JPH08181343A - Method of deterioration prediction of interconnected inverter - Google Patents

Method of deterioration prediction of interconnected inverter

Info

Publication number
JPH08181343A
JPH08181343A JP6326091A JP32609194A JPH08181343A JP H08181343 A JPH08181343 A JP H08181343A JP 6326091 A JP6326091 A JP 6326091A JP 32609194 A JP32609194 A JP 32609194A JP H08181343 A JPH08181343 A JP H08181343A
Authority
JP
Japan
Prior art keywords
input
inverter
output
voltage
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6326091A
Other languages
Japanese (ja)
Other versions
JP3719729B2 (en
Inventor
Mitsuhisa Okamoto
光央 岡本
Keiji Morimoto
啓二 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP32609194A priority Critical patent/JP3719729B2/en
Publication of JPH08181343A publication Critical patent/JPH08181343A/en
Application granted granted Critical
Publication of JP3719729B2 publication Critical patent/JP3719729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To make it possible to predict circuit deterioration with an interconnected inverter itself by determining a power input/output ratio of the inverter and comparing the determined power ratio with an input/output power ratio of a preliminarily stored initial value and increasing the input/output power ratio. CONSTITUTION: A direct current which a solar cell 1 outputs is converted into an alternating current by means of an interconnected inverter 2 and it it connected to a power system source 3. The inverter 2 controls an input impedance to take out a maximum output from the solar cell 1. A control circuit 7 comprises an A/D converter 10 and an MPU 11 and a ROM 12. An input/output current Iin and an input voltage Vin and an output current Iout which are to be detected, are input in an A/D converter 11 and converted into a digital signal where each value is read with the MPU 11 by way of the signal and computed, thereby transmitting a control signal. The ROM 12 is arranged to store the input/output power ratio of the initial value and compare the detected value with the initial value by means of the ROM 12 and visualize a display 8 if deterioration is predictable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、住宅用太陽光発電シス
テムの構成要素機器である連系インバータに関し、特に
連系インバータの運転制御に用いる検出信号の入力電流
・電圧及び出力電流・電圧を用いることによる連系イン
バータの経年劣化予測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interconnected inverter which is a component device of a solar power generation system for a house, and more particularly, to an input current / voltage and an output current / voltage of a detection signal used for operation control of the interconnected inverter. The present invention relates to a method for predicting the deterioration over time of an interconnected inverter by using it.

【0002】[0002]

【従来の技術】系統と連系する太陽光発電システムは住
宅用太陽光発電システムとして、一般家庭に導入、普及
する状況にある。ここで系統とは商用電力の配電系統を
意味し、連系とは相互接続の意味である。この系統連系
システムは太陽電池の直流出力を連系インバータで交流
出力に変換し、系統と連系運転が可能で、家庭内での消
費電力を上回るインバータ出力は、系統に逆潮流し、電
力会社に売電できる。
2. Description of the Related Art Photovoltaic power generation systems that are connected to the grid are being introduced and spread in ordinary households as residential solar power generation systems. Here, the system means a distribution system of commercial power, and the interconnection means interconnection. This grid interconnection system converts the DC output of the solar cell into an AC output with a grid interconnection inverter, and can be interconnected with the grid, and the inverter output that exceeds the power consumption at home flows backward to the grid Can sell electricity to the company.

【0003】連系インバータは、このような住宅用太陽
光発電システムの構成要素機器であり、家庭内に入る機
器としては、従来にない電力発生型機器である。しかも
太陽電池からの直流電力を交流電力に変換し、系統への
逆潮流を行っていることから、電力系統及び家庭内負荷
あるいは他の住宅の負荷への影響を避けるため、連系イ
ンバータの突発的なトラブルは未然に防ぐことが要求さ
れる。
The interconnected inverter is a component device of such a solar power generation system for a house, and is a power generation type device which has not been hitherto available as a device to enter a home. Moreover, since the DC power from the solar cells is converted to AC power and the reverse flow to the grid is performed, in order to avoid the influence on the power grid and the load in the home or the load of other houses, the sudden inversion of the interconnection inverter It is required to prevent such troubles before they happen.

