JPH0824052B2 - Stacked fuel cell - Google Patents

Stacked fuel cell

Info

Publication number
JPH0824052B2
JPH0824052B2 JP2312673A JP31267390A JPH0824052B2 JP H0824052 B2 JPH0824052 B2 JP H0824052B2 JP 2312673 A JP2312673 A JP 2312673A JP 31267390 A JP31267390 A JP 31267390A JP H0824052 B2 JPH0824052 B2 JP H0824052B2
Authority
JP
Japan
Prior art keywords
voltage
fuel cell
gas
battery
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2312673A
Other languages
Japanese (ja)
Other versions
JPH04174975A (en
Inventor
正昭 松本
博子 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2312673A priority Critical patent/JPH0824052B2/en
Publication of JPH04174975A publication Critical patent/JPH04174975A/en
Publication of JPH0824052B2 publication Critical patent/JPH0824052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、積層型燃料電池に関し、特に反応ガスの
不足を素早く検出することにより電池に生じる劣化を未
然に防止する積層型燃料電池の保護装置に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a laminated fuel cell, and more particularly to protection of a laminated fuel cell that prevents deterioration of the cell in advance by quickly detecting a shortage of reaction gas. It relates to the device.

[従来の技術] 従来の積層型燃料電池では、特定セルの劣化あるいは
不良動作により誘発される電池全体の性能低下あるいは
事故発生を防止するため、幾つかの従来例が開示されて
いる。例えば、特開昭63−264875号公報では、ガスクロ
スやガス欠陥等による電池カーボンの酸化劣化を電池本
体の上・下流で一酸化炭素あるいは二酸化炭素の濃度を
計測し、所定値以上の濃度を検出したら運転を停止する
ことを開示している。これと類似したものは特開昭60−
54176号公報に見られる。この特開昭60−54176号公報で
は初期運転時あるいは運転中の定期点検時に最低の電圧
を示した単位電池あるいはその単位電池を含む複数電池
よりなるブロックの電圧を監視し、限界値を下回ったと
き運転を停止させることを開示している。
[Prior Art] In the conventional stacked fuel cell, some conventional examples are disclosed in order to prevent the deterioration of the entire cell performance or the occurrence of an accident caused by the deterioration or malfunction of a specific cell. For example, in Japanese Patent Laid-Open No. 63-264875, the oxidation deterioration of battery carbon due to gas cross or gas defect is measured on the upstream and downstream of the battery body to measure the concentration of carbon monoxide or carbon dioxide, and the concentration above a predetermined value is measured. It discloses that the operation is stopped when it is detected. The one similar to this is disclosed in JP-A-60-
See 54176. In this Japanese Laid-Open Patent Publication No. 60-54176, the voltage of a unit battery that shows the lowest voltage or a block composed of a plurality of batteries including the unit battery is monitored during initial operation or during regular inspection during operation, and the voltage is below the limit value. It discloses that when the operation is stopped.

第3図は例えば特開昭63−264875号公報に示された従
来の燃料電池の発電システムを示す系統図である。図に
おいて、(1)は一対のガス拡散電極間に電解質を保持
した単電池から構成される電池本体、(2)、(3)は
この電池本体(1)に酸化剤及び燃料を給排する酸化剤
の給排系及び燃料の給排系である。(4)はこれらの給
排系(2)、(3)に接続されたガス濃度検出装置で、
燃料の給排系(3)の電池本体(1)の上、下流側に、
又酸化剤の給排系(2)の電池本体(1)の下流側に接
続されている。
FIG. 3 is a system diagram showing a conventional fuel cell power generation system disclosed in, for example, JP-A-63-264875. In the figure, (1) is a battery main body composed of a single cell in which an electrolyte is held between a pair of gas diffusion electrodes, and (2) and (3) supply and discharge an oxidant and fuel to the battery main body (1). An oxidant supply / exhaust system and a fuel supply / exhaust system. (4) is a gas concentration detection device connected to these supply / discharge systems (2) and (3),
Above and below the cell body (1) of the fuel supply / discharge system (3),
The oxidant supply / discharge system (2) is connected to the downstream side of the battery body (1).

