JPH0831336B2 - Anode plate for sealed lead acid battery - Google Patents

Anode plate for sealed lead acid battery

Info

Publication number
JPH0831336B2
JPH0831336B2 JP60242443A JP24244385A JPH0831336B2 JP H0831336 B2 JPH0831336 B2 JP H0831336B2 JP 60242443 A JP60242443 A JP 60242443A JP 24244385 A JP24244385 A JP 24244385A JP H0831336 B2 JPH0831336 B2 JP H0831336B2
Authority
JP
Japan
Prior art keywords
battery
active material
anode plate
discharge
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242443A
Other languages
Japanese (ja)
Other versions
JPS62103976A (en
Inventor
健介 弘中
敏 松林
朝比古 三浦
容尚 和田
他▲く▼美 早川
昭夫 小牧
敏夫 内田
庄吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60242443A priority Critical patent/JPH0831336B2/en
Publication of JPS62103976A publication Critical patent/JPS62103976A/en
Publication of JPH0831336B2 publication Critical patent/JPH0831336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉型鉛蓄電池用陽極板の特性改善、特に高
率放電特性および過放電放置特性、寿命特性の改善に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of characteristics of a positive electrode plate for a sealed lead-acid battery, particularly improvement of high rate discharge characteristics, over-discharge leaving characteristics, and life characteristics.

従来の技術 従来の密閉型鉛蓄電池用極板は鋳造もしくはエキスパ
ンド加工した格子にペーストを充填し化成工程を経て極
板としている。そのため極板内部まで活物質が充填され
ている。一方、NS40Z形鉛蓄電池(電解液を限定した密
閉型鉛蓄電池ではなく過剰の電解液を使用する自動車用
鉛蓄電池のJIS形式)用極板の格子として鉛又は鉛合金
よりなる格子体の格子骨の一部を耐熱、耐酸、耐酸化性
を有する不導電性もしくは導電性の織布又は不織布で置
き換えることにより、軽量で且つ活物質の脱落を少なく
したものがある。
2. Description of the Related Art A conventional sealed lead-acid battery electrode plate is formed by filling a paste into a grid that has been cast or expanded and then forming the electrode plate through a chemical conversion process. Therefore, the active material is filled up to the inside of the electrode plate. On the other hand, the grid bone of the grid body made of lead or lead alloy as the grid of the electrode plate for the NS40Z type lead storage battery (JIS type of lead acid battery for automobiles that uses an excess of electrolyte instead of the sealed lead storage battery with limited electrolyte) By replacing a part of the above with a non-conductive or conductive woven or non-woven fabric having heat resistance, acid resistance, and oxidation resistance, there is a material that is lightweight and has less loss of the active material.

発明が解決しようとする問題点 ところで密閉型鉛蓄電池の放電反応は陽極活物質、陰
極活物質および硫酸の反応であるが、密閉型鉛蓄電池で
は電解液が制限されているが故に、放電特性、特に電圧
特性に大きく関与するのは硫酸の拡散である。従来の極
板では極板内部まで活物質が充填されているため、放電
時内部まで硫酸の拡散が追従できず、結局極板表面での
反応が主となり、内部の活物質はほとんど利用されない
状態となっている。この傾向は放電電流の増加、極板厚
の増加にともない顕著になってくる。この現象は放電特
性に影響するばかりでなく、電池寿命にも大きく関与す
る。なぜならば、放電時に表面近くの活物質が集中的に
利用され、表面近くの活物質が泥状化をおこし脱落す
る。そのためショートや泥状化のための容量低下をまね
きやすい。また密閉型鉛蓄電池におこりやすい格子の伸
びによる格子と活物質との密着性低下による容量低下の
問題も従来の極板では重要な問題である。さらに重要な
ことは、密閉型鉛蓄電池特有の過放電放置後充電が入ら
ないという現象がある。これは密閉型鉛電池の大きなる
欠点であり、原因としては過放電放置中に格子と活物質
界面に自己放電によって硫酸鉛の高抵抗層が形成される
ためと考えられている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention By the way, the discharge reaction of a sealed lead-acid battery is a reaction of an anode active material, a cathode active material and sulfuric acid, but since the electrolyte is limited in the sealed lead-acid battery, the discharge characteristics, In particular, the diffusion of sulfuric acid has a great influence on the voltage characteristics. In the conventional electrode plate, the active material is filled up to the inside of the electrode plate, so the diffusion of sulfuric acid cannot follow up to the inside during discharge, and the reaction on the surface of the electrode plate is the main after all, and the active material inside is rarely used. Has become. This tendency becomes remarkable as the discharge current increases and the electrode plate thickness increases. This phenomenon not only affects the discharge characteristics, but also greatly affects the battery life. This is because the active material near the surface is intensively used during discharge, and the active material near the surface becomes mud and falls off. Therefore, the capacity tends to decrease due to a short circuit or a muddy state. In addition, the problem of capacity decrease due to the decrease in adhesion between the active material and the grid due to the expansion of the grid, which is likely to occur in the sealed lead-acid battery, is also an important problem in the conventional electrode plate. More importantly, there is a phenomenon, which is peculiar to a sealed lead-acid battery, in that charging cannot be performed after being left over-discharged. This is a major drawback of the sealed lead-acid battery, and it is considered that the cause is that a high-resistivity layer of lead sulfate is formed at the interface between the lattice and the active material by self-discharge during standing for over-discharge.