【0004】従って、経年劣化を予測し、トラブル防止
のため迅速に対応することが重要であるが、従来、経年
劣化をインバータ自身で予測する連系インバータはな
い。強いて言うならば定期点検で、装置の目視チェック
や絶縁耐圧、絶縁抵抗等の測定を行い経年劣化を調べる
程度である。
Therefore, it is important to predict aging deterioration and take prompt action to prevent troubles, but conventionally, there is no interconnected inverter that predicts aging deterioration by the inverter itself. In other words, in regular inspections, visual inspection of the device and measurement of withstand voltage, insulation resistance, etc., are all necessary to examine deterioration over time.

【0005】詳しくインバータの経年劣化を調査する場
合には、インバータの入出力電力の比を求め、その増加
の程度により回路劣化を予測したり、インバータの入力
フィルタであるコンデンサのリップル電圧の増加からコ
ンデンサの劣化を検出する方法がある。
When investigating the aging deterioration of the inverter in detail, the ratio of the input / output power of the inverter is obtained, the circuit deterioration is predicted by the degree of increase, and the ripple voltage of the capacitor as the input filter of the inverter is increased. There is a method to detect the deterioration of the capacitor.

【0006】回路経年劣化は、ハンダ付箇所の抵抗分増
加、接続箇所のゆるみ等による抵抗分増加が主要な原因
であり、これらの抵抗分の増加により生ずる電力損失
(内部損失)を、初期値(例えば、連系インバータの出
荷時の値や設置時の値)と比較して評価する。従って電
力損失を入出力電力比によって検出し、経年劣化を予測
する。入力電力、出力電力は電力計を用いて計測する。
The circuit deterioration over time is mainly caused by an increase in resistance at soldered points and an increase in resistance due to loosening of connection points. The power loss (internal loss) caused by the increase in these resistances is set to an initial value. (For example, the value at the time of shipping or installation of the interconnected inverter) is compared and evaluated. Therefore, the power loss is detected by the input / output power ratio and the deterioration over time is predicted. Input power and output power are measured using a power meter.

【0007】また、入力フィルタのコンデンサのリップ
ル電圧は、インバータの入力電圧に含まれており、コン
デンサ容量の低減をリップル電圧の初期値に対する増加
によって評価する。入力フィルタのコンデンサのリップ
ル電圧の測定については、デジタルオシロスコープレベ
ルの測定器を使用する。
The ripple voltage of the capacitor of the input filter is included in the input voltage of the inverter, and the reduction of the capacitor capacity is evaluated by the increase of the ripple voltage with respect to the initial value. For measuring the ripple voltage of the input filter capacitor, use a digital oscilloscope level measuring instrument.

【0008】[0008]

【発明が解決しようとする課題】連系インバータの経年
劣化を、定期点検で行うとしても、上述の通り直流電
力、交流電力を計測する電力計が必要であり、もし、連
系インバータの入出力電力比を求めたとしても、インバ
ータ入出力電力比の初期値が不明であったり、初期値と
の計測条件(入力電流、入力電圧、出力電流、出力電
圧)が異なることから、経年劣化の予測が非常に難しく
なる問題があった。
Even if the aging deterioration of the interconnection inverter is carried out by the periodic inspection, the power meter for measuring the DC power and the AC power is required as described above. Even if the power ratio is calculated, the initial value of the inverter input / output power ratio is unknown, and the measurement conditions (input current, input voltage, output current, output voltage) differ from the initial value, so prediction of aged deterioration is possible. There was a problem that became very difficult.