次に、第3図に示した従来の燃料電池の発電システム
の動作について説明する。電池本体(1)に酸化剤及び
燃料の給排系(2)、(3)を通して酸化剤と燃料が供
給され、電気化学的な反応により発電する。電池が劣化
あるいはガスクロス、ガス欠乏等を起こすと、リン酸型
燃料電池では電極のカーボン質が酸化される現象が生じ
る可能性があり、この結果として電池本体(1)の下流
側の排ガス中に一酸化炭素あるいは二酸化炭素を排出す
る。ガス濃度検出装置(4)はこの電池にとって異常反
応の生成物である一酸化炭素あるいは二酸化炭素を検出
し、異常と判断したとき電池の運転を停止する。更に、
燃料ガスには通常一酸化炭素や二酸化炭素が含まれてお
り、燃料給排系については電池本体(1)の上・下流側
よりガス濃度検出装置(4)に接続することにより、電
池の異常反応による一酸化炭素や二酸化炭素と燃料中に
含まれるそれらと分離評価される。
Next, the operation of the conventional fuel cell power generation system shown in FIG. 3 will be described. The battery body (1) is supplied with the oxidant and the fuel through the supply / discharge systems (2) and (3) for the oxidant and the fuel to generate electricity by an electrochemical reaction. When the cell deteriorates or causes gas crossing or gas deficiency, the carbonaceous material of the electrode may be oxidized in the phosphoric acid fuel cell, and as a result, the exhaust gas in the downstream side of the cell body (1) Emits carbon monoxide or carbon dioxide. The gas concentration detection device (4) detects carbon monoxide or carbon dioxide which is a product of an abnormal reaction for this battery, and when it judges that it is abnormal, stops the operation of the battery. Furthermore,
The fuel gas usually contains carbon monoxide and carbon dioxide, and the fuel supply / exhaust system is connected to the gas concentration detection device (4) from the upstream and downstream sides of the battery main body (1) to detect abnormalities in the battery. It is evaluated separately from carbon monoxide and carbon dioxide from the reaction and those contained in the fuel.

[発明が解決しようとする課題] 従来の積層型燃料電池は以上のように構成されている
ので、一酸化炭素や二酸化炭素のガス濃度を迅速に感度
良く検出する装置が必要で、たとえ単体で迅速かつ感度
良く検出する装置であっても電池で反応し発生したガス
をサンプリングし検出するまでには時間がかかり、従っ
てガスを検出した時点では実際に電池中のカーボン質の
酸化損耗が発生しており、異常反応を事前に防止するこ
とが出来ない等の問題点があった。
[Problems to be Solved by the Invention] Since the conventional stacked fuel cell is configured as described above, a device for quickly and sensitively detecting the gas concentration of carbon monoxide or carbon dioxide is required. Even with a device that detects quickly and with high sensitivity, it takes time to sample and detect the gas generated by the reaction in the battery.Therefore, when the gas is detected, oxidative wear of carbon in the battery actually occurs. However, there was a problem that abnormal reaction could not be prevented in advance.

又、特開昭60−54176号公報では事前に総ての単電池
若しくは複数電池よりなる多数のブロックの電圧計測線
を設置しておかなければならないという問題点があっ
た。
Further, in Japanese Patent Laid-Open No. 60-54176, there is a problem in that the voltage measurement lines of all the cells or a large number of blocks composed of a plurality of cells must be installed in advance.

この発明は上記のような問題点を解決するためになさ
れたもので、運転中の酸化剤不足に起因する例えば上記
のような電池の損耗を受ける前に簡便な装置で異常を検
出し、運転を停止出来る積層型燃料電池を得ることを目
的とする。
The present invention has been made to solve the above problems, and detects an abnormality with a simple device before the battery is worn due to a shortage of an oxidizing agent during operation, for example, before the operation is performed. It is an object of the present invention to obtain a laminated fuel cell that can stop the operation.