最近、密閉型鉛蓄電池はハンディクリーナ用、VTR
(ブイティアール)用などの電源に代表されるように、
家電品への進出が著しい。そのため比較的高率放電での
サイクル用途が急激に要求されるようになってきてい
る。その要求の中で、極板内の活物質を均一に利用さ
せ、放電特性、特に電圧特性と高容量化への改善が望ま
れている。また家電品の場合、ユーザが不特定多数とな
るため、信頼性が強く望まれ、特に放電後長期にわたっ
て使用を停止し、再度充電しようとしても充電が入らな
いのではニッケル・カドミウム電池、その他の電池に比
べ使用上困難がある。また当然のごとく寿命の面でも安
定した寿命を有することが不可欠である。
Recently, sealed lead-acid batteries for handy cleaners, VTR
As represented by power supplies for (Buitiar),
Significant expansion into home appliances. Therefore, there is a rapid demand for cycle applications with a relatively high rate discharge. In order to meet the demand, it is desired that the active material in the electrode plate is used uniformly and the discharge characteristics, especially the voltage characteristics and the capacity are improved. Moreover, in the case of home appliances, the number of users is unspecified, so reliability is strongly desired, especially if the battery is not used even if it is stopped for a long time after discharge and it is not charged even if it is recharged. It is more difficult to use than batteries. As a matter of course, it is essential to have a stable life in terms of life.

このように密閉型鉛電池の要求に対し、従来の極板で
は上記の如く欠点があり満足の得られる特性を有してい
ない。
As described above, in order to meet the demand for the sealed lead-acid battery, the conventional electrode plate has the above-mentioned drawbacks and does not have satisfactory characteristics.

本発明は、陽極板内での活物質を均一に利用させ、し
かも過放電放置状態でも容易に充電可能であるという密
閉型鉛蓄電池の放電容量、放電特性、過放電放置特性さ
らに電流寿命を改善することを目的とする。
INDUSTRIAL APPLICABILITY The present invention improves the discharge capacity, discharge characteristics, over-discharge leaving characteristics and current life of a sealed lead-acid battery that allows the active material in the anode plate to be uniformly used and can be easily charged even in an over-discharge standing state. The purpose is to do.

問題点を解決するための手段 本発明は上記の問題点に対し、陽極活物質を保持した
2枚の格子間に、電解液を保持したカーボン繊維からな
る不織布を介在させたことを特徴とするものである。
Means for Solving Problems The present invention is characterized in that, in order to solve the above problems, a non-woven fabric made of carbon fibers holding an electrolytic solution is interposed between two lattices holding an anode active material. It is a thing.

