JPH0831231A - Conductive mold - Google Patents

Conductive mold

Info

Publication number
JPH0831231A
JPH0831231A JP6166782A JP16678294A JPH0831231A JP H0831231 A JPH0831231 A JP H0831231A JP 6166782 A JP6166782 A JP 6166782A JP 16678294 A JP16678294 A JP 16678294A JP H0831231 A JPH0831231 A JP H0831231A
Authority
JP
Japan
Prior art keywords
conductive
weight
molded product
graphite particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6166782A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hiruma
信幸 昼間
Hiroshi Takanashi
浩 高梨
Takashi Nogami
隆 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP6166782A priority Critical patent/JPH0831231A/en
Publication of JPH0831231A publication Critical patent/JPH0831231A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To raise the conductivity without marring the mold processability by specifying the cavity rate of an obtained mold using ketchen black and right globular graphite particles being burned at specified temperature for conductive fillers. CONSTITUTION:50-100 pts.wt. of ketchen black and 150 or more pts.wt. of right globular graphite particles being baked at 1500 deg.C or over are mixed to 100 pts.wt. of thermoplastic resin or thermosetting resin. This mixture is made into a molded item, where the cavity rate is 5% or under, preferably, 3% or under and the ratio of volume resistivity value in Z direction to that in X-Y direction of the itself is 2 or under, by press molding or the like. Hereby, a molded item, where the conductivity and the mechanical strength such as shock strength and flexural strength is balanced, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池用セパレータ、
コネクタ用導電材、押しボタンスイッチ用可動接点、I
C用帯電防止性トレー等として有用な導電性成形品に関
する。
FIELD OF THE INVENTION The present invention relates to a fuel cell separator,
Conductive material for connector, movable contact for push button switch, I
The present invention relates to a conductive molded article useful as an antistatic tray for C and the like.

【0002】[0002]

【従来の技術】燃料電池は化石エネルギーを用いて高効
率、低公害に発電する電気化学システムである。燃料電
池にはリン酸型燃料電池(以下、PAFCとする)、固
体酸化物型燃料電池、固体高分子電解質型燃料電池(以
下、PEFCとする)、溶融炭酸塩型燃料電池、アルカ
リ型燃料電池といった各種の方式のものがある。現在、
上記の各種燃料電池が検討・実用化されているが、その
中でPAFCおよびPEFCではセパレータなどの導電
性成形品(以下、成形品とする)が使用されている。セ
パレータは単位セルを積層する場合に不可欠なもので、
これには一方の面に水素ガス、他方の面に酸素および水
蒸気の流路が設けられている溝付きセパレータ方式と、
表面に溝のない平板型セパレータ方式との2種類が存在
する。
A fuel cell is an electrochemical system that uses fossil energy to generate electricity with high efficiency and low pollution. The fuel cells include phosphoric acid fuel cells (hereinafter referred to as PAFCs), solid oxide fuel cells, solid polymer electrolyte fuel cells (hereinafter referred to as PEFCs), molten carbonate fuel cells, alkaline fuel cells. There are various types of such. Current,
The above-mentioned various fuel cells have been studied and put into practical use. Among them, in PAFC and PEFC, conductive molded products such as separators (hereinafter referred to as molded products) are used. The separator is indispensable when stacking unit cells,
In this, hydrogen gas on one surface, a grooved separator system in which oxygen and water vapor channels are provided on the other surface,
There are two types, a flat plate type separator method with no groove on the surface.

【0003】ところで、セパレータは10-1Ω・cm 以下の
導電性を必要とし、また酸化等の化学的腐食に耐えなけ
ればならず、さらに耐加水分解性、耐熱水性なども要求
されることから、グラッシーカーボン板と呼ばれる焼成
物が一般に使用されている。グラッシーカーボン板はフ
ェノール樹脂、ポリイミド樹脂、エポキシ樹脂、フラン
樹脂等を原料として硬化反応させた板状成形品を不活性
雰囲気中で焼成させて得られたものである。しかし、グ
ラッシーカーボン板は圧縮応力が弱いため、例えば、燃
料電池の組立時にボルトで締めつけて固定したりする際
に破損し易いという欠点がある。また弾力性が全くない
ため、電極との合わせ面からの水素ガスや酸素ガスの漏
れを防止することができず、そのために10μm レベルの
平滑度が要求されている。さらにグラッシーカーボン板
は製造に当たって原料の配合→成形→硬化→焼成→機械
加工→検査といった多くの成形・加工工程を必要とする
ため、非常に高価なものとなってしまい燃料電池のコス
トアップの原因ともなっていた。
By the way, the separator needs to have conductivity of 10 -1 Ω · cm or less, and it has to withstand chemical corrosion such as oxidation, and further, hydrolysis resistance and hot water resistance are required. A fired product called a glassy carbon plate is generally used. The glassy carbon plate is obtained by firing a plate-shaped molded product obtained by curing and reacting a phenol resin, a polyimide resin, an epoxy resin, a furan resin or the like as a raw material in an inert atmosphere. However, since the glassy carbon plate has a weak compressive stress, it has a drawback that it is easily damaged when it is tightened and fixed with bolts during assembly of the fuel cell. In addition, since it has no elasticity, hydrogen gas and oxygen gas cannot be prevented from leaking from the mating surface with the electrode, and therefore a smoothness of 10 μm level is required. In addition, the glassy carbon plate requires many forming and processing steps such as raw material blending → molding → curing → firing → machining → inspection in the manufacturing process, which makes it extremely expensive and causes the cost increase of the fuel cell. It was also accompanied.