[課題を解決するための手段] この発明に係る積層型燃料電池は、多数の単電池に共
通のガス供給ヘッダで反応ガスの供給を行う積層型燃料
電池において、反応ガスの内の酸化剤ガスの流量に関連
して最上部あるいは上方部分の単電池を含む複数電池の
電圧を測定する電圧測定装置を備え、該電圧測定装置の
測定電圧があらかじめ設定した値よりも低下した場合に
上記燃料電池の運転を停止するようにしたものである。
[Means for Solving the Problems] A laminated fuel cell according to the present invention is a laminated fuel cell in which a reaction gas is supplied by a gas supply header common to many unit cells. A fuel cell for measuring the voltage of a plurality of cells including the uppermost cell or the upper cell in relation to the flow rate of the fuel cell, and the fuel cell is used when the voltage measured by the voltage measuring apparatus is lower than a preset value. It is designed to stop the operation of.

[作用] この発明においては、酸化剤ガスの不足により電池の
最上部あるいは上方部分のいずれかの単電池あるいは同
部分の複数電池の電圧が他の部分に比べ素早く低下を示
す。この部分の電圧低下を検出し、電池が異常反応を起
こす前に運転を停止する。
[Operation] In the present invention, due to the shortage of the oxidant gas, the voltage of the single cell at the uppermost portion or the upper portion of the battery or the plurality of cells in the same portion quickly decreases as compared with the other portions. The voltage drop in this part is detected, and the operation is stopped before the battery causes an abnormal reaction.

[実施例] まず、この発明の第1の要点は、負荷に対する空気の
流量が減った場合、つまり酸素利用率が高くなった場合
積層した各単電池に対し共通のガスヘッダでガス供給を
受ける電池の最上部あるいは上方部分の電圧低下が大き
くなる点にある。このことは実験で確認出来る。
[First Embodiment] First, a first point of the present invention is a battery that receives a gas supply from a common gas header to each of the stacked unit cells when the flow rate of air with respect to the load decreases, that is, when the oxygen utilization rate increases. The point is that the voltage drop at the uppermost or upper part of the is large. This can be confirmed by experiments.

例えば、共通のガスヘッダを持ついくつかの単電池を
積層してなる積層型燃料電池で酸化剤には空気を使い、
酸素利用率を変化させて即ち酸化剤ガス流量を変化させ
て積層方向の電池電圧の変化の分布を調べた。酸素利用
率を上昇させて行った場合、第2図に示すような電池電
圧変化の分布が感度よく認められる。
For example, in a stacked fuel cell made by stacking several cells with a common gas header, air is used as the oxidizer,
The distribution of changes in cell voltage in the stacking direction was investigated by changing the oxygen utilization rate, that is, by changing the oxidant gas flow rate. When the oxygen utilization rate is increased, the distribution of battery voltage change as shown in FIG. 2 is recognized with high sensitivity.

この現象は、次の理由によるものである。 This phenomenon is due to the following reasons.

即ち、積層型燃料電池の入口側には空気(平均分子量
28.8相当)が供給され、燃料電池内で酸素が反応により
消費され、水(水蒸気)が生成される。出口排ガス中で
は酸素成分が減り、水蒸気成分が増加し、例えば酸素利
用率60%の場合、出口排ガスの平均分子量は26.1とな
り、ガスヘッダ内の空気および排ガスの自重の差(密度
の差=平均分子量の差)により、反応ガス(空気)の自
重の重い入口側ガスヘッダでは積層型燃料電池の下部に
自重の差だけ大きい圧力が掛かり、その下部で空気が流
れやすく上部で流れにくくなり、結果として、下部にあ
る単電池に対して上部にある単電池の方の電圧の変化が
大きくなる。
That is, air (average molecular weight) is provided on the inlet side of the stacked fuel cell.
28.8 equivalent) is supplied, oxygen is consumed by the reaction in the fuel cell, and water (water vapor) is generated. In the outlet exhaust gas, the oxygen component decreases and the water vapor component increases. For example, when the oxygen utilization rate is 60%, the average molecular weight of the outlet exhaust gas becomes 26.1, and the difference in the dead weight of air and exhaust gas in the gas header (difference in density = average molecular weight). Difference) causes a large pressure on the lower part of the stacked fuel cell due to the difference in its own weight at the inlet side gas header where the own weight of the reaction gas (air) is heavy, making it easy for air to flow in the lower part and making it difficult to flow in the upper part. The change in voltage of the upper unit cell is larger than that of the lower unit cell.