【0009】さらに入力フィルタのコンデンサのリップ
ル電圧の計測にはデジタルオシロスコープが必要で、連
系インバータのフィールド(一般家庭)でのチェックは
非現実的である。
Further, a digital oscilloscope is required to measure the ripple voltage of the capacitor of the input filter, and checking in the field (general home) of the interconnection inverter is unrealistic.

【0010】本発明の目的は、連系インバータの経年劣
化をインバータ自身で予測する機能を与えるもので、日
常的に連系インバータの劣化予測がコストアップになら
ずに実現でき、連系インバータの事故・故障を未然に防
ぐことができる連系インバータの経年劣化予測方法を提
供することである。
An object of the present invention is to provide a function of predicting aged deterioration of a grid-connected inverter by the inverter itself, and it is possible to realize deterioration prediction of the grid-connected inverter on a daily basis without increasing the cost. It is an object of the present invention to provide a method for predicting aged deterioration of a connected inverter that can prevent accidents and failures.

【0011】[0011]

【課題を解決するための手段】本発明は、太陽電池を電
源として、該太陽電池の直流出力を系統と同品質の交流
電力に変換し、系統と連系運転する連系インバータの回
路や直流フィルタのコンデンサの経年劣化予測方法であ
る。
The present invention uses a solar cell as a power source, converts the DC output of the solar cell into AC power of the same quality as the grid, and operates a grid or DC circuit of a grid-connected inverter that is connected to the grid. This is a method for predicting aging deterioration of filter capacitors.

【0012】請求項1の発明は、前記連系インバータの
運転制御に用いる検出信号の入力電流・電圧及び出力電
流・電圧を演算して、連系インバータの入出力電力比を
求め、該入出力電力比と予め記憶しておいた初期値の入
出力電力比とを比較し、入出力電力比の増加により、連
系インバータ自身で回路劣化を予測する連系インバータ
の経年劣化予測方法である。
According to a first aspect of the present invention, the input current / voltage and the output current / voltage of the detection signal used for operation control of the interconnection inverter are calculated to obtain the input / output power ratio of the interconnection inverter, and the input / output power ratio is calculated. This is a method for predicting deterioration over time of an interconnected inverter by comparing the power ratio with a pre-stored initial value input / output power ratio and predicting circuit deterioration by the interconnected inverter itself due to an increase in the input / output power ratio.

【0013】請求項2の発明は、前記連系インバータの
運転制御に用いる検出信号の入力電圧からリップル電圧
を検出し、該リップル電圧と予め記憶しておいた初期値
のリップル電圧とを比較し、リップル電圧の増加によ
り、連系インバータ自身で直流フィルタのコンデンサの
劣化を予測する連系インバータの経年劣化予測方法であ
る。
According to a second aspect of the present invention, the ripple voltage is detected from the input voltage of the detection signal used for the operation control of the interconnection inverter, and the ripple voltage is compared with the stored initial value ripple voltage. This is a method for predicting deterioration over time of an interconnected inverter by predicting deterioration of a DC filter capacitor by the interconnected inverter itself due to an increase in ripple voltage.

【0014】[0014]

