JPH08280136A - Method for controlling distributed power supply linked with power system - Google Patents

Method for controlling distributed power supply linked with power system

Info

Publication number
JPH08280136A
JPH08280136A JP7079227A JP7922795A JPH08280136A JP H08280136 A JPH08280136 A JP H08280136A JP 7079227 A JP7079227 A JP 7079227A JP 7922795 A JP7922795 A JP 7922795A JP H08280136 A JPH08280136 A JP H08280136A
Authority
JP
Japan
Prior art keywords
power
voltage
interconnection point
limit value
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7079227A
Other languages
Japanese (ja)
Other versions
JP3407234B2 (en
Inventor
Hidetaka Kidoguchi
秀隆 木戸口
Hisashi Fujimoto
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP07922795A priority Critical patent/JP3407234B2/en
Publication of JPH08280136A publication Critical patent/JPH08280136A/en
Application granted granted Critical
Publication of JP3407234B2 publication Critical patent/JP3407234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE: To make it possible to siginificantly suppress hunting in the output voltage of a distributed power supply, by setting for interconnection point voltage an upper limit voltage, at which voltage suppressing operation is started, and a lower limit voltage, at which voltage suppressing operation is ended. CONSTITUTION: When a distributed power supply 5 is not fully charged, the voltage of an interconnection point is reduced by the amount equal to the voltage drop. When interconnection is performed and resultant output is supplied to a load 4, the interconnection point voltage is increased. This increase in voltage causes an inverter 7 to generate capacitive reactive power. It is fed to the reactance of distribution line impedance 3 to suppress the interconnection point voltage. For the purpose a lower limit value is previously set under the upper limit value of interconnection point voltage. Capacitive reactive power is supplied until the interconnection point voltage reaches the lower limit value. When the lower limit value is reached, the operation is returned to a normal state to output maximum power with a power factor of 100%. This enables suppression of hunting in the output power of a distributed power supply 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、分散配置型電源を電
力系統と連系して運転する際に、両電源が連系する地点
の電圧が上昇するのを抑制する電力系統と連系する分散
配置型電源の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is connected to a power system that suppresses an increase in the voltage at the point where the two power sources are interconnected when the distributed power source is operated in an interconnected manner with the power system. The present invention relates to a control method for distributed power sources.

【0002】[0002]

【従来の技術】風力発電や太陽電池のように天然自然の
エネルギーを電力に変換する電源や燃料電池などは、大
気汚染などの公害を生じないで電力を発生できるし、省
エネルギー効果も得られるので、多用されるようになっ
ている。これら各電源は、従来は電力系統とは独立した
状態で使用していたので、発生電力に余剰を生じても、
この余剰電力を有効利用することはできなかった。しか
し、近年これらの電源を電力系統と連系して運転するこ
とが可能になった。このような電源を分散配置型電源と
称する。以下では、太陽電池を電力源にした分散配置型
電源を例にして連系運転を説明する。
2. Description of the Related Art Power sources such as wind power generators and solar cells that convert natural natural energy into electric power, fuel cells, etc. can generate electric power without causing pollution such as air pollution, and also have an energy saving effect. , Is becoming popular. Conventionally, each of these power supplies was used independently of the power system, so even if there is a surplus in the generated power,
It was not possible to effectively use this surplus power. However, in recent years, it has become possible to operate these power sources by connecting them to the power system. Such a power supply is called a distributed power supply. Below, the interconnected operation will be described by taking a distributed power source using a solar cell as a power source as an example.

【0003】図3は分散配置型電源を電力系統と連系し
て運転する際の基本的な構成を示した主回路接続図であ
る。図3の回路において、5は分散配置型電源であっ
て、太陽電池6とインバータ7とで構成している。系統
電源2と配電線インピーダンス3とで電力系統を構成し
ており、この電力系統と分散配置型電源5とを接続する
地点が連系点である。この連系点に負荷4を接続する。
FIG. 3 is a main circuit connection diagram showing a basic configuration when a distributed power source is operated in connection with a power system. In the circuit of FIG. 3, reference numeral 5 denotes a distributed power supply, which is composed of a solar cell 6 and an inverter 7. A power system is constituted by the system power supply 2 and the distribution line impedance 3, and the point where the power system and the distributed power supply 5 are connected is the interconnection point. The load 4 is connected to this interconnection point.