【0004】[0004]

【発明が解決しようとする課題】これらの問題を解決す
るために、樹脂にカーボンフィラーを配合した樹脂製導
電板が検討されているが、導電性、とくに成形品のX−
Y方向の体積固有抵抗値とZ方向の体積固有抵抗値とが
できるだけ等しく、かつ低い値であることが要求されて
いる。このため、本出願人は先に樹脂にカーボンブラッ
クと真球状導電性フィラーとを添加した導電性組成物お
よび成形体を提案したが、この場合、導電特性を満足さ
せようとすると、導電性フィラーを大量に添加しなけれ
ばならず、またそれにより配合物の流動性が低下して成
形・加工しにくくなるという問題があった。また、これ
が原因となり、成形品の内部に空隙が生じ易くなり、そ
の結果、圧縮応力の低下を招き、燃料電池の組立時にボ
ルト等で締めつけて固定したりする際に破損し易いとい
う問題があった。成形性、加工性を損なわず、組立性を
低下させないようにしようとすると、導電性フィラーの
添加を制限しなければならず、10-1Ω・cm 以下という導
電特性が満足できなくなる場合が生じて、十分なものと
はいえなかった。したがって、本発明の目的は、成形加
工性を損なわずに導電特性を高めた導電性成形品を提供
することで、これにより成形品内部の空隙を減らすこと
ができ、燃料電池の組立時にも破損しにくいものを提供
しようとするものである。
In order to solve these problems, a resin conductive plate in which a resin is mixed with a carbon filler has been studied.
It is required that the volume resistivity value in the Y direction and the volume resistivity value in the Z direction be as equal and low as possible. For this reason, the applicant has previously proposed a conductive composition and a molded body in which carbon black and a spherical conductive filler are added to a resin, but in this case, when it is attempted to satisfy the conductive characteristics, the conductive filler is Had to be added in a large amount, and the flowability of the compound was lowered thereby, making molding and processing difficult. In addition, due to this, there is a problem that voids are likely to occur inside the molded product, resulting in a decrease in compressive stress and being easily damaged when tightening and fixing with a bolt or the like during assembly of the fuel cell. It was In order to prevent deterioration of moldability and processability and deterioration of assemblability, it is necessary to limit the addition of conductive filler, and the conductive characteristics of 10 -1 Ωcm or less may not be satisfied. It wasn't enough. Therefore, an object of the present invention is to provide a conductive molded product having enhanced conductive properties without impairing the molding processability, whereby the voids inside the molded product can be reduced, and even when the fuel cell is assembled, it is damaged. It aims to provide something that is difficult to do.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題の
解決のため、導電性粒子の種類、形状、粒度分布、熱可
塑性樹脂および熱硬化性樹脂の種類および成形方法、成
形品としたときの空隙率などの関係をさらに検討した結
果、成形性、加工性を損なわず、さらに燃料電池組立時
に破損しにくい満足な導電性を有する導電性成形品とす
るには、熱可塑性樹脂または熱硬化性樹脂 100重量部
に、導電性フィラーとしてケッチェンブラック50〜 100
重量部と、1500℃以上で焼成された真球状黒鉛粒子 150
重量部以上を配合して得られた、空隙率が5%以下、好
ましくは3%以下で、成形体のX−Y方向の体積固有抵
抗値に対するZ方向の体積固有抵抗値の比の値が2以下
の成形体にするのがよいことを見出し、本発明を完成し
た。なお、ここで空隙率とは下記(I)式より算出され
る値をいう。 空隙率(%)=[1−(成形品かさ比重値/理論比重値)]× 100‥‥(I)
In order to solve the above-mentioned problems, the present inventors have selected the type, shape, particle size distribution of conductive particles, type of thermoplastic resin and thermosetting resin, molding method, and molded article. As a result of further studying the relationship of the porosity, etc., thermoplastic resin or thermosetting resin was used to obtain a conductive molded product with satisfactory conductivity that does not impair moldability and processability and is less likely to be damaged during fuel cell assembly. 100 parts by weight of curable resin, Ketjen Black 50-100 as conductive filler
Parts by weight and spherical graphite particles 150 calcined at 1500 ° C or higher
When the porosity is 5% or less, preferably 3% or less, the ratio of the volume specific resistance value in the Z direction to the volume specific resistance value in the X-Y direction of the molded article obtained by blending 1 part by weight or more is The present invention has been completed by finding that it is preferable to make a molded body of 2 or less. Here, the porosity means a value calculated by the following formula (I). Porosity (%) = [1- (molded product bulk specific gravity / theoretical specific gravity)] × 100 (I)

【0006】以下、本発明を詳細に説明する。本発明で
適用される樹脂は熱可塑性樹脂または熱硬化性樹脂が好
ましく、PAFC用のセパレータでは連続使用温度が最
高 220℃程度となるため、 これを満足する耐熱性が必要
とされ、また気体不透過性、耐加水分解性、耐熱水性、
耐酸性などの特性も必要となる。これらの要求特性を満
足する熱可塑性樹脂としては、例えば、フッ素樹脂、ポ
リエーテルエーテルケトン樹脂、ポリエーテルイミド樹
脂、ポリアミドイミド樹脂、ポリフェニレンサルファイ
ド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケト
ン樹脂、ポリオキシベンゾイルエステル樹脂、液晶ポリ
エステル樹脂などが、また熱硬化性樹脂としては、例え
ば、フェノール樹脂、ビスマレイミドトリアジン樹脂、
不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ポ
リアミノビスマレイミド樹脂、芳香族ポリイミド樹脂等
が、それぞれ挙げられる。他方、PEFC用のセパレー
タでは連続使用温度が最高 100〜 150℃程度であること
から、この耐熱条件と上記と同様の要求特性を満たす樹
脂の採用が必要となる。このような樹脂としては、上記
の樹脂に加えて、さらに芳香族ポリエステル、ポリアセ
タール、ポリアミド、ポリアリレート、ポリアリルスル
ホン、ポリベンゾイミダゾール、ポリエーテルニトリ
ル、ポリチオエーテルスルホン、ポリイミド、ポリアミ
ノビスマレイミド、ポリケトン、ポリフェニレンエーテ
ル、ポリスルホン等が挙げられる。
The present invention will be described in detail below. The resin used in the present invention is preferably a thermoplastic resin or a thermosetting resin, and a separator for PAFC has a maximum continuous use temperature of about 220 ° C., so heat resistance satisfying this is required, and gas-free Permeability, hydrolysis resistance, hot water resistance,
Properties such as acid resistance are also required. Examples of the thermoplastic resin satisfying these required characteristics include fluororesin, polyetheretherketone resin, polyetherimide resin, polyamideimide resin, polyphenylene sulfide resin, polyethersulfone resin, polyetherketone resin and polyoxybenzoyl. Ester resins, liquid crystal polyester resins and the like, and as thermosetting resins, for example, phenol resins, bismaleimide triazine resins,
Examples thereof include unsaturated polyester resins, diallyl phthalate resins, polyamino bismaleimide resins, aromatic polyimide resins, and the like. On the other hand, since the continuous use temperature of PEFC separator is about 100 to 150 ° C. at maximum, it is necessary to adopt a resin satisfying the heat resistance condition and the same required characteristics as above. As such a resin, in addition to the above resins, aromatic polyester, polyacetal, polyamide, polyarylate, polyallyl sulfone, polybenzimidazole, polyether nitrile, polythioether sulfone, polyimide, polyamino bismaleimide, polyketone, Examples thereof include polyphenylene ether and polysulfone.