【作用】請求項1及び請求項2の発明において、連系イ
ンバータの運転制御のために検出していた入力電流・電
圧及び出力電流・電圧の検出信号を用いて、連系インバ
ータの入出力電力比あるいは直流フィルタのコンデンサ
のリップル電圧を求めるので、改めて測定装置を用いる
必要がなく、容易に入出力電力比を求めることができ
る。連系インバータの制御回路により、この検出した入
出力電力比あるいはリップル電圧と予め記憶しておいた
初期値の入出力電力比あるいはリップル電圧とを比較
し、入出力電力比あるいはリップル電圧の増加により連
系インバータの経年劣化を予測する。従って、入出力電
力比やリップルの初期値が不明になったりすることもな
く、計測条件も常に同一にすることができ、経年劣化の
予測の精度が向上する。こうして連系インバータがそれ
自身で経年劣化を予測し、常時自動的に経年劣化の点検
を行う。
In the inventions of claims 1 and 2, the input / output power of the interconnection inverter is detected by using the input current / voltage and output current / voltage detection signals detected for operation control of the interconnection inverter. Since the ratio or the ripple voltage of the capacitor of the DC filter is obtained, it is not necessary to use a measuring device again, and the input / output power ratio can be easily obtained. The control circuit of the interconnection inverter compares the detected input / output power ratio or ripple voltage with the stored initial value input / output power ratio or ripple voltage, and determines whether the input / output power ratio or ripple voltage increases. Predict aging deterioration of the interconnection inverter. Therefore, the input / output power ratio and the initial value of the ripple do not become unknown, the measurement conditions can always be the same, and the accuracy of prediction of aged deterioration is improved. In this way, the interconnection inverter predicts aging deterioration by itself, and always automatically checks aging deterioration.

【0015】[0015]

【実施例】以下、図面を参照しながら実施例を用いて本
発明を説明する。図1は、本発明に係る連系インバータ
を用いた太陽光発電システムのブロック図である。太陽
電池1が出力する直流を連系インバータ2によって交流
に変換し、系統電源3に接続している。連系インバータ
は、コンデンサC1からなる直流フィルタ4と、スイッ
チング素子からなるインバータ回路5と、コイルLとコ
ンデンサC2とからなる交流フィルタ6と、制御回路7
と、LEDやLCD等からなる表示部8とを具備する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments with reference to the drawings. FIG. 1 is a block diagram of a photovoltaic power generation system using an interconnected inverter according to the present invention. The direct current output from the solar cell 1 is converted into an alternating current by the interconnection inverter 2 and is connected to the system power supply 3. The interconnection inverter includes a DC filter 4 including a capacitor C 1 , an inverter circuit 5 including a switching element, an AC filter 6 including a coil L and a capacitor C 2 , and a control circuit 7.
And a display unit 8 including an LED and an LCD.

【0016】連系インバータ2は、詳しくは後述する
が、太陽電池1から最大の出力を取り出すため、入力イ
ンピーダンスを制御している。そのため制御回路7に
は、直流フィルタ4のインバータ回路側から入力電流
(=太陽電池出力電流)Iin、入力電圧(=太陽電池出
力電圧)Vinの検出信号が入力され、この信号に基づき
制御回路7がインバータ回路5をスイッチング素子ドラ
イブ回路9を介して制御する。ここで、入力電流Iin
直流電流検出器S1によって検出される。
As will be described later in detail, the interconnection inverter 2 controls the input impedance in order to take out the maximum output from the solar cell 1. Therefore, the detection signals of the input current (= solar cell output current) I in and the input voltage (= solar cell output voltage) V in are input to the control circuit 7 from the inverter circuit side of the DC filter 4, and control is performed based on these signals. The circuit 7 controls the inverter circuit 5 via the switching element drive circuit 9. Here, the input current I in is detected by the DC current detector S 1 .

【0017】また連系インバータは系統と連系運転をす
るため、系統と同品質、即ち周波数及び電圧が同じにな
るように、太陽電池1からの出力を制御する。そのため
制御回路7には、交流フィルタ6の系統側から出力電流
out、出力電圧Voutの検出信号が入力され、この信号
に基づき、制御回路7がインバータ回路5をスイッチン
グ素子ドライブ回路9を介して制御する。出力電圧V
outは系統電圧に等しく、出力電圧Voutを検出すること
は系統電圧を検出することになる。系統と同一の周波数
を有する正弦波とするために、出力電流Ioutを検出し
ている。ここで、出力電流Ioutは交流電流検出器S2
よって検出される。
Further, since the interconnection inverter operates in interconnection with the grid, the output from the solar cell 1 is controlled so that the grid has the same quality, that is, the same frequency and voltage. Therefore, the detection signals of the output current I out and the output voltage V out are input to the control circuit 7 from the system side of the AC filter 6, and the control circuit 7 causes the inverter circuit 5 to pass through the switching element drive circuit 9 based on these signals. Control. Output voltage V
out is equal to the system voltage, and detecting the output voltage V out will detect the system voltage. The output current I out is detected in order to obtain a sine wave having the same frequency as the system. Here, the output current I out is detected by the alternating current detector S 2 .