【0004】太陽電池6は日射量によってその発生電力
は変動するが、常にその時点での発生電力が最大になる
ように、太陽電池6の特性に合わせてインバータ7へ入
力する直流電流・電圧を制御(この部分の図示は省略し
ている)する。この直流電圧から得られる電圧指令値と
電力系統の交流に同期追従して作る正弦波とで交流電流
指令値を発生させるが、パルス幅変調制御形のインバー
タ7はこの交流電流指令値で制御される。太陽電池6は
前述したように、その時点で発生可能な最大直流電力を
出力し、前記のインバータ7はこの直流電力を 100%力
率の交流電力に変換して負荷4へ給電する。
The power generated by the solar cell 6 varies depending on the amount of solar radiation, but the DC current and voltage input to the inverter 7 are adjusted according to the characteristics of the solar cell 6 so that the power generated at that time is always maximized. Control (illustration of this part is omitted). An AC current command value is generated by a voltage command value obtained from this DC voltage and a sine wave generated by synchronously following the AC of the power system. The pulse width modulation control type inverter 7 is controlled by this AC current command value. It As described above, the solar cell 6 outputs the maximum DC power that can be generated at that time, and the inverter 7 converts this DC power into AC power having a 100% power factor and feeds it to the load 4.

【0005】ここで、負荷4の消費電力が増加するか或
いは太陽の日射量が減少して、太陽電池6の発生電力が
不足になれば、電力系統から連系点を介して、不足分の
電力が負荷4へ供給される。これとは逆に、負荷4の消
費電力が減少するなどにより太陽電池6の発生電力に余
剰を生じれば、この余剰電力は、連系点と配電線インピ
ーダンス3とを介して系統電源2へ送り込まれる。これ
を電力の逆潮流という。尚、前述した同期追従により余
弦波を作れば、進み力率又は遅れ力率にできるので、無
効電力制御が可能になる。
Here, if the power consumption of the load 4 increases or the amount of solar radiation of the sun decreases and the power generated by the solar cell 6 becomes insufficient, the shortage is generated from the power system via the interconnection point. Electric power is supplied to the load 4. On the contrary, if a surplus occurs in the power generated by the solar cell 6 due to a decrease in the power consumption of the load 4, the surplus power is transferred to the system power supply 2 via the interconnection point and the distribution line impedance 3. Sent in. This is called reverse power flow. Incidentally, if a cosine wave is generated by the above-mentioned synchronous tracking, it is possible to set the lead power factor or the lag power factor, so that the reactive power control becomes possible.

【0006】分散配置型電源5が発電していないとき、
系統電源2からは配電線インピーダンス3を経て負荷4
へ電力を送っており、この電力で配電線インピーダンス
3には電圧降下を生じる。よって連系点の電圧は、系統
電源2の出力電圧よりもこの電圧降下分だけ低くなる。
分散配置型電源5が電力系統と連系運転してその出力を
負荷4へ供給すると、その分だけ系統電源2から供給す
る電力が減少するので、配電線インピーダンス3の電圧
降下も小さくなる。即ち連系点電圧が上昇する。更に分
散配置型電源5の供給電力が増加して逆潮流状態になる
と、連系点電圧が系統電源2の出力電圧よりも高くなる
こともあり、この電圧上昇が連系点に接続している機器
に損傷を与える恐れを生じる。
When the distributed power source 5 is not generating power,
From the system power supply 2 through the distribution line impedance 3 to the load 4
To the distribution line impedance 3 due to this power. Therefore, the voltage at the interconnection point becomes lower than the output voltage of the system power supply 2 by this voltage drop.
When the distributed power supply 5 is connected to the power system and supplies its output to the load 4, the power supplied from the system power supply 2 is reduced accordingly, and the voltage drop of the distribution line impedance 3 is also reduced. That is, the interconnection point voltage rises. Further, when the power supply of the distributed power source 5 increases and enters a reverse flow state, the interconnection point voltage may become higher than the output voltage of the system power source 2, and this voltage increase is connected to the interconnection point. This may cause damage to the equipment.