【0007】一方、本発明で用いられる導電性フィラー
としては、ケッチェンブラックと1500℃以上で焼成され
た真球状黒鉛粒子とが用いられるが、ケッチェンブラッ
クと真球状黒鉛粒子との配合量が上記の範囲である限
り、これ以外の導電性フィラーを併用してもさしつかえ
ない。この導電性フィラーには体積固有抵抗値が10-1Ω
・cm 以下のものであることが望ましい。これよりも体積
固有抵抗値が高いフィラーを添加しても低抵抗化に対す
る効果はあまり期待できず、また効果を出すためには大
量の導電性フィラーの添加が必要となって、配合物の流
動性が極端に低下して、最悪の場合には成形が不可能と
なったり、あるいは成形できたとしても成形品の内部に
空隙を生じ易く(空隙率で5%を超え易く)なり、燃料
電池の組立時にボルト等で締めつけて固定したりする際
に破損し易くなってしまう。この要求特性を適えられる
上記ケッチェンブラックと真球状黒鉛粒子以外の導電性
フィラーには、例えば、原油を原料とするオイルファー
ネスブラック、アセチレンを原料とするアセチレンブラ
ック、金、銀、銅、ニッケルといった金属系粒子等が挙
げられる。
On the other hand, as the conductive filler used in the present invention, Ketjen black and true spherical graphite particles calcined at 1500 ° C. or higher are used. As long as it is within the above range, other conductive fillers may be used in combination. This conductive filler has a volume resistivity of 10 -1 Ω.
・ It is desirable that the size is cm or less. Even if a filler with a volume resistivity higher than this is added, the effect on lowering resistance cannot be expected so much, and in order to produce the effect, it is necessary to add a large amount of conductive filler, and the flow of the composition Of the fuel cell becomes extremely difficult to form in the worst case, or even if it can be formed, voids are likely to occur inside the molded product (porosity easily exceeds 5%). When it is assembled, it is easily damaged when it is tightened and fixed with bolts. The conductive fillers other than the above Ketjen black and true spherical graphite particles that can satisfy the required characteristics include, for example, oil furnace black made from crude oil, acetylene black made from acetylene, gold, silver, copper, nickel. Such metal-based particles are listed.

【0008】ケッチェンブラックの配合量は、得られる
成形品の高充填性、導電特性および加工性・成形性等の
点から、前記熱可塑性樹脂または熱硬化性樹脂 100重量
部に対し50〜 100重量部の割合で使用される。これが50
重量部未満の場合は成形品内に成形されるケッチェンブ
ラックの特徴である発達したストラクチャー構造が不十
分となり、燃料電池用セパレータとして必要とされる導
電性を得ようとすると、他の導電性フィラーを大量に添
加しなければならず、その結果、前述したように配合物
の流動性が極端に低下して、最悪の場合には成形が不可
能となるか、あるいは成形できたとしても成形品内部に
空隙を生じ易くなり、燃料電池の組立時にボルト等で締
めつけて固定したりする際に破損し易くなってしまう。
逆に、これが 100重量部を超えるときも、配合物の流動
性が極端に低下して、最悪の場合には成形が不可能とな
るか、あるいは成形できたとしても成形品内部に空隙を
生じ易くなり、燃料電池の組立時にボルト等で締めつけ
て固定したりする際に破損し易くなるので好ましくな
い。
The amount of Ketjenblack to be blended is 50 to 100 with respect to 100 parts by weight of the thermoplastic resin or thermosetting resin, from the viewpoints of high filling property, conductive property, processability and moldability of the obtained molded product. Used in parts by weight. This is 50
When the amount is less than the weight part, the developed structure structure, which is the characteristic of Ketjen Black molded in the molded product, becomes insufficient, and when the conductivity required for the fuel cell separator is obtained, other conductivity A large amount of filler has to be added, and as a result, the fluidity of the compound is extremely reduced as described above, making molding impossible in the worst case, or molding even if molding is possible. Voids are likely to occur inside the product, and are easily damaged when tightened and fixed with bolts or the like during assembly of the fuel cell.
On the other hand, even if the amount exceeds 100 parts by weight, the fluidity of the compound is extremely reduced, and in the worst case, molding becomes impossible, or even if molding is possible, voids are generated inside the molded product. This is not preferable because it is easy to damage and easily damaged when tightening and fixing with a bolt or the like at the time of assembling the fuel cell.