【0018】図2に、制御回路のブロック図を示す。こ
の制御回路はA/D変換器10とMPU(Micro Proces
sor Unit) 11と、ROM(Read Only Memory)12と、
からなる。検出された入力電流Iin、入力電圧Vin、出
力電流Iout、出力電圧Voutが、A/D変換器11に入
力され、デジタル信号に変換され、その信号により、M
PU11で各値を読み取り、演算を行って制御信号を送
出する。後述するように、ROM12には初期値の入出
力電力比が記憶され、MPU11で検出値とROM12
の初期値を比較し、経年劣化を予測できた場合には表示
部8に視覚化する。
FIG. 2 shows a block diagram of the control circuit. This control circuit includes an A / D converter 10 and an MPU (Micro Process).
sor Unit) 11, ROM (Read Only Memory) 12,
Consists of The detected input current I in , input voltage V in , output current I out , and output voltage V out are input to the A / D converter 11 and converted into a digital signal.
The PU 11 reads each value, performs calculation, and sends a control signal. As will be described later, the ROM 12 stores the input / output power ratio of the initial value, and the MPU 11 detects the detected value and the ROM 12.
The initial values of are compared, and when the deterioration over time can be predicted, the display unit 8 visualizes.

【0019】さて連系インバータの経年劣化は、従来技
術でも述べたように、ハンダ付箇所の抵抗分増加、接続
箇所のゆるみ等による抵抗分増加が主要な原因であり、
これらの抵抗分の増加により生ずる電力損失(内部損
失)を、インバータ設置時の初期値と比較して評価す
る。従って電力損失を入出力電力の比によって検出し、
経年劣化を予測する。
As described in the prior art, the deterioration of the interconnected inverter over time is mainly due to an increase in the resistance of the soldered part and an increase of the resistance due to the loosening of the connection part.
The power loss (internal loss) caused by the increase of these resistance components is evaluated by comparing with the initial value when the inverter is installed. Therefore, the power loss is detected by the ratio of input and output power,
Predict aging deterioration.

【0020】インバータの入出力電力比ηを以下の式で
求める。
The input / output power ratio η of the inverter is calculated by the following equation.

【数1】 尚、上式の演算は制御回路7のMPU11で行う。この
入出力電力比ηをインバータの初期状態における入出力
電力比η0(初期入出力電力比)と比較する。
[Equation 1] The calculation of the above equation is performed by the MPU 11 of the control circuit 7. This input / output power ratio η is compared with the input / output power ratio η 0 (initial input / output power ratio) in the initial state of the inverter.

【0021】インバータの入出力電力比は、図3に示す
ように一定の入力電圧、出力電圧の条件では出力電力の
大きさによって定まり、ある出力α以上でほぼ一定とな
る。そこでインバータの出荷時における初期状態で入力
電圧がVa、出力電圧がVbのとき、インバータ出力がα
以上で一定となる入出力電力比をη0とする。このη0
インバータ入出力電力比の初期値として、予め制御回路
7のROM12に記録しておく。さらに、インバータの
出力電圧範囲内の任意の電圧VoutとVbの間に入出力電
力比の差があれば、補正係数Kを合わせて記録する。
尚、入力電圧Vaは太陽電池の定格電圧の80%程度に
設定しておく。
As shown in FIG. 3, the input / output power ratio of the inverter is determined by the magnitude of the output power under the conditions of constant input voltage and output voltage, and becomes substantially constant above a certain output α. Therefore, when the input voltage is V a and the output voltage is V b in the initial state when the inverter is shipped, the inverter output is α
The input / output power ratio that becomes constant as above is η 0 . This η 0 is recorded in advance in the ROM 12 of the control circuit 7 as the initial value of the inverter input / output power ratio. Further, if there is a difference in the input / output power ratio between any voltage V out and V b within the output voltage range of the inverter, the correction coefficient K is also recorded.
The input voltage V a is set to about 80% of the rated voltage of the solar cell.

