、SiN膜を用い
ても同様の効果が得られる。
The electric short circuit defect portion detected as described above can be easily removed by laser evaporation. However, at that time, too much Si
If the O 2 film 5 is too thin, the defective portion cannot be removed. Therefore, the optimum thickness of the SiO 2 film 5 should be 1 micron or less, preferably 200 nm or less. Further, in this embodiment, the SiO 2 film 5 is used as the film having a high infrared radiation property, but the same effect can be obtained by using the SiN film.

【0022】<第2実施例>本実施例は、熱画像測定に
よって精度良く電気的短絡欠陥を検出できる薄膜太陽電
池の欠陥検出除去方法に関する。第1実施例において
は、アモルファスシリコン薄膜太陽電池のような従来か
らある薄膜太陽電池の裏面電極4上に赤外線放射率が波
長9μmの赤外光に対して80%以上であるSiO2膜5
を形成することによって裏面電極4側の赤外線放射性を
高め、裏面電極4側からの熱画像測定によって電気的短
絡欠陥の検出を可能ならしめる薄膜太陽電池を得てい
る。このことは、従来からあるアモルファスシリコン薄
膜太陽電池等の裏面電極上を赤外線放射率の高い物質で
被覆することによって、上記裏面電極側の赤外線放射率
を波長1μm〜20μm(望ましくは、3μm〜5μmの波
長帯及び8μm〜13μmの波長帯)の光に対してその放
射率が5%以上(望ましくは、50%以上)にして、電気
的短絡欠陥を赤外線検出装置で捕らえることが可能であ
ることを示唆する。
<Second Embodiment> This embodiment relates to a defect detecting and removing method for a thin film solar cell capable of accurately detecting an electrical short circuit defect by measuring a thermal image. In the first embodiment, a SiO 2 film 5 having an infrared emissivity of 80% or more for infrared light having a wavelength of 9 μm is formed on the back electrode 4 of a conventional thin film solar cell such as an amorphous silicon thin film solar cell.
To obtain infrared thin film solar cells that enhance infrared radiation on the back electrode 4 side and enable detection of electrical short-circuit defects by thermal image measurement from the back electrode 4 side. This means that by coating the back electrode of a conventional amorphous silicon thin-film solar cell or the like with a substance having a high infrared emissivity, the infrared emissivity on the back electrode side is wavelength 1 μm to 20 μm (desirably 3 μm to 5 μm). The infrared detection device should be able to detect electrical short-circuit defects by setting its emissivity to 5% or more (desirably 50% or more) for light in the wavelength band of 8 μm to 8 μm to 13 μm). Suggest.

【0023】そこで、本実施例においては、図2に示す
ごとく、透明絶縁性基板1,透明導電性膜2,半導体接合
層3および裏面電極4が積層されて成る薄膜太陽電池セ
ルの電気的短絡欠陥を赤外線検出装置で検出する際に、
裏面電極4に、赤外線放射率が波長4μmの赤外光に対
して80%以上のカプトン(ポリイミド)あるいはテフロ
ン等のフィルムを貼り付けたり、赤外線放射率が波長4
μmの赤外光に対して80%以上の物質(例えば、シリコ
ン樹脂,アクリル樹脂,アルキド樹脂)を塗布するのであ
る。
Therefore, in the present embodiment, as shown in FIG. 2, an electrical short circuit of a thin film solar cell in which a transparent insulating substrate 1, a transparent conductive film 2, a semiconductor bonding layer 3 and a back electrode 4 are laminated. When detecting defects with an infrared detector,
A film such as Kapton (polyimide) or Teflon having an infrared emissivity of 80% or more for infrared light having a wavelength of 4 μm is attached to the back electrode 4, or the infrared emissivity has a wavelength of 4
80% or more of a substance (for example, silicone resin, acrylic resin, alkyd resin) is applied to the infrared light of μm.

【0024】上述のように、上記裏面電極4上に貼り付
けられた赤外線放射性の高いフィルムや塗布された赤外
線放射性の高い物質は、欠陥除去の際には取り除く必要
がある。したがって、工数がふえると考えられるが、赤
外線検出装置による検出によって電気的短絡欠陥がある
と判定された薄膜太陽電池に対してのみ実施すれば良い
ので大きな問題はない。
As described above, it is necessary to remove the film having a high infrared emission property and the substance having a high infrared emission property applied on the back electrode 4 when removing defects. Therefore, it is considered that the number of man-hours is increased, but there is no big problem because it may be performed only for the thin-film solar cell determined to have the electrical short circuit defect by the detection by the infrared detection device.

【0025】実際の電気的短絡欠陥の検出は次のように
して行う。上述のように、裏面電極4上に高赤外線放射
性フィルムを貼り付けたり高赤外線放射性の物質を塗布
した通常の薄膜太陽電池に対して、順方向に〜100m
Aの電流を瞬間的に流すと同時に、熱画像測定装置を用
いて裏面電極4側から薄膜太陽電池の面内温度分布を測
定する。そうすると、上記電気的短絡部分には電流が多
く流れるために短絡部分に熱が発生し、その部分を中心
に面内温度分布が生ずる。図3はこうして得られた面内
温度分布の測定結果の一例を示し、円形の温度分布(イ)
における中心の位置に電気的短絡欠陥が存在するのであ
る。
The actual detection of the electrical short circuit defect is performed as follows. As described above, a normal thin film solar cell in which a high-infrared radiation film is attached to the back electrode 4 or a high-infrared radiation substance is applied to the back electrode 4 is about 100 m in the forward direction.
At the same time when the current A is instantaneously applied, the in-plane temperature distribution of the thin film solar cell is measured from the back electrode 4 side using a thermal image measuring device. Then, a large amount of current flows in the electrically short-circuited portion, so heat is generated in the short-circuited portion, and an in-plane temperature distribution is generated around that portion. Fig. 3 shows an example of the measurement results of the in-plane temperature distribution obtained in this way. The circular temperature distribution (a)
There is an electrical short-circuit defect at the center of.