【0009】次に、本発明で用いられるもう一方の導電
性フィラーである1500℃以上で焼成された真球状黒鉛粒
子について説明する。ここで「真球状」という意味は、
粒子の形状を、1個の粒子の最も安定した状態で平面上
に静止させ、この平面上への投影像を2つの平行線で挟
み、その平行線の間隔が最小となるときの距離を、粒子
の短軸径W、この2平行線に直角の方向の2つの平行線
で粒子を挟むときの距離を、粒子の長軸径L、最大安定
面に平行な面で挟むときの距離を、粒子の高さH、と定
義したときに、W、L、Hの内のいずれか2つの比の値
が0.67〜 1.5の範囲、好ましくはW=L=Hで、表面積
がπL2 で表わされるものである。また、この真球状黒
鉛粒子としては1500℃以上、好ましくは2000℃以上で焼
成されたものが用いられる。これが1500℃未満の温度で
焼成されたものでは黒鉛化が十分に進んでいないため、
真球状黒鉛粒子の抵抗値が十分に低くならず、燃料電池
用セパレータとして要求される導電性を満足させること
ができない。
Next, the other conductive filler used in the present invention, the true spherical graphite particles fired at 1500 ° C. or higher, will be described. Here, the meaning of "spherical" means
The shape of a particle is made to rest on a plane in the most stable state of one particle, the projected image on this plane is sandwiched by two parallel lines, and the distance when the distance between the parallel lines is the minimum, The minor axis diameter W of the particle, the distance when the particle is sandwiched by two parallel lines perpendicular to the two parallel lines, the major axis diameter L of the particle, the distance when sandwiched by the plane parallel to the maximum stable plane, When defined as the height H of a particle, the value of the ratio of any two of W, L and H is in the range of 0.67 to 1.5, preferably W = L = H and the surface area is expressed by πL 2. It is a thing. The true spherical graphite particles used are those fired at 1500 ° C. or higher, preferably 2000 ° C. or higher. Graphitization has not proceeded sufficiently with the one that is fired at a temperature of less than 1500 ° C.
The true spherical graphite particles do not have a sufficiently low resistance value, and the conductivity required for a fuel cell separator cannot be satisfied.

【0010】さらに、真球状黒鉛粒子の粒径としては
0.1〜 200μm の範囲内のもの、とくには1〜70μm の
範囲内のものが好ましい。この粒径が 0.1μm 未満のも
のでは二次凝集が起こり易くなり、混練等の加工性を低
下させ、また流動性も低下するため、成形品内部に空隙
が残り易くなり、燃料電池の組立時にボルト等で締めつ
けて固定したりする際に破損し易くなる。他方、この粒
径が 200μm を超えるものでは、加工性や成形性には問
題が生じないものの、成形品の充填率が上がりにくいこ
とから、要求を満たすだけの導電性が得られない場合が
ある。なお、ここで用いられる真球状黒鉛粒子の粒度分
布は、平均粒径が10〜20μmで、上記した好ましい粒径
の範囲内で正規分布に近い連続した分布をとっているこ
とが、導電性と共に成形性、加工性、ひいては燃料電池
の組立性と共に満足させるために好ましい。
Further, the particle size of the spherical graphite particles is
Those in the range of 0.1 to 200 μm, particularly those in the range of 1 to 70 μm are preferable. If the particle size is less than 0.1 μm, secondary agglomeration is likely to occur, processability such as kneading is reduced, and fluidity is also reduced, so voids are likely to remain inside the molded product, and during assembly of the fuel cell. It is easily damaged when tightening and fixing it with bolts. On the other hand, if the particle size exceeds 200 μm, there is no problem in workability and moldability, but since the filling rate of the molded product is difficult to increase, it may not be possible to obtain sufficient conductivity. . The particle size distribution of the true spherical graphite particles used here is such that the average particle size is 10 to 20 μm, and a continuous distribution close to a normal distribution is taken within the above-mentioned preferable particle size range, together with the conductivity. It is preferable because it is satisfactory in terms of moldability, processability, and assembling property of the fuel cell.

【0011】真球状黒鉛粒子の配合量は前記熱可塑性樹
脂または熱硬化性樹脂 100重量部に対し 150重量部以
上、好ましくは 150〜 300重量部の範囲内とする必要が
ある。これが 150重量部未満のときは、必要とされる体
積固有抵抗値を満足させるために、(段落番号0007
で前述した)その他の導電性フィラーを添加することも
考えられるが、全導電性粒子に対する真球状黒鉛粒子の
比率が低下することで、成形体のX−Y方向の体積固有
抵抗値に対するZ方向の体積固有抵抗値の比の値が大き
くなり、燃料電池用セパレータとしての好ましい特性を
維持できなくなるほか、配合物の流動性も低下するた
め、成形が不可能となったり、また成形できたとしても
成形品内部に空隙が残り易くなり、燃料電池の組立時に
ボルト等で締めつけて固定したりする際に破損し易くな
る場合がある。他方、真球状黒鉛粒子の配合量が 300重
量部を超えるときは、同様に成形品内部に空隙が残り易
くなり、燃料電池の組立時にボルト等で締めつけて固定
したりする際に破損し易くなることがあるので好ましく
ない。
The amount of the spherical graphite particles to be blended should be 150 parts by weight or more, preferably 150 to 300 parts by weight, based on 100 parts by weight of the thermoplastic resin or thermosetting resin. When it is less than 150 parts by weight, in order to satisfy the required volume resistivity value (paragraph number 0007
It is also possible to add other conductive fillers (as described above), but the ratio of the true spherical graphite particles to the total conductive particles is decreased, so that the Z direction relative to the volume resistivity value in the X-Y direction of the molded body in the Z direction. The ratio of volume resistivity values of No. 1 becomes large, and it becomes impossible to maintain the preferable characteristics as a fuel cell separator, and the fluidity of the blend decreases, so that molding becomes impossible, or even if molding is possible. However, voids are likely to remain inside the molded product, and when the fuel cell is assembled and tightened with bolts or the like, it may be easily damaged. On the other hand, when the content of the spherical graphite particles exceeds 300 parts by weight, voids are likely to remain inside the molded product as well, and damage tends to occur when the fuel cell is assembled by tightening with bolts and the like. It is not preferable because it may occur.