【0007】連系点のこのような電圧上昇は、進相無効
電力制御か有効電力制御により抑制するのであるが、一
般には両者の制御を併用する。進相無効電力制御は、イ
ンバータ7に進相無効電力を発生させて、これを配電線
インピーダンス3のリアクタンス分に流す(分散配置型
電源5が発生する進相無効電力は系統電源2側から見れ
ば遅相無効電力である)ことで電圧降下を生じさせて、
連系点電圧を抑制するものである。又、有効電力制御
は、配電線インピーダンス3の抵抗分に流れる逆潮流電
力による電圧上昇を、当該逆潮流電力を制限することで
連系点電圧を抑制するものである。
Such a voltage increase at the interconnection point is suppressed by the advanced reactive power control or active power control, but both controls are generally used together. In the phase-advanced reactive power control, the phase-advanced reactive power is generated in the inverter 7, and the phase-advanced reactive power is supplied to the reactance of the distribution line impedance 3 (the phase-advanced reactive power generated by the distributed power supply 5 can be seen from the system power supply 2 side). If it is lagging reactive power), it causes a voltage drop,
It is intended to suppress the interconnection point voltage. In addition, the active power control is to suppress the voltage increase due to the reverse flow power flowing through the resistance of the distribution line impedance 3 and limit the reverse flow power to suppress the interconnection point voltage.

【0008】ところで、「分散型電源系統連系技術指
針」では、進相無効電力制御により電圧を抑制する場合
でも、力率は85%以上にすることが定められているの
で、通常は次のように制御する。即ち、分散配置型電源
5が出力する有効電力はそのままの値を維持し、先ず進
相無効電力制御により電圧を抑制するが、力率を85%ま
で低下させても未だ電圧の抑制が不十分であるならば、
次に有効電力を絞る制御を開始させる。
By the way, the "Distributed Power Supply System Interconnection Technical Guidelines" stipulates that the power factor is 85% or more even when the voltage is suppressed by the advanced reactive power control. To control. That is, the active power output from the distributed power supply 5 is maintained as it is, and the voltage is first suppressed by the advanced reactive power control, but the voltage is still not sufficiently suppressed even if the power factor is reduced to 85%. If it is,
Next, the control for reducing the active power is started.

【0009】図4は連系点電圧の上昇を抑制する従来方
法を示したフローチャートであって、分散配置型電源5
が力率 100%,最大出力で運転中(処理11)に、連系
点電圧が予め定めた制限値を越えれば(判断21)、力
率が85%になるまでは進相無効電力制御(処理12,判
断22)を行う。それでも未だ連系点電圧が制限値以上
(判断23)ならば有効電力を削減(処理13)する制
御を行うが、有効電力を制御すると力率も変化してしま
うから、力率85%を維持するように、有効電力と同時に
進相無効電力も調整(処理14,判断24)して、連系
点電圧を制限値以下に制御する。連系点電圧が制限値以
下になれば(判断25)、分散配置型電源5は再び元の
運転状態,即ち力率 100%で最大出力運転の状態(処理
15)に戻す。
FIG. 4 is a flow chart showing a conventional method for suppressing the rise in the interconnection point voltage.
Is 100% power factor and is operating at maximum output (Process 11), if the interconnection point voltage exceeds the predetermined limit value (decision 21), the phase advance reactive power control ( Processing 12, determination 22) is performed. If the interconnection point voltage is still above the limit value (decision 23), control is performed to reduce active power (process 13), but if active power is controlled, the power factor will also change, so maintain a power factor of 85%. As described above, the active phase reactive power is adjusted at the same time as the active power (process 14, determination 24) to control the interconnection point voltage to be equal to or lower than the limit value. When the interconnection point voltage becomes equal to or lower than the limit value (decision 25), the distributed power source 5 returns to the original operation state, that is, the maximum output operation state with a power factor of 100% (process 15).