【0026】その際に、上記透明絶縁性基板1を有する
光入射側からの熱画像測定によって得られる面内温度分
布(図6参照)よりも小さい径であって、電気的短絡欠陥
位置を精度よく特定できる程度の大きさの面内温度分布
が得られる。したがって、高精度で且つ簡単に薄膜太陽
電池セルの電気的短絡欠陥を検出できるのである。
At that time, the diameter is smaller than the in-plane temperature distribution (see FIG. 6) obtained by the thermal image measurement from the light incident side having the transparent insulating substrate 1, and the position of the electrical short circuit defect is accurately determined. An in-plane temperature distribution of a size that can be well specified can be obtained. Therefore, the electrical short-circuit defect of the thin-film solar battery cell can be detected with high accuracy and easily.

【0027】尚、本実施例においては、上記裏面電極4
に赤外線放射性の高いフィルムを貼り付けたり赤外線放
射性の高い物質を塗布したりした薄膜太陽電池に対する
電気的短絡欠陥の検出方法について述べている。しかし
ながら、本実施例は、第1実施例によって形成された薄
膜太陽電池に対しても適用可能である。
In this embodiment, the back surface electrode 4 is used.
Describes a method for detecting electrical short-circuit defects in a thin film solar cell in which a film having high infrared radiation is attached or a substance having high infrared radiation is applied. However, this embodiment is also applicable to the thin film solar cell formed according to the first embodiment.

【0028】<第3実施例>本実施例は、熱画像測定結
果に基づいて精度良く電気的短絡欠陥を検出・除去でき
る薄膜太陽電池の欠陥検出除去装置に関する。本実施例
が適用される薄膜太陽電池としては、第1実施例によっ
て形成された裏面電極上に赤外線放射率が波長9μmの
赤外光に対して80%より高い膜を形成した薄膜太陽電
池セル、あるいは、第2実施例における通常の薄膜太陽
電池セルの裏面電極に波長4μm以上の赤外光に対して
80%以上の赤外線放射率を呈するフィルムを貼り付け
たり波長4μm以上の赤外光に対して80%以上の赤外
線放射率を呈する物質を塗布したものを使用する。
<Third Embodiment> This embodiment relates to a defect detecting and removing apparatus for a thin film solar cell capable of accurately detecting and removing an electrical short-circuit defect based on a thermal image measurement result. As a thin film solar cell to which this embodiment is applied, a thin film solar battery cell in which a film having an infrared emissivity higher than 80% for infrared light having a wavelength of 9 μm is formed on the back electrode formed according to the first embodiment. Alternatively, a film having an infrared emissivity of 80% or more with respect to infrared light having a wavelength of 4 μm or more is attached to the back electrode of the ordinary thin-film solar cell in the second embodiment, or the infrared light having a wavelength of 4 μm or more is applied. On the other hand, a material coated with a substance exhibiting an infrared emissivity of 80% or more is used.

【0029】図4は、本実施例における薄膜太陽電池の
欠陥検出除去装置における斜視図である。この薄膜太陽
電池の欠陥検出除去装置は、欠陥検出の対象となる薄膜
太陽電池12が載置されるXYステージ11、通電され
た薄膜太陽電池12からの赤外線を検出する熱画像測定
部13、検出された電気的短絡欠陥を除去するためのパ
ルスレーザー14、および、電源,記憶手段,欠陥座標算
出手段および制御手段等を有して各部の動作を制御する
制御部15から概略構成される。
FIG. 4 is a perspective view of a defect detecting and removing apparatus for a thin film solar cell according to this embodiment. This thin film solar cell defect detection / removal device includes an XY stage 11 on which a thin film solar cell 12 that is a target of defect detection is mounted, a thermal image measurement unit 13 that detects infrared rays from the energized thin film solar cell 12, and detection. A pulse laser 14 for removing the generated electrical short circuit defect, and a control unit 15 having a power supply, a storage unit, a defect coordinate calculation unit, a control unit and the like to control the operation of each unit are roughly configured.

【0030】上記構成の薄膜太陽電池の欠陥検出除去装
置は、次のようにして電気的短絡欠陥の検出と除去を行
う。すなわち、上述のように裏面電極側が高赤外線放射
性の物質で覆われた薄膜太陽電池12を、高赤外線放射
性の物質側を下にしてXYステージ11上に載置する。
そして、上記XYステージ11を駆動して、薄膜太陽電
池の一番端が熱画像測定部13の検出範囲に入る位置に
薄膜太陽電池12を移動し、制御部15の制御手段によ
る制御の下に欠陥検出を開始する。そして、当該薄膜太
陽電池12の透明導電性膜と裏面電極とに制御部15の
電源からの電流を供給する。その際の電源は直流電源で
よく、100mA程度の電流を瞬間的に流せる程度の容
量があればよい。
The thin-film solar cell defect detection and removal device configured as described above detects and removes electrical short-circuit defects in the following manner. That is, as described above, the thin film solar cell 12 whose back electrode side is covered with the substance emitting high infrared radiation is placed on the XY stage 11 with the substance side emitting high infrared radiation facing down.
Then, the XY stage 11 is driven to move the thin film solar cell 12 to a position where the outermost end of the thin film solar cell falls within the detection range of the thermal image measuring unit 13, and under the control of the control means of the control unit 15. Start defect detection. Then, a current from the power supply of the control unit 15 is supplied to the transparent conductive film and the back surface electrode of the thin film solar cell 12. In this case, the power supply may be a DC power supply, and may have a capacity such that a current of about 100 mA can be instantaneously passed.