作用 格子・カーボン不織布・格子の3層構造の基体を用い
て陽極板を作成するため、活物質層が、活物質・電解液
を含むカーボン不織布・活物質と3層構造となり、結局
電解液の硫酸は極板外部からと、3層の基体の中央のカ
ーボン不織布から供給され、極板中央での利用が従来の
陽極板より高まり、極板全体に均一に利用されうる。さ
らにカーボン不織布は導電性を有しており、過放電放置
後格子と活物質界面に硫酸鉛の高抵抗層が形成されても
カーボン不織布を通じて充電電流が流れ得る。そのため
充電回復性が従来の陽極板にくらべはるかにすぐれてい
る。
Action Since an anode plate is prepared using a three-layer structure substrate of a lattice, a carbon nonwoven fabric, and a lattice, the active material layer has a three-layer structure of the carbon nonwoven fabric containing the active material and the electrolyte, and the active material. Sulfuric acid is supplied from the outside of the electrode plate and from the carbon nonwoven fabric in the center of the three-layer substrate, and the utilization in the center of the electrode plate is higher than that of the conventional anode plate, so that it can be used uniformly throughout the electrode plate. Further, since the carbon nonwoven fabric has conductivity, a charging current can flow through the carbon nonwoven fabric even if a high resistance layer of lead sulfate is formed at the interface between the grid and the active material after being left overdischarge. Therefore, the charge recovery property is far superior to the conventional anode plate.

実施例 本発明の詳細を実施例をもって説明する。第1図に本
発明の格子・カーボン不織布・格子の3層構造の基体を
示す。1が格子、2がカーボン細繊維からなる不織布で
ある。第2図は格子の平面図、第3図は3層構造の基体
にペーストを充填し、化成して活物質化した本発明の陽
極板の断面図である。3が活物質である。この構造の陽
極板は40mm×100mm×3mmの大きさとした。厚みの内訳は
格子厚1.5mm×2、カーボン不織布0.4mm×1である。作
成はまずカーボン不織布2を格子1と格子1の間に挿入
し、格子1と格子1はその耳部同志をアーク溶接にて接
合一体とした。その後ペーストを両面より充填し、乾燥
後通常の化成工程を施して陽極板とした。その時の活物
質量は28gであった。この陽極板1枚と通常の陰極板2
枚を用いて密閉型鉛蓄電池を作成した。電解液は比重1.
320硫酸16mlを用い、陰、陽極板間に介在させるリテー
ナは通常のものを用いた。比較のため陽極板として従来
型の通常使用品、格子厚3.0mm、活物質量34gを用いて該
陽極板以外まったく同型の従来の密閉型鉛蓄電池も作成
した。以下従来の陽極板を使用した電池(以下「従来の
電池」という)をb、本発明の陽極板を使用した電池
(以下「本発明の電池」という)をaと記す。第4図に
2A放電の試験結果を記す。図からわかるように、本発明
の電池aは従来の電池bよりはるかにすぐれた電圧特性
を示し、特に放電終期で差が大きくみられる。これは電
解液の供給が放電終期まで安定して行なわれていること
に対応し、反応が陽極板全体で起っていることによる。
第5図、第6図はその証拠となる、2A放電後の陽極板内
の反応分布を示す。ここでは反応生成物であるPbSO4
Sに注目し、PbSO4の量をSのKα強度に対応させて示
す。第5図は従来の陽極板の反応分布で、陽極板表面付
近に反応分布が集中し、中央部の利用が少ない。これに
対し第6図に示す本発明の陽極板の反応分布は中央に電
解液を有しているため、ほぼ全体的に反応していること
が解る。さらに本発明陽極板の特性を把握するため、過
放電放置後の容量回復性と寿命特性を調べた。容量回復
性については2A放電後、2.45V定電圧充電を8時間行
い、5Ωの抵抗にて定抵抗放電を5日間連続して行っ
た。その後周囲温度45℃の条件下で14日間放置し、再び
2.45V定電圧充電を8時間行った。充電終了後2A放電を
行い、初期の容量と比較した。
Examples Details of the present invention will be described with examples. FIG. 1 shows a substrate having a three-layer structure of a lattice, a carbon nonwoven fabric, and a lattice of the present invention. Reference numeral 1 is a lattice, and 2 is a non-woven fabric made of carbon fine fibers. FIG. 2 is a plan view of a grid, and FIG. 3 is a cross-sectional view of an anode plate of the present invention in which a substrate having a three-layer structure is filled with a paste and formed into an active material. 3 is an active material. The anode plate of this structure had a size of 40 mm × 100 mm × 3 mm. The breakdown of the thickness is a grid thickness of 1.5 mm x 2 and a carbon nonwoven fabric of 0.4 mm x 1. First, the carbon nonwoven fabric 2 was inserted between the lattices 1 and 1 and the ears of the lattices 1 and 1 were integrally joined by arc welding. After that, the paste was filled from both sides, dried and then subjected to a usual chemical conversion process to obtain an anode plate. The amount of active material at that time was 28 g. This anode plate 1 and normal cathode plate 2
A sealed lead-acid battery was created using the sheets. The electrolyte has a specific gravity of 1.
320 ml of sulfuric acid was used, and a normal retainer was interposed between the cathode and anode plates. For comparison, a conventional sealed lead-acid battery of exactly the same type other than the anode plate was also prepared by using a conventional type conventionally used product as an anode plate, a grid thickness of 3.0 mm, and an active material amount of 34 g. Hereinafter, a battery using a conventional anode plate (hereinafter referred to as “conventional battery”) is referred to as b, and a battery using the anode plate of the present invention (hereinafter referred to as “battery of the present invention”) is referred to as a. In Figure 4
The test results of 2 A discharge are described. As can be seen from the figure, the battery a of the present invention exhibits much better voltage characteristics than the conventional battery b, and the difference is particularly large at the end of discharge. This corresponds to the fact that the supply of the electrolytic solution is stably performed until the end of the discharge, and the reaction occurs in the entire anode plate.
Figures 5 and 6 show the reaction distribution in the anode plate after 2A discharge, which is the proof. Here, attention is paid to S of PbSO 4 which is a reaction product, and the amount of PbSO 4 is shown in correspondence with the Kα intensity of S. FIG. 5 shows the reaction distribution of the conventional anode plate, where the reaction distribution is concentrated near the surface of the anode plate, and the central portion is less utilized. On the other hand, it is understood that the reaction distribution of the anode plate of the present invention shown in FIG. 6 has the electrolytic solution at the center, and therefore the reaction is almost entirely performed. Further, in order to understand the characteristics of the anode plate of the present invention, the capacity recovery property and the life characteristics after being left over discharge were examined. Regarding the capacity recovery property, after discharging 2 A, constant voltage charging of 2.45 V was carried out for 8 hours, and constant resistance discharging with resistance of 5 Ω was carried out continuously for 5 days. After that, leave it under the condition of ambient temperature of 45 ℃ for 14 days, and
2.45V constant voltage charging was performed for 8 hours. After the end of charging, the battery was discharged at 2A and compared with the initial capacity.