【0022】連系インバータは、日射変動に対して出力
特性も変化する太陽電池を電源としており、その太陽電
池出力制御方式として、最大出力点追尾方式が用いられ
る。これは連系インバータの入力インピーダンスの制御
により、連系インバータと直結している太陽電池の負荷
特性の制御が可能となることを利用するものである。す
なわち太陽電池の出力が最大となるように連系インバー
タの入力インピーダンスを変化させることにより、太陽
電池の動作点を制御する。
The interconnected inverter uses a solar cell as a power source whose output characteristic changes with the fluctuation of solar radiation, and the maximum output point tracking method is used as the solar cell output control method. This utilizes the fact that by controlling the input impedance of the interconnection inverter, it becomes possible to control the load characteristics of the solar cell directly connected to the interconnection inverter. That is, the operating point of the solar cell is controlled by changing the input impedance of the interconnection inverter so that the output of the solar cell is maximized.

【0023】連系インバータが起動して、最大電力点追
尾を行い、インバータ出力電力がα+Δα(Δα=αの
数十%程度)となったときに1度だけ、強制的に太陽電
池の動作電圧をVaにして、この状態での連系インバー
タの入出力電力比ηを求める。動作電圧の変化はインバ
ータ回路のスイッチング素子のドライブ信号を制御する
ことで容易に実現できる。
When the interconnected inverter is started, maximum power point tracking is performed, and the inverter output power becomes α + Δα (Δα = several tens% of α), the operating voltage of the solar cell is forced only once. Is set to V a , and the input / output power ratio η of the interconnection inverter in this state is obtained. The change of the operating voltage can be easily realized by controlling the drive signal of the switching element of the inverter circuit.

【0024】このときインバータ運転時の入出力電力比
η1
At this time, the input / output power ratio η 1 during inverter operation is

【数2】 となり、さらにη0と比較するためにVoutとVbの補正
を行うと η2=η1×K(Vout−Vb) よって、α<Iin×Vaで、かつη0×0.9>η2であ
れば経年変化による回路の内部損失の増加とみなす。そ
して、経年劣化の表示をLED等の表示部8で行う。
[Equation 2] Then, if V out and V b are corrected for comparison with η 0 , η 2 = η 1 × K (V out −V b ), so α <I in × V a and η 0 × 0 If 9> η 2 , it is regarded as an increase in the internal loss of the circuit due to aging. Then, the display of aged deterioration is performed on the display unit 8 such as an LED.

【0025】ここでη0×0.9の0.9は、インバー
タの個体差、計測信号の測定誤差を考慮した仮の値であ
り、この値は実際のインバータの特性に合わせて設定す
れば良い。
Here, 0.9 of η 0 × 0.9 is a tentative value considering the individual difference of the inverter and the measurement error of the measurement signal, and if this value is set according to the actual characteristics of the inverter. good.