【0031】上述のように上記薄膜太陽電池12の透明
導電性膜と裏面電極とに順方向に〜100mAの電流を
瞬間的に流すと同時に、熱画像測定部13によって薄膜
太陽電池12の面内温度分布を測定する。その際に、熱
画像測定部13は裏面電極側から薄膜太陽電池12の面
内温度分布を測定するので、第2実施例で述べたごとく
薄膜太陽電池12の電気的短絡欠陥を高精度に検出でき
るのである。ここで、上記薄膜太陽電池が30cm角ある
いはそれ以上の長尺物である場合には、熱画像測定部1
3の光学レンズ系として視野角の異なる光学レンズ系を
用いる。そして、広視野角のレンズによって薄膜太陽電
池全体の熱画像を測定して、粗い位置精度で電気的短絡
欠陥を検出する。以下、順次視野角を狭めて最終的に百
ミクロン以下の精度で検出できる視野角(数十mm〜数百m
m角)のレンズ系で熱画像を測定して、十分な位置精度で
電気的短絡欠陥箇所を特定する。
As described above, a current of up to 100 mA is momentarily applied to the transparent conductive film and the back electrode of the thin film solar cell 12 in the forward direction, and at the same time, the thermal image measurement unit 13 causes the in-plane surface of the thin film solar cell 12 to move. Measure the temperature distribution. At that time, since the thermal image measuring unit 13 measures the in-plane temperature distribution of the thin film solar cell 12 from the back electrode side, the electrical short circuit defect of the thin film solar cell 12 is detected with high accuracy as described in the second embodiment. You can do it. Here, when the thin film solar cell is a long product of 30 cm square or more, the thermal image measuring unit 1
Optical lens systems having different viewing angles are used as the third optical lens system. Then, a thermal image of the entire thin-film solar cell is measured with a lens having a wide viewing angle, and an electrical short-circuit defect is detected with rough positional accuracy. In the following, the viewing angle can be narrowed sequentially and finally can be detected with an accuracy of 100 microns or less (tens of mm to several hundred m
Measure the thermal image with the m-square lens system and identify the electrical short circuit defect location with sufficient positional accuracy.

【0032】例えば、30cm角程度の薄膜太陽電池であ
れば、上述の視野角変化ステップは3段回が適当であ
り、各段階での熱画像測定には数秒で済むから、従来の
レーザースキャン法に比較して桁違いに検出速度の向上
を図ることができる。しかしながら、1段目の視野角の
レンズによって薄膜太陽電池全体の熱画像を測定するに
は薄膜太陽電池12と熱画像測定部13との距離を大き
く取る必要がある。そこで、1段目の視野角は10cm〜
15cm角程度に狭くして、XYステージ11を移動する
ようにしてもよい。上記熱画像測定部13によって検出
された電気的短絡欠陥位置の座標が上記制御部15内の
上記欠陥座標算出手段によって算出され、算出結果が上
記記憶手段に記憶される。尚、この欠陥座標算出手段お
よび上記制御手段はコンピュータによって構成される。
For example, in the case of a thin film solar cell of about 30 cm square, the above-mentioned step of changing the viewing angle is appropriate to be performed in three steps, and it takes several seconds to measure the thermal image at each step. It is possible to improve the detection speed by an order of magnitude as compared with. However, in order to measure the thermal image of the whole thin film solar cell with the lens of the first stage viewing angle, it is necessary to set a large distance between the thin film solar cell 12 and the thermal image measurement unit 13. Therefore, the viewing angle of the first step is 10 cm ~
The XY stage 11 may be moved by narrowing it to about 15 cm square. The coordinates of the electrical short circuit defect position detected by the thermal image measurement unit 13 are calculated by the defect coordinate calculation means in the control unit 15, and the calculation result is stored in the storage unit. The defect coordinate calculation means and the control means are constituted by a computer.

【0033】こうして、上記薄膜太陽電池における総て
の電気的短絡欠陥座標が求められると、レーザー光によ
る欠陥除去が行われる。ここで、上記パルスレーザー1
4から水平方向に発射されたレーザー光は反射手段16
によって反射されて垂直下方に向かい、レンズ17によ
って薄膜太陽電池12上に集光されるようになってい
る。まず、上記制御部15の制御手段によって、上記記
憶手段に記憶された電気的短絡欠陥の座標に基づいてX
Yステージ11が駆動されて、薄膜太陽電池12におけ
る電気的短絡欠陥箇所が上記レーザー光の集光位置に移
動される。そして、上記制御手段によってパルスレーザ
ー14が駆動されてレーザー光が発射され、薄膜太陽電
池12の電気的短絡欠陥が除去されるのである。
Thus, when all the electrical short-circuit defect coordinates in the thin film solar cell are obtained, the defect removal by laser light is performed. Here, the pulse laser 1
Laser light emitted horizontally from the reflection means 4 is reflected by the reflection means 16
The light is reflected by the lens 17 and directed vertically downward, and is condensed on the thin film solar cell 12 by the lens 17. First, by the control means of the control unit 15, X based on the coordinates of the electrical short circuit defect stored in the storage means.
The Y stage 11 is driven to move the location of the electrical short circuit defect in the thin-film solar cell 12 to the laser beam focusing position. Then, the pulse laser 14 is driven by the control means to emit a laser beam, and the electrical short circuit defect of the thin film solar cell 12 is removed.