第7図に従来の電池bと本発明の電池aの容量回復率
を示す。図から明らかなように本発明の電池aは従来の
電池bより容量回復率がすぐれている。この理由は陽極
板中央に導電性のカーボン不織布が存在するため過放電
放置した後、格子と活物質界面に高抵抗層が存在して
も、カーボン不織布から活物質へ電流が容易に流れ、充
電受入性が良いためと考えられる。寿命試験は2A30分放
電、0.23A5時間充電で行った。温度は20℃である。第8
図に100サイクル時点での結果を示す。100サイクル時点
では顕著な差はみられないが、従来の電池bは徐々に容
量の低下がみられる。これに対し本発明の電池aはこの
時点で初期と変化がない。なお容量確認は20サイクルご
と2A完全放電で行った。寿命に関しては、100サイクル
の時点ではわずかの差しか確認していないが、放電分布
が均一的であり、局部的な活物質の劣化がないため、さ
らに格子の伸びに対し、たとえ格子と活物質界面にはが
れが生じても中心部にカーボン不織布が存在することに
より集電が可能であるため、100サイクル以降では差が
でてくると思われる。
FIG. 7 shows the capacity recovery rates of the conventional battery b and the battery a of the present invention. As is clear from the figure, the battery a of the present invention has a better capacity recovery rate than the conventional battery b. The reason for this is that there is a conductive carbon nonwoven fabric in the center of the anode plate, so even after a high-resistance layer exists at the interface between the grid and the active material, a current easily flows from the carbon nonwoven fabric to the active material and the battery is charged after overdischarging. This is probably because the acceptability is good. The life test was performed by discharging 2A for 30 minutes and charging 0.23A for 5 hours. The temperature is 20 ° C. 8th
The figure shows the results at 100 cycles. No significant difference is observed at the time of 100 cycles, but the capacity of the conventional battery b gradually decreases. In contrast, the battery a of the present invention has no change from the initial state at this point. The capacity was confirmed every 20 cycles with a complete discharge of 2A. Regarding the life, we have not confirmed a slight difference at the time of 100 cycles, but the discharge distribution is uniform and there is no local deterioration of the active material. Even if peeling occurs at the interface, the presence of carbon nonwoven fabric in the center allows current collection, so it seems that there will be a difference after 100 cycles.