【0026】さて、経年変化を予測する場合の制御回路
の動作を、図4に示すフローチャートを用いて説明す
る。まずステップ21、22、23、24でそれぞれ入
力電圧Vin、入力電流Iin、出力電圧Vout,出力電流
out、を検出する。ステップ21で入力電圧VinがVa
となったとき、ステップ25でVa・IinをMPU11
で演算し、結果をPinとする。同時にステップ26で∫
out・IoutをMPU11で演算し、結果をP outとす
る。ステップ27で(Pout/Pin)×100を演算
し、結果をη1とする。ステップ28でα<Pinかを判
別し、α≧Pinの場合には、最初にもどってステップ2
1、22、23、24で電圧・電流の検出を行う。α<
inであればステップ29へ進み、0.9×η0>η1
を判別し、そうであれば経年劣化と判定する(ステップ
30)。上述したように、本来はη0×0.9>η2であ
るが、ここではη1≒η2とし、η0×0.9>η1とす
る。ステップ31に進んで、経年劣化を表示部に表示す
る。0.9×η0≦η1の場合は、最初に戻ってステップ
21、22、23、24で電流・電圧を検出する。
Now, a control circuit for predicting the secular change
Will be described with reference to the flowchart shown in FIG.
It First, enter in steps 21, 22, 23 and 24 respectively.
Force voltage Vin, Input current Iin, Output voltage Vout, Output current
Iout, To be detected. Input voltage V in step 21inIs Va
Becomes V in step 25a・ IinTo MPU11
And calculate the result by PinAnd At the same time in step 26 ∫
Vout・ IoutIs calculated by MPU11 and the result is P outTosu
It In step 27 (Pout/ Pin) Calculate × 100
The result η1And Α <P in step 28inJudge
Apart from that, α ≧ PinIf yes, go back to step 2
The voltage / current is detected at 1, 22, 23, and 24. α <
PinIf so, go to step 29, 0.9 × η0> Η1Or
And if so, it is determined as aged deterioration (step
30). As mentioned above,0× 0.9> η2And
, But here η1≈ η2And η0× 0.9> η1Tosu
It Proceed to step 31 to display aging deterioration on the display.
It 0.9 x η0≤ η1If so, go back to the first step
Currents and voltages are detected at 21, 22, 23, and 24.

【0027】経年劣化には、前述の回路劣化の他、コン
デンサの容量抜けという劣化もある。この劣化はコンデ
ンサ容量の低減をリップル電圧の初期値に対する増加に
よって評価する。太陽電池2は直流フィルタとしてのコ
ンデンサC1と直結されており、入力電圧Vinにはコン
デンサC1のリップル電圧が含まれる。従って、入力電
圧Vinの計測時に、入力電圧Vinの平均値と、そのピー
ク電圧の差を制御回路7のMPU12で演算し求めるこ
とにより、リップル電圧を求めることができる。出荷時
にROM12にリップル電圧の最大値を初期値として記
憶しておき、検出したリップル電圧が初期値に対して予
め設定したレベルを上回った場合には、コンデンサの容
量抜けとなみなしてコンデンサの経年劣化と判定する。
そのとき経年劣化の表示をLED等の表示部8で行う。
The deterioration over time includes deterioration of the capacitance of the capacitor in addition to the above-mentioned circuit deterioration. This deterioration is evaluated by reducing the capacitance of the capacitor by increasing the ripple voltage with respect to the initial value. Solar cell 2 is directly connected to the capacitor C 1 as a DC filter, the input voltage V in includes ripple voltage of the capacitor C 1. Therefore, when the measurement of the input voltage V in, the average value of the input voltage V in, by obtaining by calculating the difference between the peak voltage MPU12 of the control circuit 7 can determine the ripple voltage. The maximum value of the ripple voltage is stored as an initial value in the ROM 12 at the time of shipment, and if the detected ripple voltage exceeds a preset level with respect to the initial value, it is considered that the capacitor is out of capacity, and the capacitor ages. Judge as deterioration.
At that time, the display of aged deterioration is performed on the display unit 8 such as an LED.