【0010】[0010]

【発明が解決しようとする課題】前述したように、配電
線インピーダンス3の電圧降下のために、分散配置型電
源5が電力系統と連系運転すると、連系点の電圧が上昇
すれることがある。この場合は、先ず進相無効電力制御
で力率を85%にするが、それでも電圧抑制効果が不十分
ならば有効電力を削減する制御を行うが、有効電力削減
時に力率が85%以下にならないようにするためには、進
相無効電力も同時に削減しなければならない。この進相
無効電力の削減は電圧抑制効果を低下させるから、これ
を補うべくより一層有効電力を削減しなければならなく
なる。このような制御の結果で連系点電圧を制限値以下
に抑制することに成功すれば、分散配置型電源5は再び
力率100%で最大出力運転の状態に戻るので、連系点電
圧は再度上昇を開始する。電圧が制限値を越えれば前述
した動作でこの電圧を抑制する。このような動作を繰り
返す際に分散配置型電源5が出力する電力の変動は、配
電線インピーダンス3を構成するリアクタンス分と抵抗
分との比率によるけれども、大である。即ち分散配置型
電源5の出力電力は大きくハンチングする不都合を生じ
る。
As described above, when the distributed power source 5 is connected to the power system due to the voltage drop of the distribution line impedance 3, the voltage at the connection point may rise. is there. In this case, first, the power factor is set to 85% by the advanced reactive power control, but if the voltage suppression effect is still insufficient, control is performed to reduce the active power. However, when reducing the active power, the power factor is reduced to 85% or less. To prevent this, the advanced reactive power must be reduced at the same time. Since the reduction of the phase-advanced reactive power lowers the voltage suppression effect, it is necessary to further reduce the active power to compensate for this. If the result of such control succeeds in suppressing the interconnection point voltage below the limit value, the distributed power source 5 returns to the state of maximum output operation with a power factor of 100% again. Start rising again. If the voltage exceeds the limit value, this voltage is suppressed by the operation described above. The fluctuation of the electric power output from the distributed power source 5 when repeating such an operation is large although it depends on the ratio of the reactance component and the resistance component of the distribution line impedance 3. That is, the output power of the distributed power source 5 is greatly hunted, which is a disadvantage.

【0011】図5は図3の回路を図4の従来例フローチ
ャートに従って制御したときの各部の動作を示したタイ
ムチャートであって、図5は実線Aで示した系統電源
2の電圧変化と実線Cで示した連系点電圧の変化、図5
は分散配置型電源5が出力する有効電力の変化、図5
は分散配置型電源5が出力する進相無効電力の変化、
図5は回路力率の変化を、それぞれが示している。
FIG. 5 is a time chart showing the operation of each part when the circuit of FIG. 3 is controlled according to the flowchart of the conventional example of FIG. 4, and FIG. 5 shows the voltage change of the system power supply 2 shown by the solid line A and the solid line. Change in interconnection point voltage indicated by C, FIG.
Is the change in active power output from the distributed power source 5, FIG.
Is the change in the advanced reactive power output from the distributed power source 5,
FIG. 5 shows changes in the circuit power factor.

【0012】系統電源2電圧の上昇と共に連系点電圧も
上昇して、t1 時点で制限値に達すると、進相無効電力
が増加して力率は低下し始める。t2 時点で力率が85%
まで低下すると進相無効電力の増加は止まり、有効電力
が減少し始めるので、力率85%を維持するべく進相無効
電力も減少を開始する。t3 時点で連系点電圧が制限値
よりやや小さくなれば有効電力を増やし始めるから進相
無効電力も増加を開始する。しかしt4 時点で連系点電
圧が制限値に達して、有効電力と進相無効電力はふただ
び減少する。この制御を繰り返す際に、有効電力は大き
くハンチングする(図5参照)。
As the voltage of the system power supply 2 rises, the interconnection point voltage also rises, and when the limit value is reached at time t 1 , the advanced reactive power increases and the power factor begins to decrease. Power factor is 85% at time t 2.
When it goes down, the advance reactive power stops increasing and the active power starts to decrease. Therefore, the advance reactive power also starts decreasing to maintain the power factor of 85%. If the voltage at the interconnection point becomes slightly smaller than the limit value at the time point t 3 , the active power starts increasing, and the advance reactive power also starts increasing. However, at the time point t 4 , the interconnection point voltage reaches the limit value, and the active power and the phase-advancing reactive power are reduced in a lump. When this control is repeated, active power is greatly hunted (see FIG. 5).

【0013】そこでこの発明の目的は、電力系統と連系
運転する分散配置型電源の出力電力が、連系点電圧を一
定値に維持するために大きくハンチングするのを抑制す
ることにある。
Therefore, an object of the present invention is to prevent the output power of a distributed power source that is interconnected with an electric power system from hunting significantly in order to maintain the interconnection point voltage at a constant value.