そして、空気の流量が更に減った場合、つまり、酸素
利用率が高くなった場合、上記自重の差は大きくなる。
例えば、酸素利用率80%の場合、出口排ガスの平均分子
量は22.7となり、ガスヘッダ内の空気および排ガスの自
重の差(密度の差=平均分子量の差)は更に顕著にな
り、結果として、下部にある単電池に対して上部にある
単電池の方の電圧の変化が更に大きくなる。
Then, when the flow rate of the air further decreases, that is, when the oxygen utilization rate increases, the difference in the self-weight increases.
For example, when the oxygen utilization rate is 80%, the average molecular weight of the outlet exhaust gas is 22.7, and the difference between the dead weights of air and exhaust gas in the gas header (difference in density = difference in average molecular weight) becomes even more pronounced, and as a result, The change in the voltage of the upper cell is larger than that of a certain cell.

これにより、図2に示すような結果となることが普遍
の物理現象として理解され得る。
From this, it can be understood as a universal physical phenomenon that the result as shown in FIG. 2 is obtained.

また、この発明の第2の要点は、これらの変化が電池
電圧で、ガス濃度検出等に比べ極めて速い応答を示すこ
とにある。
A second main point of the present invention is that these changes show a very fast response as compared with a gas concentration detection or the like in the battery voltage.

更に、この発明の第3の要点は、検知する電圧値の管
理により、異常反応を生じる前に検知することが出来る
ことにある。
Furthermore, a third essential point of the present invention is that it is possible to detect before an abnormal reaction occurs by managing the voltage value to be detected.

以下、この発明の一実施例を図について説明する。第
1図はこの発明の一実施例を示す系統図であり、(1)
〜(3)は前述と同様のものである。(5)は電池本体
(1)より取り出された電気出力線、(6)はこの電気
出力線(5)に接続された負荷、(7)は電池本体
(1)の最上部あるいは上方部分の単電池を含む複数の
電池電圧を測る電圧測定装置、(8)はこの電圧測定装
置(7)に接続された制御装置である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of the present invention.
(3) is the same as described above. (5) is an electric output line taken out from the battery body (1), (6) is a load connected to the electric output line (5), and (7) is a top or upper part of the battery body (1). A voltage measuring device (8) for measuring a plurality of battery voltages including a single battery is a control device connected to the voltage measuring device (7).

次に、第1図に示したこの発明の一実施例の動作につ
いて説明する。電池本体(1)に酸化剤及び燃料の給排
系(2)及び(3)を通して酸化剤と燃料が供給され、
電気化学的な反応により発電する。発電された電力は電
気出力線(5)を通り負荷(6)に供給される。発電シ
ステムの不整動作等により負荷に対する酸化剤のガス流
量が減少し、電池本体(1)での実質の酸素利用率が異
常に高くなると最上部あるいは上方1/3部分の単電池を
含む複数電池の電圧を測る電圧測定装置(7)が、又、
他の実施例では最上部あるいは上方部分の単電池の電圧
を測る電圧測定装置(7)が全体の電圧変化に比べ素早
く電圧低下を検出する。電圧測定装置(7)で測定され
た電圧は制御装置(8)に供給され、あらかじめ設定さ
れた電圧値と比較判断され、必要に応じ発電システムの
運転停止の制御を行う。
Next, the operation of the embodiment of the present invention shown in FIG. 1 will be described. The oxidant and the fuel are supplied to the battery body (1) through the oxidant and fuel supply / discharge systems (2) and (3),
Generates electricity by electrochemical reaction. The generated electric power is supplied to the load (6) through the electric output line (5). When the gas flow rate of the oxidizer against the load decreases due to irregular operation of the power generation system, and the actual oxygen utilization rate in the battery body (1) becomes abnormally high, multiple batteries including the uppermost or upper 1/3 unit cells The voltage measuring device (7) for measuring the voltage of
In another embodiment, the voltage measuring device (7) for measuring the voltage of the uppermost or upper part of the unit cell detects the voltage drop more quickly than the total voltage change. The voltage measured by the voltage measuring device (7) is supplied to the control device (8), is compared with a preset voltage value and is judged, and the operation stop of the power generation system is controlled as necessary.