【0034】その際に、上記電気的短絡欠陥の除去は、
少なくとも薄膜太陽電池における裏面電極4をレーザー
光によって除去することによって行われる。本実施例で
は、パルスレーザー14としてトリミング用レーザーを
用いる。そうすることによって、すくなくとも片方の電
極毎にレーザー光で欠陥を除去できるので電気的短絡欠
陥の原因が何であれ確実に除去することができるのであ
る。特に、1ビーム毎にレーザー照射を行う場合にはパ
ルス幅が数ナノ秒と短くできるために、発生するレーザ
ーのピークパワーが通常のQ周波数発振によるYAGレ
ーザーに比べて高い。そのために、欠陥を除去した箇所
の周辺への損傷が小さいこと、また、単発毎のスポット
は十ミクロン程度に十分な精度で制御できるという利点
をもっている。尚、上記レーザー光のスポットビーム径
は、数ミクロン程度にすることが望ましい。図5に、本
実施例における薄膜太陽電池の欠陥検出除去装置によっ
て欠陥除去する前と欠陥除去した後の薄膜太陽電池の電
流/電圧特性を示す。
At this time, the removal of the electrical short circuit defect is
At least the back surface electrode 4 in the thin film solar cell is removed by laser light. In this embodiment, a trimming laser is used as the pulse laser 14. By doing so, at least one of the electrodes can be removed with a laser beam, so that whatever the cause of the electrical short circuit defect can be reliably removed. In particular, when the laser irradiation is performed for each beam, the pulse width can be shortened to several nanoseconds, and thus the peak power of the generated laser is higher than that of the YAG laser using the normal Q frequency oscillation. Therefore, there is an advantage that damage to the periphery of the portion where the defect is removed is small and the spot for each shot can be controlled with sufficient accuracy to about 10 microns. The spot beam diameter of the laser light is preferably about several microns. FIG. 5 shows current / voltage characteristics of the thin film solar cell before and after defect removal by the defect detection and removal apparatus for a thin film solar cell in this example.

【0035】上述のように、本実施例における薄膜太陽
電池の欠陥検出除去装置によれば、薄膜太陽電池におけ
る電気的短絡欠陥の箇所を検出して直ちに除去すること
ができる。また、その際における熱画像測定部13によ
って得られる面内温度分布にはぼやけがなく、電気的短
絡欠陥の位置精度が極めて高く、数十ミクロン径の高温
部として検出できる。したがって、レーザー光による欠
陥除去が確実に行われたか否かの確認も瞬時に行うこと
ができる。また、上記薄膜太陽電池12の裏面側から熱
画像測定により欠陥検出を行い、表面側からレーザー光
によって欠陥除去を行うので、効率良く欠陥除去修復が
できる。
As described above, according to the defect detecting and removing apparatus for a thin film solar cell in this embodiment, the location of an electrical short circuit defect in the thin film solar cell can be detected and immediately removed. In addition, the in-plane temperature distribution obtained by the thermal image measuring unit 13 at that time is not blurred, and the positional accuracy of the electrical short circuit defect is extremely high, and it can be detected as a high temperature portion having a diameter of several tens of microns. Therefore, it is possible to instantly confirm whether or not the defect removal by the laser light is surely performed. In addition, since defect detection is performed from the back surface side of the thin film solar cell 12 by thermal image measurement and defect removal is performed from the front surface side with laser light, defect removal and repair can be efficiently performed.

【0036】上記実施例においては、上記欠陥除去手段
としてレーザー光を用いる場合を例に説明している。し
かしながら、この発明はこれに限定されるものではな
く、例えば上記記憶手段に記憶された電気的短絡欠陥座
標に基づいて電気的短絡欠陥の箇所にマーキングを行
い、エッチングによって欠陥箇所の裏面電極4を除去す
る方法等を用いてもよい。
In the above embodiments, the case where laser light is used as the defect removing means has been described as an example. However, the present invention is not limited to this. For example, the location of the electrical short-circuit defect is marked based on the electrical short-circuit defect coordinates stored in the storage means, and the back surface electrode 4 of the defective portion is etched. You may use the method of removing etc.

【0037】上記実施例において開示されている赤外線
放射率の値は、これに限定されるものではない。要は、
薄膜太陽電池の裏面電極側における赤外線放射率を波長
1μm〜20μm(望ましくは、3μm〜5μmの波長帯及
び8μm〜13μmの波長帯)の光に対してその放射率(つ
まり吸収率)が5%以上(望ましくは、50%以上)にす
る値であればよいのである。
The infrared emissivity values disclosed in the above embodiments are not limited to these. In short,
The infrared emissivity on the back electrode side of the thin-film solar cell is 5% of the emissivity (that is, absorptivity) for light with a wavelength of 1 μm to 20 μm (desirably a wavelength band of 3 μm to 5 μm and a wavelength band of 8 μm to 13 μm). Any value may be set to the above value (preferably 50% or more).