【0014】[0014]

【課題を解決するための手段】前記の目的を達成するた
めにこの発明の電力系統と連系する分散配置型電源の制
御方法は、系統電源から配電線インピーダンスを介して
電力を供給する電力系統と分散配置型電源とを連系点で
接続し、両電源の連系運転で負荷へ電力を供給する際
に、前記連系点の電圧が予め定めた一定値まで上昇すれ
ば、前記分散配置型電源は前記連系点へ無効分電力の供
給の開始,又は前記連係点へ供給している有効分電力の
削減を行う電力系統と連系する分散配置型電源の制御方
法において、前記連系点電圧に設けた前記一定値の下側
に下限値を設定し、当該連系点電圧がこの一定値と下限
値との間に在るときは、前記分散配置型電源は前記連系
点へ無効分電力の供給を継続し,又は前記連係点へ供給
している有効分電力の削減を継続するものとする。
In order to achieve the above-mentioned object, a method of controlling a distributed power source, which is interconnected with a power system of the present invention, is a power system for supplying power from a system power source through a distribution line impedance. If the voltage at the interconnection point rises to a predetermined constant value when power is supplied to the load during interconnection operation of both power sources by connecting the The distributed power source is connected to a power system for starting the supply of reactive power to the interconnection point or reducing the active power supplied to the interconnection point. When a lower limit value is set below the fixed value provided for the point voltage and the interconnection point voltage is between this constant value and the lower limit value, the distributed power source supplies to the interconnection point. Reactive power that continues to be supplied as reactive power or is being supplied to the link point It is intended to continue the reduction.

【0015】[0015]

【作用】電力系統と連系運転する分散配置型電源は、通
常は 100%力率で最大電力を出力するべく運転し、連系
点電圧が制限値を越えた場合にのみ、有効電力と進相無
効電力の両者を制御して連系点電圧を抑制するのである
が、本発明では、この連系点電圧に上限値と下限値とを
設け、連系点電圧がこの範囲内に在るときは前述した両
制御を継続して連系点電圧を前記上限値以下となるよう
に抑制し、連系点電圧が前記下限値以下になったときに
のみ 100%力率の最大電力を出力する通常運転に戻らせ
るものである。
[Operation] The distributed power supply that operates in conjunction with the power system normally operates to output the maximum power at 100% power factor, and progresses to the active power only when the grid voltage exceeds the limit value. Although both of the phase reactive powers are controlled to suppress the interconnection point voltage, in the present invention, the interconnection point voltage has an upper limit value and a lower limit value, and the interconnection point voltage is within this range. In this case, both of the above-mentioned controls are continued to suppress the interconnection point voltage below the upper limit value, and the maximum power of 100% power factor is output only when the interconnection point voltage falls below the lower limit value. Yes, you can return to normal operation.

【0016】[0016]

【実施例】図1は本発明の実施例を表したフローチャー
トであるが、図1の実施例フローチャートに図示の5つ
の処理11〜15と、2つの論理和素子18,19と、
5つの判断21〜25の名称と役割は、図4で既述の従
来方法フローチャートと同じであるから、これらの説明
は省略する。
FIG. 1 is a flowchart showing an embodiment of the present invention. Five processes 11 to 15 and two OR elements 18 and 19 shown in the flowchart of the embodiment of FIG.
The names and roles of the five determinations 21 to 25 are the same as those in the conventional method flowchart described above with reference to FIG.

【0017】この実施例フローチャートは、連系点電圧
の上限値(又は制限値)の下側に下限値を設定し、連系
点電圧がこの下限値に達するまでは進相無効電力の供給
を継続(処理31)し、或いは有効電力の削減を継続
(処理32)し、下限値に到達したときにやっと 100%
力率の最大電力を出力する通常運転状態に戻すことで、
分散配置型電源5の出力電力のハンチングを抑制する。
In the flow chart of this embodiment, the lower limit value is set below the upper limit value (or limit value) of the interconnection point voltage, and the advance reactive power is supplied until the interconnection point voltage reaches this lower limit value. Continue (Process 31) or continue reducing active power (Process 32), and finally reach 100% when the lower limit is reached.
By returning to the normal operating state that outputs the maximum power of the power factor,
The hunting of the output power of the distributed power source 5 is suppressed.