発明の効果 以上の如く、本発明は、陽極活物質を保持した2枚の
格子間に、電解液を保持したカーボン繊維からなる不織
布を介在させたことを特徴とする密閉型鉛蓄電池用陽極
板であって、これにより元来電解液が制限されている密
閉型鉛蓄電池に使用される陽極板の活物質に、電解液が
極板外部からだけでなく極板内部からも供給されるよう
になるため、陽極板全体に亘り活物質を均一に利用し
得、放電特性、容量、寿命を改善でき、密閉型鉛蓄電池
の過放電放置後の容量回復性、陽極格子の伸びによる容
量低下を改善し得るものである。
EFFECTS OF THE INVENTION As described above, the present invention is characterized in that a nonwoven fabric made of carbon fiber holding an electrolytic solution is interposed between two lattices holding an anode active material, and the positive electrode plate for a sealed lead-acid battery is characterized. Therefore, the electrolytic solution is supplied not only from the outside of the electrode plate but also from the inside of the electrode plate to the active material of the anode plate used in the sealed lead acid battery in which the electrolytic solution is originally limited. Therefore, the active material can be uniformly used over the entire anode plate, and the discharge characteristics, capacity, and life can be improved, and the capacity recovery of the sealed lead-acid battery after over-discharging and the decrease in capacity due to expansion of the anode grid are improved. It is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に使用する基体の説明図、第2図は第1
図の基体に使用する格子の平面図、第3図は本発明陽極
板の断面図、第4図は本発明の電池と従来の電池の端子
電圧と放電時間との関係特性比較曲線線、第5図は従来
陽極板の反応分布図、第6図は本発明陽極板の反応分布
図、第7図は本発明の電池と従来の電池の容量回復率の
比較特性図、第8図は本発明の電池と従来の電池の放電
持続時間と充放電サイクルとの関係特性比較曲線図であ
る。 1:格子、2:カーボン不織布、3:活物質、a:本発明の電
池、
FIG. 1 is an explanatory view of a substrate used in the present invention, and FIG.
FIG. 3 is a plan view of a grid used for the substrate of FIG. 3, FIG. 3 is a cross-sectional view of the anode plate of the present invention, and FIG. 4 is a characteristic comparison curve line of terminal voltage and discharge time of the battery of the present invention and a conventional battery. FIG. 5 is a reaction distribution diagram of a conventional anode plate, FIG. 6 is a reaction distribution diagram of the anode plate of the present invention, FIG. 7 is a comparative characteristic diagram of capacity recovery rates of the battery of the present invention and a conventional battery, and FIG. FIG. 6 is a characteristic comparison curve diagram of the relationship between discharge duration and charge / discharge cycle of the battery of the invention and the conventional battery. 1: lattice, 2: carbon non-woven fabric, 3: active material, a: battery of the present invention,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 他▲く▼美 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内 (72)発明者 内田 敏夫 茨城県勝田市堀口832番地2号 株式会社 日立製作所日立研究所内 (72)発明者 森本 庄吾 茨城県勝田市堀口832番地2号 株式会社 日立製作所日立研究所内 審判の合議体 審判長 西 義之 審判官 小野 秀幸 審判官 相沢 旭 (56)参考文献 特公 昭52−29809(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hayakawa et al. ▲ Ku ▼ Beauty, 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Within Shinjin Todenki Co., Ltd. (72) Inventor Akio Komaki Nishishinjuku, Shinjuku-ku, Tokyo 2-1-1 No. 1 Shinshin Todo Electric Co., Ltd. (72) Inventor Toshio Uchida 832 Horiguchi, Katsuta City, Ibaraki Prefecture 2 2 Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Shogo Morimoto 832 Horiguchi, Katsuta City, Ibaraki Prefecture No. 2 Hitachi, Ltd. Hitachi Research Laboratories collegiate body Judge Yoshiyuki Nishi Judge Judge Hideyuki Ono Judge Judge Asahi Aizawa (56) References JP-B-52-29809 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陽極活物質を保持した2枚の格子間に、電
解液を保持したカーボン繊維からなる不織布を介在させ
たことを特徴とする密閉型鉛蓄電池用陽極板。
1. A positive electrode plate for a sealed lead-acid battery, characterized in that a nonwoven fabric made of carbon fiber holding an electrolyte is interposed between two grids holding an anode active material.
JP60242443A 1985-10-29 1985-10-29 Anode plate for sealed lead acid battery Expired - Lifetime JPH0831336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242443A JPH0831336B2 (en) 1985-10-29 1985-10-29 Anode plate for sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242443A JPH0831336B2 (en) 1985-10-29 1985-10-29 Anode plate for sealed lead acid battery