【0038】[0038]

【発明の効果】以上より明らかなように、請求項1に係
る発明の薄膜太陽電池は、透明絶縁性基板上に透明導電
性膜,半導体接合層および裏面電極を順次積層して成る
薄膜太陽電池における上記裏面電極上に、赤外線放射率
が所定値より高い薄膜を形成したので、裏面電極側が高
い赤外線放射性を有する薄膜太陽電池を得ることができ
る。したがって、この薄膜太陽電池に電気的短絡欠陥が
ある場合には、当該薄膜太陽電池に順方向に電流を流し
て上記裏面電極側から熱画像測定を行うことによって、
電気的短絡欠陥位置を精度よく特定できる大きさの面内
温度分布を得ることができる。すなわち、この発明によ
れが、容易に且つ精度良く欠陥検出を行うことが可能な
薄膜太陽電池を提供できる。
As is apparent from the above, the thin film solar cell of the invention according to claim 1 is a thin film solar cell in which a transparent conductive film, a semiconductor bonding layer and a back electrode are sequentially laminated on a transparent insulating substrate. Since a thin film having an infrared emissivity higher than a predetermined value is formed on the back electrode in, the thin film solar cell having high infrared emissivity on the back electrode side can be obtained. Therefore, when there is an electrical short-circuit defect in this thin-film solar cell, by applying a current in the forward direction to the thin-film solar cell and performing a thermal image measurement from the back electrode side,
It is possible to obtain an in-plane temperature distribution having a size capable of accurately specifying the position of the electrical short circuit defect. That is, according to the present invention, it is possible to provide a thin-film solar cell capable of easily and accurately detecting defects.

【0039】また、請求項2に係る発明の薄膜太陽電池
は、上記赤外線放射率が所定値より高い薄膜をSiO2
形成するので、上記裏面電極上に赤外線放射率が所定値
より高い薄膜が形成された薄膜太陽電池を容易に提供で
きる。
In the thin-film solar cell of the invention according to claim 2, since the thin film having the infrared emissivity higher than a predetermined value is formed of SiO 2 , a thin film having an infrared emissivity higher than the predetermined value is formed on the back electrode. The formed thin film solar cell can be easily provided.

【0040】また、請求項3に係る発明の薄膜太陽電池
の欠陥検出方法は、薄膜太陽電池に順方向に電流を流し
て上記薄膜太陽電池の面内温度分布を測定して上記該薄
膜太陽電池における電気的短絡欠陥を検出するに際し
て、上記薄膜太陽電池として、請求項1あるいは請求項
2に記載の薄膜太陽電池または裏面電極上を赤外線放射
率が所定値より高い物質で被覆した薄膜太陽電池を用
い、上記薄膜太陽電池の面内温度分布を上記裏面電極側
から測定するので、電気的短絡欠陥箇所を精度よく特定
できる大きさの温度分布を得ることができる。したがっ
て、この発明によれが、高精度に且つ簡単に薄膜太陽電
池セルの電気的短絡欠陥を検出できる。
In the thin film solar cell defect detecting method of the present invention according to claim 3, the thin film solar cell is supplied with an electric current in a forward direction to measure an in-plane temperature distribution of the thin film solar cell, and the thin film solar cell is measured. The thin film solar cell according to claim 1 or 2, which is used as the thin film solar cell for detecting the electrical short-circuit defect in, is a thin film solar cell in which an infrared emissivity is higher than a predetermined value. Since the in-plane temperature distribution of the thin-film solar cell is measured from the back electrode side, a temperature distribution of a size that can accurately identify an electrical short circuit defect location can be obtained. Therefore, according to the present invention, the electrical short-circuit defect of the thin-film solar battery cell can be detected with high accuracy and easily.

【0041】また、請求項4に係る発明の薄膜太陽電池
の欠陥検出方法は、上記裏面電極上を赤外線放射率が所
定値より高い物質で被覆した薄膜太陽電池を薄膜太陽電
池の裏面電極上に赤外線放射率が所定値より高い物質の
フィルムを貼り付けて得るので、高精度に電気的短絡欠
陥を検出できる薄膜太陽電池の欠陥検出方法を更に容易
に実施できる。
According to a fourth aspect of the present invention, there is provided a thin film solar cell defect detection method, wherein the back electrode is coated with a substance having an infrared emissivity higher than a predetermined value. Since a film made of a material having an infrared emissivity higher than a predetermined value is attached, the defect detection method for a thin film solar cell capable of detecting an electrical short circuit defect with high accuracy can be more easily carried out.

【0042】また、請求項5に係る発明の薄膜太陽電池
の欠陥検出方法は、上記裏面電極上を赤外線放射率が所
定値より高い物質で被覆した薄膜太陽電池を薄膜太陽電
池の裏面電極上に赤外線放射率が所定値より高い流体物
質を塗布して得るので、高精度に電気的短絡欠陥を検出
できる薄膜太陽電池の欠陥検出方法を更に容易に実施で
きる。
According to a fifth aspect of the present invention, there is provided a thin film solar cell defect detecting method, wherein a thin film solar cell in which the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value is provided on the back surface electrode of the thin film solar cell. Since it is obtained by applying a fluid substance having an infrared emissivity higher than a predetermined value, it is possible to more easily implement the defect detection method for a thin film solar cell capable of detecting an electrical short circuit defect with high accuracy.