【0018】[0018]

【発明の効果】図2は図3の回路を図1の実施例フロー
チャートの制御により本発明の効果を表したタイムチャ
ートであって、図2は実線Aで示した系統電源2の電
圧変化と実線Cで示した連系点電圧の変化、図2は分
散配置型電源5が出力する有効電力の変化、図2は分
散配置型電源5が出力する進相無効電力の変化、図2
は回路力率の変化を、それぞれが示している。
FIG. 2 is a time chart showing the effect of the present invention by controlling the circuit of FIG. 3 by the flowchart of the embodiment of FIG. 1. FIG. 2 shows the voltage change of the system power supply 2 shown by the solid line A. 2 shows a change in interconnection point voltage shown by a solid line C, FIG. 2 shows a change in active power output by the distributed power source 5, FIG. 2 shows a change in active reactive power output by the distributed power source 5, FIG.
Shows the change of the circuit power factor.

【0019】本発明では連系点電圧に上限値と下限値と
を設定(図2参照)し、この範囲内の在るときにのみ
分散配置型電源5は連系点電圧の抑制動作をする。即
ち、系統電源2電圧の上昇と共に連系点電圧も上昇し
て、t1 時点で上限値に達すると、進相無効電力が増加
して力率は低下し始める。t2 時点で力率が85%まで低
下すると進相無効電力の増加は止まり、有効電力が減少
し始めるので、力率85%を維持するべく進相無効電力も
減少を開始する。t3 時点で連系点電圧が上限値を下回
ると、有効電力と進相無効電力はその時点の値を維持す
るから、力率も85%のままである。t11時点に系統電源
2の電圧が低下するのにつれて連系点電圧も低下し始
め、t12時点で下限値に到達すると有効電力が増加し始
めるので、力率を85%に維持するべく進相無効電力も増
加を開始する。その結果、t14時点で連系点電圧は再び
上限値に達して電圧抑制動作を再開している。
In the present invention, an upper limit value and a lower limit value are set for the interconnection point voltage (see FIG. 2), and the distributed power supply 5 performs the operation of suppressing the interconnection point voltage only within this range. . That is, as the voltage of the system power supply 2 rises, the interconnection point voltage also rises, and when it reaches the upper limit value at time t 1 , the advanced reactive power increases and the power factor begins to decrease. When the power factor decreases to 85% at time t 2 , the advance reactive power stops increasing and the active power starts to decrease. Therefore, the advance reactive power also starts decreasing to maintain the power factor 85%. When the interconnection point voltage falls below the upper limit value at time t 3 , the active power and the advanced reactive power maintain the values at that time, so the power factor remains 85%. linking point voltage as the voltage of the system power supply 2 is reduced to t 11 time also begins to decrease, the effective power when it reaches the lower limit value at t 12 the time begins to increase, advances to maintain a power factor of 85% Phase reactive power also begins to increase. As a result, the interconnection point voltage reaches the upper limit value again at time t 14 , and the voltage suppression operation is restarted.

【0020】この図2のタイムチャートで明らかなよう
に、本発明では電圧抑制動作を開始する上限電圧と電圧
抑制動作を終了する下限電圧とを設けることで、分散配
置型電源5の出力電圧のハンチングを大幅に抑制(図2
,参照)する効果が得られる。
As is apparent from the time chart of FIG. 2, according to the present invention, by providing the upper limit voltage for starting the voltage suppressing operation and the lower limit voltage for ending the voltage suppressing operation, the output voltage of the distributed power supply 5 is reduced. Significantly suppress hunting (Fig. 2
, Refer to).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表したフローチャートFIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】図3の回路を図1の実施例フローチャートの制
御により本発明の効果を表したタイムチャート
2 is a time chart showing the effect of the present invention by controlling the circuit of FIG. 3 by the flowchart of the embodiment of FIG.

【図3】分散配置型電源を電力系統と連系して運転する
際の基本的な構成を示した主回路接続図
FIG. 3 is a main circuit connection diagram showing a basic configuration when a distributed power source is operated in connection with a power system.

【図4】連系点電圧の上昇を抑制する従来方法を示した
フローチャート
FIG. 4 is a flowchart showing a conventional method for suppressing an increase in interconnection point voltage.

【図5】図3の回路を図4の従来例フローチャートに従
って制御したときの各部の動作を示したタイムチャート
5 is a time chart showing the operation of each part when the circuit of FIG. 3 is controlled according to the flowchart of the conventional example of FIG.