【0012】以上の各成分からなる配合物からの燃料電
池用セパレータの成形には、押出成形、射出成形、プレ
ス成形、カレンダ成形等の各種の方法を採用することが
できる。また成形品の空隙率を減少させるために、減圧
状態で成形したり、成形圧力を高めたり、成形助剤を添
加したり、低下する導電性フィラーの粒度分布を調整し
たりすることもでき、これらを上記各成形方法と適宜組
み合わせて行うこともできる。
Various methods such as extrusion molding, injection molding, press molding, and calendar molding can be adopted for molding a fuel cell separator from a mixture comprising the above components. Further, in order to reduce the porosity of the molded product, it can be molded under reduced pressure, the molding pressure can be increased, a molding aid can be added, and the particle size distribution of the conductive filler to be reduced can be adjusted. It is also possible to combine these with the above-mentioned molding methods as appropriate.

【0013】[0013]

【実施例】以下、本発明の具体的態様を実施例により説
明する。 実施例1〜4、比較例1:アクリルゴム RV-2520(日信
化学工業社製、商品名) 100重量部に、ケッチェンブラ
ックEC(ライオン社製、商品名)75重量部、真球状黒鉛
粒子:ガラスボンP(大和田カーボン工業社製、商品
名、平均粒径30μm 、2000℃焼成品)と球状(真球状で
はない)導電性粒子:ベルパールC-2000(鐘紡社製、商
品名、平均粒径15μm 、2000℃焼成品)とをそれぞれ表
1に示す量(重量部)、滑剤:ステアリン酸 F-3(川研
ファインケミカル社製、商品名)1重量部、安定剤:ナ
ウガード#445(米国ユニロイヤル社製、商品名)1重量
部、加硫促進剤:スミファインBM(住友化学工業社製、
商品名) 2.4重量部および加硫剤C-13(信越化学工業社
製、商品名) 4.8重量部を添加し、それぞれの配合物を
二本ロールで混練し、実施例1〜4では分出ししたシー
トを温度 150℃、圧力 90kgf/cm2、時間10分の条件でプ
レスして 100mm× 100mm×5mmの大きさの成形品を得
た。得られた各成形品について下記の方法でX−Y方向
およびZ方向の体積固有抵抗値と空隙率とを測定し、下
記の方法によって評価したロール加工性の結果と共に表
1に併記した。なお、真球状黒鉛粒子の配合量の少ない
比較例1では、ロール加工性が悪くて分出しシートが得
られなかったため、各特性値の測定もできなかった。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples. Examples 1 to 4, Comparative Example 1: 100 parts by weight of acrylic rubber RV-2520 (manufactured by Nissin Chemical Industry Co., Ltd.), 75 parts by weight of Ketjen Black EC (manufactured by Lion Corp., trade name), spherical graphite Particles: Glass Bon P (Owada Carbon Co., Ltd., trade name, average particle size 30 μm, 2000 ° C. baked product) and spherical (not true spherical) conductive particles: Bell Pearl C-2000 (Kanebo Co., Ltd. trade name, average particle) 15 μm in diameter, baked at 2000 ° C) and the amount shown in Table 1 (parts by weight), lubricant: Stearic acid F-3 (Kawaken Fine Chemical Co., trade name) 1 part by weight, stabilizer: Naugard # 445 (US) Uniroyal Co., Ltd., 1 part by weight, vulcanization accelerator: Sumifine BM (Sumitomo Chemical Co., Ltd.,
Brand name) 2.4 parts by weight and vulcanizing agent C-13 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name) 4.8 parts by weight are added, and each compound is kneaded with a two-roll mill, and in Examples 1 to 4, it is dispensed. The obtained sheet was pressed under the conditions of a temperature of 150 ° C., a pressure of 90 kgf / cm 2 , and a time of 10 minutes to obtain a molded product having a size of 100 mm × 100 mm × 5 mm. With respect to each of the obtained molded products, the volume resistivity values in the XY direction and the Z direction and the porosity were measured by the following methods, and the results of roll workability evaluated by the following methods are also shown in Table 1. In Comparative Example 1 in which the true spherical graphite particles were blended in a small amount, the roll workability was poor and a dispensing sheet could not be obtained, so that the respective characteristic values could not be measured.

【0014】(体積固有抵抗値の測定)X−Y方向につ
いてはプレス成形で得た成形品から80mm×20mm×5mmの
大きさの試験片を作製し、日本ゴム協会標準規格 SRIS-
2301に基づいて体積固有抵抗値の測定を行った。なお、
電極は試験片に導電性樹脂材料:ドータイトFA-303(藤
倉化成社製、商品名)を塗布・乾燥して作製した。Z方
向についてはプレス成形で得た成形品から10mm×10mm×
5mmの大きさの試験片を作製し、10mm×10mmの両面に導
電性樹脂材料:ドータイトFA-303(前出)を塗布・乾燥
して電極を作製し、上記と同様にして体積固有抵抗値の
測定を行った。 (空隙率の測定)各配合による成形品の空隙率は、各配
合物の計算により求めた理論比重値と、JIS K 7112のA
法(水中置換法)により求めた実際のかさ比重値とか
ら、前記(I)式により求めた。 (ロール加工性の評価基準) ◎:加工性が非常によく、分出しシートが簡単に得ら
れ、燃料電池用セパレータが得られる。 ○:加工性がよく、分出しシートが得られ、燃料電池用
セパレータが得られる。 △:加工性は多少低下するが、分出しシートは得られ、
燃料電池用セパレータが得られる。 ×:加工性が悪く、分出しシートが得られないため、燃
料電池用セパレータの成形ができない。
(Measurement of volume resistivity value) In the XY directions, a test piece of 80 mm × 20 mm × 5 mm size was prepared from a molded product obtained by press molding, and the standard specification SRIS-
The volume resistivity was measured based on 2301. In addition,
The electrode was prepared by applying a conductive resin material: DOTITE FA-303 (manufactured by Fujikura Kasei Co., Ltd., trade name) to a test piece and drying. 10 mm x 10 mm x from the molded product obtained by press molding in the Z direction
A test piece with a size of 5 mm was prepared, and a conductive resin material: DOTITE FA-303 (described above) was applied to both sides of 10 mm x 10 mm and dried to prepare an electrode. Was measured. (Measurement of Porosity) The porosity of the molded product by each compounding is calculated by calculating the theoretical specific gravity value of each compounding and JIS K 7112 A
From the actual bulk specific gravity value obtained by the method (substitution method in water), it was obtained by the formula (I). (Evaluation Criteria for Roll Workability) ⊚: Very good workability, a dispensing sheet can be easily obtained, and a fuel cell separator can be obtained. ◯: Good workability, a dispensing sheet is obtained, and a fuel cell separator is obtained. Δ: The workability is slightly lowered, but a dispensing sheet is obtained,
A fuel cell separator is obtained. X: The workability is poor and a dispensing sheet cannot be obtained, so that the fuel cell separator cannot be molded.