【0043】また、請求項6に係る発明の薄膜太陽電池
の欠陥検出除去装置は、XYステージ,電流供給手段,温
度測定手段,欠陥座標算出手段,欠陥除去手段及び制御手
段を有して、上記制御手段によって上記XYステージ,
電流供給手段,温度測定手段および欠陥座標算出手段を
制御して、請求項1あるいは請求項2に記載の薄膜太陽
電池または裏面電極上を赤外線放射率が所定値より高い
物質で被覆した薄膜太陽電池に順方向に電流を流し、面
内温度分布を裏面電極側から測定して上記薄膜太陽電池
の電気的短絡欠陥位置の座標を求め、さらに、この座標
に基づいて、上記制御手段によって上記XYステージ及
び欠陥除去手段を制御して上記薄膜太陽電池の電気的短
絡欠陥を除去するので、薄膜太陽電池の電気的短絡欠陥
を裏面電極側から精度よく検出し、さらに、この検出し
た欠陥を自動的に除去できる。したがって、この発明に
よれば、一台の装置で効率的且つ精度よく電気的短絡欠
陥の検出と除去とを行うことができる。
A thin film solar cell defect detecting and removing apparatus according to a sixth aspect of the present invention comprises an XY stage, a current supplying means, a temperature measuring means, a defect coordinate calculating means, a defect removing means and a control means. By the control means, the XY stage,
The thin film solar cell according to claim 1 or 2, wherein the current supplying means, the temperature measuring means, and the defect coordinate calculating means are controlled to coat the back electrode with a substance having an infrared emissivity higher than a predetermined value. A current in the forward direction to measure the in-plane temperature distribution from the back electrode side to obtain the coordinates of the position of the electrical short circuit defect of the thin film solar cell, and further, based on these coordinates, the XY stage by the control means. And, by controlling the defect removing means to remove the electrical short-circuit defect of the thin-film solar cell, the electrical short-circuit defect of the thin-film solar cell is accurately detected from the back electrode side, and the detected defect is automatically detected. Can be removed. Therefore, according to the present invention, it is possible to detect and remove electrical short-circuit defects efficiently and accurately with one device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例における薄膜太陽電池の
断面図である。
FIG. 1 is a sectional view of a thin film solar cell according to a first embodiment of the present invention.

【図2】図1の薄膜太陽電池を得る際に用いる薄膜太陽
電池セルの断面図である。
FIG. 2 is a cross-sectional view of a thin-film solar battery cell used to obtain the thin-film solar battery of FIG.

【図3】第2実施例における薄膜太陽電池の欠陥検出方
法において裏面電極側から熱画像測定装置によって測定
した面内温度分布の一例を示す図である。
FIG. 3 is a diagram showing an example of in-plane temperature distribution measured by a thermal image measuring device from the back electrode side in the defect detection method for a thin film solar cell in the second embodiment.

【図4】第3実施例における薄膜太陽電池の欠陥検出除
去装置の斜視図である。
FIG. 4 is a perspective view of a defect detection / removal device for a thin-film solar cell according to a third embodiment.

【図5】図4の薄膜太陽電池の欠陥検出除去装置による
欠陥除去前と欠陥除去後の薄膜太陽電池の電流/電流特
性図である。
5 is a current / current characteristic diagram of the thin film solar cell before and after defect removal by the defect detecting and removing apparatus for a thin film solar cell of FIG.

【図6】薄膜太陽電池の透明絶縁性基板側から熱画像測
定装置によって測定した面内温度分布の一例を示す図で
ある。
FIG. 6 is a diagram showing an example of in-plane temperature distribution measured by a thermal image measuring device from the transparent insulating substrate side of a thin film solar cell.

【符号の説明】[Explanation of symbols]