尚、上述の実施例では電圧測定装置は電池本体の最上
部あるいは上方部分の単電池もしくは同部分の複数の電
池電圧を測定する場合について説明したが、両方を組み
合わせて検出の信頼性を向上させることも可能である。
更に、上記実施例では、1つの積層された電池本体につ
いて説明したが、複数の積層された電池本体を含む発電
システムに適用しても良く、上記実施例と同様の効果を
奏する。又、上記実施例では電池本体の最上部あるいは
上方部分に電圧測定装置を設けた場合について説明した
が、これに代えてガス濃度検出装置を設けてもよく、ガ
ス排気若しくは給・排気ヘッダ内の同部位近傍にガス濃
度検出用サンプルポートを設け、電池積層方向にローカ
ルなガス濃度検出を行っても良い。
In the above-mentioned embodiment, the voltage measuring device has been described as a case of measuring the voltage of a single cell at the uppermost portion or the upper portion of the battery main body or a plurality of battery voltages at the same portion. However, both are combined to improve the detection reliability. It is also possible.
Furthermore, in the above-mentioned embodiment, one stacked battery main body has been described, but it may be applied to a power generation system including a plurality of stacked battery main bodies, and the same effect as that of the above-described embodiment is obtained. Further, in the above embodiment, the case where the voltage measuring device is provided at the uppermost portion or the upper portion of the battery main body has been described. However, a gas concentration detecting device may be provided instead of the voltage measuring device, and the gas exhaust or the supply / exhaust header is A gas concentration detection sample port may be provided in the vicinity of the same portion to perform local gas concentration detection in the cell stacking direction.

[発明の効果] 以上のようにこの発明によれば、共通のガスヘッダで
反応ガスを供給する積層型燃料電池で、反応ガスの内の
酸化剤ガスの流量に関連して電池の最上部あるいは上方
部分の単電池又は同部分の複数電池の電圧を測定し、あ
らかじめ設定した値よりも低下した場合に運転を停止す
るように構成したので、装置が簡単で安価にでき、又酸
化剤不足による異常反応を事前に検知し防止出来る積層
型燃料電池が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, in the stacked fuel cell in which the reaction gas is supplied by the common gas header, the uppermost portion or the upper portion of the cell is related to the flow rate of the oxidizing gas in the reaction gas. The voltage of a single cell or multiple cells of the same section is measured, and the operation is stopped when the voltage drops below a preset value, so the device is simple and inexpensive, and abnormal due to insufficient oxidant There is an effect that a laminated fuel cell capable of detecting and preventing the reaction in advance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す系統図、第2図は酸
素利用率を高くしたときの電圧変化の電池積層方向に対
する分布の説明図、第3図は従来の燃料電池の発電シス
テムを示す系統図である。 図において、(1)は電池本体、(7)は電圧測定装置
である。 尚、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of distribution of voltage changes in a cell stacking direction when oxygen utilization rate is high, and FIG. 3 is a conventional fuel cell power generation system. FIG. In the figure, (1) is a battery main body, and (7) is a voltage measuring device. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多数の単電池に共通のガス供給ヘッダで反
応ガスの供給を行う積層型燃料電池において、 上記反応ガスの内の酸化剤ガスの流量に関連して最上部
あるいは上方部分の単電池を含む複数電池の電圧を測定
する電圧測定装置を備え、 該電圧測定装置の測定電圧があらかじめ設定した値より
も低下した場合に上記燃料電池の運転を停止することを
特徴とする積層型燃料電池。
1. A stacked fuel cell in which a reaction gas is supplied by a gas supply header common to a large number of unit cells, wherein a cell at the uppermost or upper portion is related to the flow rate of the oxidizing gas in the reaction gas. A laminated fuel, comprising a voltage measuring device for measuring the voltage of a plurality of batteries including batteries, wherein the operation of the fuel cell is stopped when the measured voltage of the voltage measuring device is lower than a preset value. battery.
【請求項2】多数の単電池に共通のガス供給ヘッダで反
応ガスの供給を行う積層型燃料電池において、 上記反応ガスの内の酸化剤ガスの流量に関連して最上部
あるいは上方部分の単電池のいずれかの電圧を測定する
電圧測定装置を備え、 該電圧測定装置の測定電圧があらかじめ設定した値より
も低下した場合に上記燃料電池の運転を停止することを
特徴とする積層型燃料電池。
2. A laminated fuel cell in which a reaction gas is supplied by a gas supply header common to a large number of unit cells, wherein the unit cell at the uppermost or upper portion is related to the flow rate of the oxidizing gas in the reaction gas. A laminated fuel cell, comprising a voltage measuring device for measuring any voltage of the battery, wherein the operation of the fuel cell is stopped when the measured voltage of the voltage measuring device falls below a preset value. .
JP2312673A 1990-08-29 1990-11-20 Stacked fuel cell Expired - Lifetime JPH0824052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312673A JPH0824052B2 (en) 1990-08-29 1990-11-20 Stacked fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22519590 1990-08-29
JP2-225195 1990-08-29
JP2312673A JPH0824052B2 (en) 1990-08-29 1990-11-20 Stacked fuel cell