【0015】[0015]

【表1】 [Table 1]

【0016】比較例2〜6:実施例1における配合物中
の真球状黒鉛粒子として、ガラスボンPに代えてユニベ
ックスGCP-30(ユニチカ社製、商品名、平均粒径30μm
、1200℃焼成品)を用いたほかは全く同様にして試験
を行った。結果を表2に示す。これより焼成温度が1500
℃未満の真球状黒鉛粒子を用いたのでは、燃料電池用セ
パレータとして要求される10-1Ω・cm 以下の体積固有抵
抗値が得られないことがわかった。なお、比較例6はさ
らに真球状黒鉛粒子の配合量が少ない場合で、ロール加
工性が悪くて分出しシートが得られず各特性値の測定も
できなかった。
Comparative Examples 2 to 6: As the true spherical graphite particles in the composition of Example 1, Unibex GCP-30 (manufactured by Unitika Ltd., trade name, average particle size 30 μm) was used in place of the glass bon P.
, 1200 ° C fired product) was used and the test was conducted in exactly the same manner. Table 2 shows the results. From this, the firing temperature is 1500
It was found that the use of the true spherical graphite particles having a temperature of less than 0 ° C. does not allow the volume resistivity value of 10 −1 Ω · cm or less required for a fuel cell separator to be obtained. In Comparative Example 6, the compounding amount of the true spherical graphite particles was further small, and the roll workability was poor, so that a dispensing sheet was not obtained and each characteristic value could not be measured.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例5:ポリフェニレンサルファイド:
フォートロン0220A9(ポリプラスチック社製、商品名)
100重量部に、ケッチェンブラックEC(前出)75重量
部、真球状導電性フィラー:ガラスボンP(前出) 200
重量部および球状導電性フィラー:ベルパールC-2000
(前出) 100重量部を添加し、これを加圧ニーダーで混
練後、温度 290℃、圧力90kgf/cm2 の条件でプレスして
100mm× 100mm× 0.6mmの成形品を得た。この成形品に
PAFC用セパレータとして必要な耐リン酸性、耐熱
性、気体不透過性等について試験したところ、全く問題
がなかった。
Example 5: Polyphenylene sulfide:
Fortron 0220A9 (manufactured by Polyplastics, trade name)
In 100 parts by weight, 75 parts by weight of Ketjen Black EC (explained above), spherical conductive filler: Glass Bon P (explained above) 200
Parts by weight and spherical conductive filler: Belpearl C-2000
(Above) 100 parts by weight was added, and this was kneaded with a pressure kneader and then pressed under the conditions of a temperature of 290 ° C and a pressure of 90 kgf / cm 2.
A molded product of 100 mm × 100 mm × 0.6 mm was obtained. When this molded product was tested for phosphoric acid resistance, heat resistance, gas impermeability and the like required as a PAFC separator, there was no problem at all.

【0019】実施例6:上記実施例3に示した配合物に
ついて、加圧ニーダーで混練後、温度 290℃、圧力90kg
f/cm2 の条件でプレスして 100mm× 100mm×5mmの成形
品を得た。これについて実施例1と同様に体積固有抵抗
値を測定したところ、X-Y 方向が 0.045Ω・cm、Z方向
が 0.081Ω・cm、比(Z方向/X-Y 方向)が 1.8であ
り、空隙率は 3.0%であった。
Example 6 The composition shown in Example 3 above was kneaded with a pressure kneader, then at a temperature of 290 ° C. and a pressure of 90 kg.
It was pressed under the condition of f / cm 2 to obtain a molded product of 100 mm × 100 mm × 5 mm. The volume resistivity was measured in the same manner as in Example 1. As a result, the XY direction was 0.045 Ω · cm, the Z direction was 0.081 Ω · cm, the ratio (Z direction / XY direction) was 1.8, and the porosity was 3.0. %Met.

【0020】実施例7〜8、比較例7:アクリルゴム R
V-2520(前出)、ケッチェンブラックEC(前出)、真球
状黒鉛粒子:ガラスボンP(前出)の平均粒径10μm 品
および30μm 品、球状導電性粒子:ベルパールC-2000
(前出)をそれぞれ表3に示す量(重量部)としたほか
は実施例1と同様にして試験を行い、その結果を表3に
併記した。これより真球状黒鉛粒子の平均粒径が
Examples 7 to 8 and Comparative Example 7: Acrylic rubber R
V-2520 (above), Ketjen Black EC (above), true spherical graphite particles: glass bon P (above) with an average particle size of 10 μm and 30 μm, spherical conductive particles: Belpearl C-2000
A test was conducted in the same manner as in Example 1 except that the amounts (parts by weight) shown above in Table 3 were changed to those shown in Table 3, and the results are also shown in Table 3. From this, the average particle size of spherical graphite particles

【0021】[0021]

【表3】 なお、各実施例の配合を用いて成形した 100mm× 100mm
×5の成形品で燃料電池を組み立てたところ破損は生じ
なかった。これに対し、比較例7の配合を用いて成形し
た 100mm× 100mm×5の成形品で同様の燃料電池を組み
立てたところ破損を生じることがあった。
[Table 3] It should be noted that 100 mm × 100 mm molded using the formulation of each example
When the fuel cell was assembled with the molded product of × 5, no damage occurred. On the other hand, when a similar fuel cell was assembled with a molded product of 100 mm × 100 mm × 5 molded using the formulation of Comparative Example 7, breakage sometimes occurred.