1…透明絶縁性基板、 2…透明導電性
膜、3…半導体接合層、 4…裏面電
極、5…SiO2膜、 11…XYス
テージ、12…薄膜太陽電池、 13…
熱画像測定部、14…パルスレーザー、
15…制御部。
1 ... transparent insulating substrate, 2 ... transparent conductive film, 3 ... semiconductor junction layer, 4 ... back electrode, 5 ... SiO 2 film, 11 ... XY stage, 12 ... thin film solar cell, 13 ...
Thermal image measurement unit, 14 ... Pulse laser,
15 ... Control unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宮 仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Sannomiya 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明絶縁性基板上に、透明導電性膜,半
導体接合層および裏面電極を順次積層して成る薄膜太陽
電池において、 上記裏面電極上に、赤外線放射率が所定値より高い薄膜
を形成したことを特徴とする薄膜太陽電池。
1. A thin-film solar cell comprising a transparent insulating substrate, a transparent conductive film, a semiconductor bonding layer, and a back electrode, which are sequentially laminated on the back electrode, and a thin film having an infrared emissivity higher than a predetermined value. A thin film solar cell characterized by being formed.
【請求項2】 請求項1に記載の薄膜太陽電池におい
て、 上記赤外線放射率が所定値より高い薄膜はSiO2薄膜で
あることを特徴とする薄膜太陽電池。
2. The thin film solar cell according to claim 1, wherein the thin film having the infrared emissivity higher than a predetermined value is a SiO 2 thin film.
【請求項3】 薄膜太陽電池に順方向に電流を流して上
記薄膜太陽電池の面内温度分布を測定することによっ
て、薄膜太陽電池における電気的短絡欠陥を検出する薄
膜太陽電池の欠陥検出方法において、 上記薄膜太陽電池として、請求項1あるいは請求項2に
記載の薄膜太陽電池、または、裏面電極上を赤外線放射
率が所定値より高い物質で被覆した薄膜太陽電池を用
い、 上記薄膜太陽電池の面内温度分布は、裏面電極側から測
定することを特徴とする薄膜太陽電池の欠陥検出方法。
3. A defect detecting method for a thin film solar cell, comprising detecting an electrical short circuit defect in the thin film solar cell by applying an electric current in a forward direction to the thin film solar cell and measuring an in-plane temperature distribution of the thin film solar cell. As the thin film solar cell, the thin film solar cell according to claim 1 or 2, or a thin film solar cell in which a back electrode is coated with a substance having an infrared emissivity higher than a predetermined value is used. The in-plane temperature distribution is measured from the back electrode side, which is a defect detection method for a thin film solar cell.
【請求項4】 請求項3に記載の薄膜太陽電池の欠陥検
出方法において、 上記裏面電極上を赤外線放射率が所定値より高い物質で
被覆した薄膜太陽電池は、薄膜太陽電池の裏面電極上に
赤外線放射率が所定値より高い物質のフィルムを貼り付
けて成る薄膜太陽電池であることを特徴とする薄膜太陽
電池の欠陥検出方法。
4. The thin film solar cell defect detection method according to claim 3, wherein the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value. A method for detecting defects in a thin-film solar cell, which is a thin-film solar cell formed by sticking a film of a substance having an infrared emissivity higher than a predetermined value.
【請求項5】 請求項3に記載の薄膜太陽電池の欠陥検
出方法において、 上記裏面電極上を赤外線放射率が所定値より高い物質で
被覆した薄膜太陽電池は、薄膜太陽電池の裏面電極上に
赤外線放射率が所定値より高い流体物質を塗布して成る
薄膜太陽電池であることを特徴とする薄膜太陽電池の欠
陥検出方法。
5. The thin film solar cell defect detection method according to claim 3, wherein the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value. A method for detecting defects in a thin film solar cell, which is a thin film solar cell formed by applying a fluid substance having an infrared emissivity higher than a predetermined value.
【請求項6】 請求項1あるいは請求項2に記載の薄膜
太陽電池、または、裏面電極上を赤外線放射率が所定値
より高い物質で被覆した薄膜太陽電池が載置されて、こ
の載置された薄膜太陽電池をX軸またはY軸方向に移動
させるXYステージと、 上記XYステージ上に載置された薄膜太陽電池に順方向
に電流を流す電流供給手段と、 上記XYステージ上に載置された薄膜太陽電池の面内温
度分布を上記裏面電極側から測定する温度測定手段と、 上記温度測定手段によって測定された面内温度分布から
薄膜太陽電池における電気的短絡欠陥位置の座標を算出
する欠陥座標算出手段と、 上記XYステージ上に載置された薄膜太陽電池における
電気的短絡欠陥を除去する欠陥除去手段と、 上記XYステージ,電流供給手段,温度測定手段及び欠陥
座標算出手段を制御して薄膜太陽電池の電気的短絡欠陥
位置の座標を求め、この座標に基づいて、上記XYステ
ージ及び欠陥除去手段を制御して薄膜太陽電池の電気的
短絡欠陥を除去する制御手段を備えたことを特徴とする
薄膜太陽電池の欠陥検出除去装置。
6. The thin-film solar cell according to claim 1 or 2, or the thin-film solar cell in which the back surface electrode is coated with a substance having an infrared emissivity higher than a predetermined value is mounted and mounted. And an XY stage for moving the thin-film solar cell in the X-axis or Y-axis direction, a current supply means for supplying a current in the forward direction to the thin-film solar cell mounted on the XY stage, and the XY stage mounted on the XY stage. Temperature measuring means for measuring the in-plane temperature distribution of the thin film solar cell from the back electrode side, and a defect for calculating the coordinates of the electrical short circuit defect position in the thin film solar cell from the in-plane temperature distribution measured by the temperature measuring means. Coordinate calculating means, defect removing means for removing electrical short-circuit defects in the thin film solar cell mounted on the XY stage, the XY stage, current supplying means, temperature measuring means and defects Control for calculating the electrical short-circuit defect position of the thin-film solar cell by controlling the mark calculating means, and controlling the XY stage and the defect removing means based on this coordinate to remove the electrical short-circuit defect of the thin-film solar cell. A device for detecting and removing defects in a thin-film solar cell, comprising:
JP6170730A 1994-07-22 1994-07-22 Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus Pending JPH0837317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6170730A JPH0837317A (en) 1994-07-22 1994-07-22 Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6170730A JPH0837317A (en) 1994-07-22 1994-07-22 Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus

Publications (1)

Publication Number Publication Date
JPH0837317A true JPH0837317A (en) 1996-02-06

Family

ID=15910331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6170730A Pending JPH0837317A (en) 1994-07-22 1994-07-22 Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus

Country Status (1)

Country Link
JP (1) JPH0837317A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014791A (en) * 2002-06-06 2004-01-15 Sharp Corp Regeneration method of solar cell module, and solar cell module
JP2007273933A (en) * 2006-03-31 2007-10-18 Kla-Tencor Technologies Corp Method and device for detecting and removing local shunt defects in photovoltaic field
JP2008306129A (en) * 2007-06-11 2008-12-18 Clean Venture 21 Corp Method of manufacturing photoelectric conversion device
WO2009012970A1 (en) * 2007-07-25 2009-01-29 Deutsche Cell Gmbh Apparatus and method for classifying a solar cell
JP2009032743A (en) * 2007-07-24 2009-02-12 Eko Instruments Trading Co Ltd Abnormality detecting device for photovoltaic power generation system
JP2009195968A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Laser scribing apparatus
JP2010153552A (en) * 2008-12-25 2010-07-08 Fuji Electric Systems Co Ltd Method for ground fault test of solar cell array
US20100193007A1 (en) * 2009-02-05 2010-08-05 Chun-Hsiung Lu Thin Film Solar Cell Module And Method For Repairing The Same
WO2010146698A1 (en) * 2009-06-18 2010-12-23 株式会社アルバック Solar cell manufacturing method and solar cell manufacturing device
WO2011126141A1 (en) 2010-04-09 2011-10-13 日清紡メカトロニクス株式会社 Inspection method and inspection device for solar cell
JP2014197564A (en) * 2000-12-28 2014-10-16 株式会社半導体エネルギー研究所 Method for manufacturing light-emitting device
WO2021027366A1 (en) * 2019-08-12 2021-02-18 华为技术有限公司 Method, device and system for detecting cell sheet of photovoltaic power station
CN116736184A (en) * 2023-08-15 2023-09-12 韵量燃料电池(广东)有限公司 Method and device for detecting short circuit of single cell of electric pile