Publications (2)

Publication Number Publication Date
JPH04174975A JPH04174975A (en) 1992-06-23
JPH0824052B2 true JPH0824052B2 (en) 1996-03-06

Family

ID=26526490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312673A Expired - Lifetime JPH0824052B2 (en) 1990-08-29 1990-11-20 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPH0824052B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406806B1 (en) * 1999-11-09 2002-06-18 General Motors Corporation Fuel cell voltage monitoring and system control
US6461751B1 (en) * 1999-12-06 2002-10-08 Ballard Power Systems Inc. Method and apparatus for operating a fuel cell
US6893756B2 (en) 2002-04-30 2005-05-17 General Motors Corporation Lambda sensing with a fuel cell stack
JP4899285B2 (en) * 2003-09-17 2012-03-21 日産自動車株式会社 Fuel cell system
WO2005011038A2 (en) 2003-07-25 2005-02-03 Nissan Motor Co., Ltd. Device and method for controlling fuel cell and fuel cell system
JP5084207B2 (en) * 2006-09-13 2012-11-28 三洋電機株式会社 FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054176A (en) * 1983-09-01 1985-03-28 Fuji Electric Corp Res & Dev Ltd Safety protection of stacked fuel cell
JPS63264875A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Phosphoric acid type fuel cell power generating system

Also Published As

Publication number Publication date
JPH04174975A (en) 1992-06-23

Similar Documents

Publication Publication Date Title
JP4692869B2 (en) Abnormality detection device for fuel cell system
US5763113A (en) PEM fuel cell monitoring system
JP4905182B2 (en) Fuel cell system
JP4579355B2 (en) Method and apparatus for monitoring fuel cell stack
JP5330753B2 (en) Fuel cell system
JP4639680B2 (en) Fuel cell system
JP2002367650A (en) Abnormality detecting method for solid polymer fuel cell
US20050064252A1 (en) Method for operating polymer electrolyte fuel cell
JP2006508508A (en) Method and apparatus for monitoring fuel cell voltage
JP5857454B2 (en) Fuel cell system
JPH08138709A (en) Fuel cell power generating system
JP2006253096A (en) Abnormality detection device of fuel cell
JPH0824052B2 (en) Stacked fuel cell
JPH0955219A (en) Fuel cell power generating device and operation method
JP3455392B2 (en) Fuel cell characteristic diagnosis method and fuel cell operation method
JPH11260385A (en) Fuel cell protection method, protection device, and fuel cell device
JP4762569B2 (en) Fuel cell system and control method thereof
JP2679298B2 (en) Phosphoric acid residual amount monitor for phosphoric acid fuel cell
JPS6191877A (en) Fuel cell power generating system
JP2598014B2 (en) Crossover detection method for stacked fuel cells
JP3098135B2 (en) Fuel cell protection method and protection device, and fuel cell device
US20090208781A1 (en) Method for operating a fuel cell system
JP2735399B2 (en) Stacked fuel cell
JPH08213038A (en) Control method of fuel cell power generation device
JP4715131B2 (en) Current measuring device