【0022】参考例:実施例1と同様にして 100mm× 1
00mm× 0.5mmのシート状成形品を得た後、型プレスして
ICトレーを作製した。得られたICトレーにICを10
個載置し、RH30%の湿度下にステンレス板上で10回/
分×20gfの篩い振動を与えたがICのリークは皆無であ
った。
Reference Example: 100 mm × 1 as in Example 1.
After obtaining a 00 mm × 0.5 mm sheet-shaped molded product, die pressing was performed to produce an IC tray. 10 ICs on the obtained IC tray
Place individually, and 10 times on a stainless steel plate at a humidity of 30% RH
A sieve vibration of min × 20 gf was applied, but there was no IC leak.

【0023】[0023]

【発明の効果】本発明の導電性成形品は、プレス成形、
射出成形、押出成形、カレンダ成形等が可能で、成形時
に冷却水、水素ガス、酸素ガスの経路を含めたセパレー
タとしても成形することができる。また、空隙率を5%
以下にすることにより、導電性と衝撃強度、曲げ強度と
いった機械的性質とのバランスのとれた燃料電池用セパ
レータを得ることができる。なお、以上の説明では燃料
電池用セパレータについて説明したが、本発明の成形品
はコネクタ用導電材、押しボタンスイッチ用可動接点、
IC用帯電防止性トレー等の導電性ないし帯電防止性の
機能が要求される各種部材、容器等に広く適用すること
ができる。
The electrically conductive molded article of the present invention is produced by press molding,
Injection molding, extrusion molding, calendar molding and the like are possible, and at the time of molding, it can also be molded as a separator including passages for cooling water, hydrogen gas and oxygen gas. Also, the porosity is 5%
By the following, it is possible to obtain a fuel cell separator having well-balanced conductivity and mechanical properties such as impact strength and bending strength. In the above description, the fuel cell separator was described, but the molded product of the present invention is a connector conductive material, a push button switch movable contact,
It can be widely applied to various members such as IC antistatic trays and the like, which require conductivity or antistatic function, containers, and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂または熱硬化性樹脂 100重量
部に、導電性フィラーとしてケッチェンブラック50〜 1
00重量部と、1500℃以上で焼成された真球状黒鉛粒子 1
50重量部以上を配合して得られた、空隙率が5%以下
で、成形体のX−Y方向の体積固有抵抗値に対するZ方
向の体積固有抵抗値の比の値が2以下であることを特徴
とする導電性成形品。
1. Ketjenblack 50-1 as a conductive filler in 100 parts by weight of a thermoplastic resin or a thermosetting resin.
00 parts by weight and spherical graphite particles fired at 1500 ° C or higher 1
The porosity obtained by blending 50 parts by weight or more is 5% or less, and the ratio of the volume specific resistance value in the Z direction to the volume specific resistance value in the XY direction of the molded product is 2 or less. A conductive molded product characterized by.
JP6166782A 1994-07-19 1994-07-19 Conductive mold Pending JPH0831231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6166782A JPH0831231A (en) 1994-07-19 1994-07-19 Conductive mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6166782A JPH0831231A (en) 1994-07-19 1994-07-19 Conductive mold

Publications (1)

Publication Number Publication Date
JPH0831231A true JPH0831231A (en) 1996-02-02

Family

ID=15837583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6166782A Pending JPH0831231A (en) 1994-07-19 1994-07-19 Conductive mold

Country Status (1)

Country Link
JP (1) JPH0831231A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059348A1 (en) * 1999-06-09 2000-12-13 Nisshinbo Industries, Inc. Electroconductive resin composition, its use as fuel cell separator and process for production thereof
JP2003523066A (en) * 2000-02-17 2003-07-29 ネドスタック ホールディング ビー.ブイ. Method for producing conductive composite material
EP1394878A1 (en) * 2001-05-11 2004-03-03 Kureha Chemical Industry Co., Ltd. Separator for solid state polymer type fuel cell and method for producing the same
WO2004019438A1 (en) * 2002-08-23 2004-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel cell separator and its manufacturing method
JP2005122974A (en) * 2003-10-15 2005-05-12 Dainippon Ink & Chem Inc Fuel cell separator and fuel cell
WO2005056685A1 (en) * 2003-12-15 2005-06-23 Bridgestone Corporation Thermoplastic resin composition and thermoplastic resin molded article
EP1061597A3 (en) * 1999-06-14 2005-07-13 JFE Steel Corporation A fuel cell separator, a fuel cell using the fuel cell separator, and a method for making the fuel cell separator
EP1246285A3 (en) * 2001-03-30 2006-05-24 Nichias Corporation Fuel cell separator and method for manufacturing the same
US7063914B2 (en) 2000-09-04 2006-06-20 Nippon Steel Chemical Co., Ltd. Fuel cell separator, process for producing the same and material therefor
JP2007005263A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Composition for molding separator for fuel cell and separator for fuel cell
US7494740B2 (en) 2002-01-14 2009-02-24 Commissariat A L'energie Atomique Microcomposite powder based on flat graphite particles and on a fluoropolymer and objects made from same
US7931958B2 (en) * 2006-08-07 2011-04-26 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8105964B2 (en) 2006-11-06 2012-01-31 Hexcel Composites, Ltd. Composite materials
JP2013020803A (en) * 2011-07-11 2013-01-31 Tokai Carbon Co Ltd Fuel cell separator and method for manufacturing the same
CN103247364A (en) * 2012-02-10 2013-08-14 日东电工株式会社 Conductive composition, conductive composition sheet, conductive substrate, collector sheet, printed circuit board, fuel cell and method of manufacturing the conductive composition
CN105846189A (en) * 2015-02-03 2016-08-10 Smk株式会社 Card connector with taking-out mechanism