【符号の説明】[Explanation of symbols]

2 系統電源 3 配電線インピーダンス 4 負荷 5 分散配置型電源 6 太陽電池 7 インバータ 11〜15 処理 18,19 論理和素子 21〜25 判断 31,32 判断 2 system power supply 3 distribution line impedance 4 load 5 distributed power supply 6 solar cell 7 inverters 11-15 processing 18,19 logical sum element 21-25 judgment 31,32 judgment

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】系統電源から配電線インピーダンスを介し
て電力を供給する電力系統と分散配置型電源とを連系点
で接続し、両電源の連系運転で負荷へ電力を供給する際
に、前記連系点の電圧が予め定めた一定値まで上昇すれ
ば、前記分散配置型電源は前記連系点へ無効分電力の供
給の開始,又は前記連係点へ供給している有効分電力の
削減を行う電力系統と連系する分散配置型電源の制御方
法において、 前記連系点電圧に設けた前記一定値の下側に下限値を設
定し、当該連系点電圧がこの一定値と下限値との間に在
るときは、前記分散配置型電源は前記連系点へ無効分電
力の供給を継続し,又は前記連係点へ供給している有効
分電力の削減を継続することを特徴とする電力系統と連
系する分散配置型電源の制御方法。
1. A power system for supplying power from a system power source through a distribution line impedance and a distributed power source are connected at a interconnection point, and when power is supplied to a load in an interconnection operation of both power sources, When the voltage at the interconnection point rises to a predetermined constant value, the distributed power source starts supplying reactive power to the interconnection point or reduces active power being supplied to the interconnection point. In the method of controlling a distributed power supply system that is interconnected with a power system, the lower limit value is set below the constant value provided for the interconnection point voltage, and the interconnection point voltage is set to the constant value and the lower limit value. And the distributed power source continues to supply reactive power to the interconnection point, or continues to reduce active power supplied to the interconnection point. Control method for distributed power sources that are connected to a power system.
JP07922795A 1995-04-05 1995-04-05 Control method of distributed arrangement type power supply linked to power system Expired - Lifetime JP3407234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07922795A JP3407234B2 (en) 1995-04-05 1995-04-05 Control method of distributed arrangement type power supply linked to power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07922795A JP3407234B2 (en) 1995-04-05 1995-04-05 Control method of distributed arrangement type power supply linked to power system

Publications (2)

Publication Number Publication Date
JPH08280136A true JPH08280136A (en) 1996-10-22
JP3407234B2 JP3407234B2 (en) 2003-05-19

Family

ID=13684025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07922795A Expired - Lifetime JP3407234B2 (en) 1995-04-05 1995-04-05 Control method of distributed arrangement type power supply linked to power system

Country Status (1)