Publications (2)

Publication Number Publication Date
JPS62103976A JPS62103976A (en) 1987-05-14
JPH0831336B2 true JPH0831336B2 (en) 1996-03-27

Family

ID=17089164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242443A Expired - Lifetime JPH0831336B2 (en) 1985-10-29 1985-10-29 Anode plate for sealed lead acid battery

Country Status (1)

Country Link
JP (1) JPH0831336B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030005759A (en) * 2001-07-10 2003-01-23 한국전지주식회사 Electrode for lead storage battery and method for manufacturing thereof
AR067238A1 (en) 2007-03-20 2009-10-07 Commw Scient Ind Res Org OPTIMIZED DEVICES FOR ENERGY STORAGE
US9525177B2 (en) * 2008-11-18 2016-12-20 Johnson Controls Technology Company Electrical power storage devices
DE102008062765A1 (en) 2008-12-18 2010-07-01 Vb Autobatterie Gmbh & Co. Kgaa Textile sheet material for a battery electrode
EP2401782B1 (en) 2009-02-26 2020-06-03 CPS Technology Holdings LLC Battery electrode and method for manufacturing same
MX2012002415A (en) * 2009-08-27 2012-06-25 Commw Scient Ind Res Org Electrical storage device and electrode thereof.
JP2012133959A (en) 2010-12-21 2012-07-12 Furukawa Battery Co Ltd:The Composite capacitor negative electrode plate for lead storage battery, and lead storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229809A (en) * 1975-09-02 1977-03-07 Tadashi Fukuyama Method of burning usual red bricks to dressing bricks

Also Published As

Publication number Publication date
JPS62103976A (en) 1987-05-14

Similar Documents

Publication Publication Date Title
Jindra Sealed Ni–Zn cells, 1996–1998
US3288642A (en) Rechargeable dry cell having gelled electrolyte
JPH0831336B2 (en) Anode plate for sealed lead acid battery
JP2002231247A (en) Control valve-type lead-acid battery
JPS5894770A (en) Leakage-less closed type lead battery
US20170179494A1 (en) Electrode having active material encased in conductive net
JP2002050407A (en) Nonaqueous electrolyte secondary cell and control method of charge and discharge
JP4436464B2 (en) Lithium ion battery
CA1090878A (en) Lead crystal storage cells and storage devices made therefrom
JPH08153543A (en) Forming method of sealed alkaline storage battery
US20200287246A1 (en) An electrode for lead acid battery assembly and its method of preparation
JP3572831B2 (en) Battery pack
JP3648761B2 (en) How to charge sealed lead-acid batteries
JPH0927318A (en) Lead-acid battery
JPH06215774A (en) Lead-acid secondary battery
GB2187903A (en) Method of recharging a sealed lead-acid storage battery
Burrows et al. Low maintenance lead-acid batteries for energy storage
JPH0744033B2 (en) Anode plate for sealed lead acid battery
JPH07254408A (en) Lead-acid battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH0745274A (en) Lead acid battery use positive plate and manufacture thereof
JPS5848367A (en) Lead storage battery
JPH06275309A (en) Sealed battery
JPS58147957A (en) Small sealed lead storage battery
JPH04363862A (en) Lithium secondary battery