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412948B2 (en) 2000-12-28 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a light emitting device and thin film forming apparatus
JP2014197564A (en) * 2000-12-28 2014-10-16 株式会社半導体エネルギー研究所 Method for manufacturing light-emitting device
US7442872B2 (en) 2002-06-06 2008-10-28 Sharp Kabushiki Kaisha Method for regenerating photovoltaic module and photovoltaic module
JP2004014791A (en) * 2002-06-06 2004-01-15 Sharp Corp Regeneration method of solar cell module, and solar cell module
US7982128B2 (en) 2002-06-06 2011-07-19 Sharp Kabushiki Kaisha Method for regenerating photovoltaic module and photovoltaic module
JP4560013B2 (en) * 2006-03-31 2010-10-13 ケーエルエー−テンカー コーポレイション Method for increasing the efficiency of photovoltaic laminates
JP2007273933A (en) * 2006-03-31 2007-10-18 Kla-Tencor Technologies Corp Method and device for detecting and removing local shunt defects in photovoltaic field
JP2008306129A (en) * 2007-06-11 2008-12-18 Clean Venture 21 Corp Method of manufacturing photoelectric conversion device
JP2009032743A (en) * 2007-07-24 2009-02-12 Eko Instruments Trading Co Ltd Abnormality detecting device for photovoltaic power generation system
WO2009012970A1 (en) * 2007-07-25 2009-01-29 Deutsche Cell Gmbh Apparatus and method for classifying a solar cell
JP2009195968A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Laser scribing apparatus
JP2010153552A (en) * 2008-12-25 2010-07-08 Fuji Electric Systems Co Ltd Method for ground fault test of solar cell array
US20100193007A1 (en) * 2009-02-05 2010-08-05 Chun-Hsiung Lu Thin Film Solar Cell Module And Method For Repairing The Same
WO2010146698A1 (en) * 2009-06-18 2010-12-23 株式会社アルバック Solar cell manufacturing method and solar cell manufacturing device
WO2011126141A1 (en) 2010-04-09 2011-10-13 日清紡メカトロニクス株式会社 Inspection method and inspection device for solar cell
JP2011222735A (en) * 2010-04-09 2011-11-04 Nisshinbo Mechatronics Inc Inspection method and inspection device for solar battery
CN103339736A (en) * 2010-04-09 2013-10-02 日清纺机电株式会社 Inspection method and inspection device for solar cell
WO2021027366A1 (en) * 2019-08-12 2021-02-18 华为技术有限公司 Method, device and system for detecting cell sheet of photovoltaic power station
CN116736184A (en) * 2023-08-15 2023-09-12 韵量燃料电池(广东)有限公司 Method and device for detecting short circuit of single cell of electric pile
CN116736184B (en) * 2023-08-15 2023-11-03 韵量燃料电池(广东)有限公司 Method and device for detecting short circuit of single cell of electric pile

Similar Documents

Publication Publication Date Title
US6455347B1 (en) Method of fabricating thin-film photovoltaic module
JPH0837317A (en) Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus
JP3436858B2 (en) Manufacturing method of thin film solar cell
KR950001305B1 (en) Method of and apparatus for cutting interconnection pattern with laser
US5296674A (en) Laser processing method for a thin-film structure
JP5202026B2 (en) Laser scribing equipment
US5418680A (en) Apparatus for repairing an electrically short-circuited semiconductor device
JP2007273933A (en) Method and device for detecting and removing local shunt defects in photovoltaic field
JP3996641B2 (en) Laser surface treatment apparatus and method
JP5071961B2 (en) Laser annealing apparatus, annealing method, and melt depth measuring apparatus
US20140256068A1 (en) Adjustable laser patterning process to form through-holes in a passivation layer for solar cell fabrication
EP0435469B1 (en) Method for laser link blowing in integrated circuit fabrication
JP3098950B2 (en) Repair device for detecting leak location of photoelectric conversion element
US7307727B2 (en) Method and apparatus for forming substrate for semiconductor or the like
Haas et al. Analysis of the laser ablation processes for thin-film silicon solar cells
Kántor et al. Dynamics of long‐pulse laser transfer of micrometer‐sized metal patterns as followed by time‐resolved measurements of reflectivity and transmittance
JP3305206B2 (en) Laser processing equipment
JP3744089B2 (en) Magnetron sputtering film forming apparatus and film forming method
US4728615A (en) Method for producing thin-film photoelectric transducer
JPS6154681A (en) Manufacture of thin-film photovoltaic element
JP2002231986A (en) Method for manufacturing integrated thin film solar battery
JPS59107579A (en) Manufacture of photoelectric conversion device
JP4078137B2 (en) How to set the laser beam pulse width
JP2002343995A (en) Integrated type thin film element and manufacturing method therefor
JP2540501B2 (en) Laser processing method