Country Link
JP (1) JP3407234B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074846A (en) * 2005-09-08 2007-03-22 Central Res Inst Of Electric Power Ind Method of controlling voltage of distribution system, device and program
JP2008035640A (en) * 2006-07-28 2008-02-14 Central Res Inst Of Electric Power Ind Device, method and program for suppressing rising of voltage
JP2011055705A (en) * 2004-10-29 2011-03-17 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2011055656A (en) * 2009-09-02 2011-03-17 Tokyo Gas Co Ltd Fuel cell device, photovoltaic power generator, and distributed power supply system
JP2011114910A (en) * 2009-11-25 2011-06-09 Tokyo Gas Co Ltd Distributed power supply system, photovoltaic generating set, fuel cell device, and voltage adjustment method of distributed power supply system
JP2012147576A (en) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The Distribution system operation method, distribution system operation device, distribution system operation system, and program
US8301313B2 (en) 2001-09-28 2012-10-30 Aloys Wobben Method of reducing power provided by a wind power installation based on network conditions
WO2013099957A1 (en) * 2011-12-28 2013-07-04 三洋電機株式会社 Power conversion apparatus
JP2013138538A (en) * 2011-12-28 2013-07-11 Sanyo Electric Co Ltd Power conversion device
JP2013138540A (en) * 2011-12-28 2013-07-11 Sanyo Electric Co Ltd Power conversion device
JP2013138539A (en) * 2011-12-28 2013-07-11 Sanyo Electric Co Ltd Power conversion device
WO2018179712A1 (en) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 Power conversion device, power conversion system
JP2020171189A (en) * 2019-03-31 2020-10-15 信行 江▲崎▼ Voltage regulation device, voltage regulation method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169013A1 (en) 2011-06-07 2012-12-13 東芝三菱電機産業システム株式会社 Operation control device for photovoltaic power generation system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8301313B2 (en) 2001-09-28 2012-10-30 Aloys Wobben Method of reducing power provided by a wind power installation based on network conditions
JP2011055705A (en) * 2004-10-29 2011-03-17 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2007074846A (en) * 2005-09-08 2007-03-22 Central Res Inst Of Electric Power Ind Method of controlling voltage of distribution system, device and program
JP2008035640A (en) * 2006-07-28 2008-02-14 Central Res Inst Of Electric Power Ind Device, method and program for suppressing rising of voltage
JP2011055656A (en) * 2009-09-02 2011-03-17 Tokyo Gas Co Ltd Fuel cell device, photovoltaic power generator, and distributed power supply system
JP2011114910A (en) * 2009-11-25 2011-06-09 Tokyo Gas Co Ltd Distributed power supply system, photovoltaic generating set, fuel cell device, and voltage adjustment method of distributed power supply system
JP2012147576A (en) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The Distribution system operation method, distribution system operation device, distribution system operation system, and program
WO2013099957A1 (en) * 2011-12-28 2013-07-04 三洋電機株式会社 Power conversion apparatus
JP2013138538A (en) * 2011-12-28 2013-07-11 Sanyo Electric Co Ltd Power conversion device
JP2013138540A (en) * 2011-12-28 2013-07-11 Sanyo Electric Co Ltd Power conversion device
JP2013138539A (en) * 2011-12-28 2013-07-11 Sanyo Electric Co Ltd Power conversion device
WO2018179712A1 (en) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 Power conversion device, power conversion system
JP2018170932A (en) * 2017-03-30 2018-11-01 パナソニックIpマネジメント株式会社 Electric power conversion device, and electric power conversion system
JP2020171189A (en) * 2019-03-31 2020-10-15 信行 江▲崎▼ Voltage regulation device, voltage regulation method, and program

Also Published As

Publication number Publication date
JP3407234B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
JP2766407B2 (en) Inverter control device for photovoltaic power generation
CN106911145B (en) Control method of microgrid
JPH08280136A (en) Method for controlling distributed power supply linked with power system
JPH08315841A (en) Output control device of fuel cell power generation device
KR20030028839A (en) Isolated network and method for operation of an isolated network
JPH1169893A (en) Hybrid power generation system
CN108493919B (en) Droop control method and system for direct-current micro-grid
CN110970928A (en) Energy storage off-grid inverter with photovoltaic and commercial power simultaneously complementarily powered and control method
JP2002218654A (en) Photovoltaic power generation system
CN110611332B (en) Energy storage device of offshore wind power system and control method thereof
KR100866097B1 (en) Photovoltaic system associated with power line and control method thereof
JP2006101581A (en) System-interconnected inverter
CN105207270B (en) Improve the inverter power control method for coordinating of grid-connected voltage out-of-limit
CN110649590B (en) Energy cooperative control method for networking type direct-current micro-grid
CN116581763A (en) Method for selectively switching working modes of photovoltaic inverter system in power distribution network
CN113708405B (en) Energy storage off-grid inverter, control method thereof and energy storage off-grid inverter system
JP3584628B2 (en) Solar cell output power control method
Sharma et al. Decentralized power management and load sharing for parallel operation of diesel generator and PV-battery based autonomous AC microgrid
JP6479516B2 (en) Input control power storage system
JPH07255132A (en) Inverter for system interconnection
CN209767161U (en) System for synchronously participating in deep peak regulation and frequency modulation of thermal power plant in multidimensional way by utilizing flywheel battery
CN112510751A (en) Multi-microgrid balancing unit system architecture and control coordination method
Barbosa et al. Analysis of a single-phase hybrid bidirectional rectifier with series voltage compensation in a grid-connected DC microgrid
Merai et al. Coordinated control of multiple multi-function grid connected converters for power quality improvement in micro-grid applications
US6768285B2 (en) Power system for converting variable source power to constant load power

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term