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059348A1 (en) * 1999-06-09 2000-12-13 Nisshinbo Industries, Inc. Electroconductive resin composition, its use as fuel cell separator and process for production thereof
EP1061597A3 (en) * 1999-06-14 2005-07-13 JFE Steel Corporation A fuel cell separator, a fuel cell using the fuel cell separator, and a method for making the fuel cell separator
JP2003523066A (en) * 2000-02-17 2003-07-29 ネドスタック ホールディング ビー.ブイ. Method for producing conductive composite material
US7063914B2 (en) 2000-09-04 2006-06-20 Nippon Steel Chemical Co., Ltd. Fuel cell separator, process for producing the same and material therefor
EP1246285A3 (en) * 2001-03-30 2006-05-24 Nichias Corporation Fuel cell separator and method for manufacturing the same
EP1394878A4 (en) * 2001-05-11 2007-10-10 Kureha Corp Separator for solid state polymer type fuel cell and method for producing the same
EP1394878A1 (en) * 2001-05-11 2004-03-03 Kureha Chemical Industry Co., Ltd. Separator for solid state polymer type fuel cell and method for producing the same
US7494740B2 (en) 2002-01-14 2009-02-24 Commissariat A L'energie Atomique Microcomposite powder based on flat graphite particles and on a fluoropolymer and objects made from same
WO2004019438A1 (en) * 2002-08-23 2004-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel cell separator and its manufacturing method
JP2005122974A (en) * 2003-10-15 2005-05-12 Dainippon Ink & Chem Inc Fuel cell separator and fuel cell
WO2005056685A1 (en) * 2003-12-15 2005-06-23 Bridgestone Corporation Thermoplastic resin composition and thermoplastic resin molded article
JP2007005263A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Composition for molding separator for fuel cell and separator for fuel cell
US7931958B2 (en) * 2006-08-07 2011-04-26 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8075988B2 (en) 2006-08-07 2011-12-13 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9221955B2 (en) 2006-08-07 2015-12-29 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8137798B2 (en) 2006-08-07 2012-03-20 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9828477B2 (en) 2006-08-07 2017-11-28 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9822228B2 (en) 2006-08-07 2017-11-21 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8394491B2 (en) 2006-08-07 2013-03-12 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8105964B2 (en) 2006-11-06 2012-01-31 Hexcel Composites, Ltd. Composite materials
US8980771B2 (en) 2006-11-06 2015-03-17 Hexcel Composites Limited Composite materials
US8980770B2 (en) 2006-11-06 2015-03-17 Hexcel Composites Limited Composite materials
US9603229B2 (en) 2006-11-06 2017-03-21 Hexcel Composites Limited Composite materials
US8263503B2 (en) 2006-11-06 2012-09-11 Hexcel Composites, Ltd. Composite materials
JP2013020803A (en) * 2011-07-11 2013-01-31 Tokai Carbon Co Ltd Fuel cell separator and method for manufacturing the same
US20130209918A1 (en) * 2012-02-10 2013-08-15 Nitto Denko Corporation Conductive composition, conductive composition sheet, conductive substrate, collector sheet, printed circuit board, fuel cell and method of manufacturing the conductive composition
US8980138B2 (en) * 2012-02-10 2015-03-17 Nitto Denko Corporation Conductive composition, conductive composition sheet, conductive substrate, collector sheet, printed circuit board, fuel cell and method of manufacturing the conductive composition
CN103247364A (en) * 2012-02-10 2013-08-14 日东电工株式会社 Conductive composition, conductive composition sheet, conductive substrate, collector sheet, printed circuit board, fuel cell and method of manufacturing the conductive composition
CN105846189A (en) * 2015-02-03 2016-08-10 Smk株式会社 Card connector with taking-out mechanism

Similar Documents

Publication Publication Date Title
JPH0831231A (en) Conductive mold
US6764624B2 (en) Method of producing fuel cell separator, fuel cell separator, and polymer electrolyte fuel cell
US20070111078A1 (en) Fuel cell bipolar plate
KR20020020875A (en) Highly conductive molding compounds and fuel cell bipolar plates comprising these compounds
US6746792B2 (en) Fuel cell separator composition, fuel cell separator and method of manufacture, and solid polymer fuel cell
WO2000030202A1 (en) Fuel cell collector plate and method of fabrication
US7728066B2 (en) Conductive resin molding
JP2002025571A (en) Fuel cell separator, its manufacturing method, and solid high polymer molecule fuel cell
US6815112B2 (en) Fuel cell separator and polymer electrolyte fuel cell
US7727422B2 (en) Electrically-conductive resin composition for porous fuel cell bipolar plate and method for the production thereof
JP5249609B2 (en) Fuel cell separator and manufacturing method thereof
JP5321465B2 (en) Fuel cell separator
JPH10334927A (en) Separator for solid high polymer fuel cell and its manufacture
JP4692188B2 (en) Fuel cell separator and method of manufacturing the same
JP2008016307A (en) Fuel cell separator
JP2003297385A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid high polymer fuel cell
EP3528326B1 (en) Resin composition for dense fuel cell separators
JPH07192733A (en) Current collecting electrode plate of solid polymer electrolyte fuel cell
US20050181260A1 (en) Elastomeric separator plates and mehtod of fabrication
JP2010027277A (en) Method of manufacturing separator for fuel cell
JPH07240116A (en) Conductive composite and compact
JP5266304B2 (en) Fuel cell separator and method of manufacturing the same
JP4455810B2 (en) Method for producing separator for polymer electrolyte fuel cell
JP2005222937A (en) Separator for solid polymer fuel cell and solid polymer fuel cell
JPH081663A (en) Production of molding pellet of highly filled compound

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040405