【0028】図5は、昇圧回路を内蔵する連系インバー
タを用いた太陽光発電システムのブロック図である。本
実施例は前述の実施例と基本構成はほぼ同じであるの
で、同一部分に同一符号を付し説明は省略する。本実施
例は、連系インバータ15において、インバータ回路5
の前段にスイッチング素子からなる昇圧型DC/DCコ
ンバータ14を配した点が特徴である。昇圧回路である
昇圧型DC/DCコンバータ14は、制御回路7により
スイッチング素子ドライブ回路13を介して制御されて
いる。図1は、典型的な連系インバータの構成を示した
ものであるが、図5に示すような昇圧回路を内蔵した連
系インバータであっても、上述の発明と全く同様に入出
力電力比の比較により経年劣化が予測できる。
FIG. 5 is a block diagram of a photovoltaic power generation system using an interconnection inverter having a booster circuit built therein. Since this embodiment has substantially the same basic configuration as the above-mentioned embodiments, the same reference numerals are given to the same portions and the description thereof will be omitted. In this embodiment, in the interconnection inverter 15, the inverter circuit 5
The feature is that the step-up DC / DC converter 14 including a switching element is arranged in the preceding stage. The step-up DC / DC converter 14, which is a step-up circuit, is controlled by the control circuit 7 via the switching element drive circuit 13. FIG. 1 shows a configuration of a typical interconnection inverter, but an interconnection inverter having a booster circuit as shown in FIG. The deterioration over time can be predicted by comparing

【0029】[0029]

【発明の効果】請求項1の発明によると、連系インバー
タの運転制御に用いる検出信号の入力電流・電圧及び出
力電流・電圧を演算して、連系インバータの入出力電力
比を求め、該入出力電力比と初期値の入出力電力比を比
較し、入出力電力比の増加により連系インバータの回路
劣化を予測するから、連系インバータ自身で点検を行
い、定期点検をしなくともインバータの経年劣化の予測
が低コストでかつ日常的に行えるようになり、インバー
タの突発的な事故、故障を未然に防ぐことができる。請
求項2の発明によると、前記連系インバータの運転制御
に用いる検出信号の入力電圧からリップルを検出し、初
期値の入力電圧に含まれたリップルに対する増加により
直流フィルタのコンデンサの劣化を予測するから、前述
同様に、定期点検をしなくともインバータの経年劣化の
予測が低コストでかつ日常的に行えるようになり、イン
バータの突発的な事故、故障を未然に防ぐことができ
る。
According to the invention of claim 1, the input current / voltage and the output current / voltage of the detection signal used for the operation control of the interconnection inverter are calculated to obtain the input / output power ratio of the interconnection inverter. The input / output power ratio is compared with the initial value of the input / output power ratio, and the increase in the input / output power ratio predicts circuit deterioration of the interconnected inverter. It becomes possible to predict the deterioration over time on a daily basis at low cost and prevent accidental accidents and failures of the inverter. According to the invention of claim 2, the ripple is detected from the input voltage of the detection signal used for the operation control of the interconnection inverter, and the deterioration of the capacitor of the DC filter is predicted by the increase with respect to the ripple included in the input voltage of the initial value. Therefore, similarly to the above, it is possible to predict aged deterioration of the inverter at a low cost and on a daily basis without performing a periodic inspection, and it is possible to prevent a sudden accident or failure of the inverter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る連系インバータを用いた太陽光発
電システムのブロック図である。
FIG. 1 is a block diagram of a photovoltaic power generation system using an interconnection inverter according to the present invention.

【図2】連系インバータの制御回路のブロック図であ
る。
FIG. 2 is a block diagram of a control circuit of an interconnection inverter.

【図3】連系インバータの制御の入出力電力比−出力電
力の相関を示すグラフである。
FIG. 3 is a graph showing the correlation between the input / output power ratio and the output power of the control of the interconnection inverter.

【図4】本発明に係る連系インバータの経年劣化予測動
作を示すフローチャートである。
FIG. 4 is a flowchart showing an aged deterioration prediction operation of the interconnection inverter according to the present invention.

【図5】昇圧回路を内蔵する連系インバータを用いた太
陽光発電システムのブロック図である。
FIG. 5 is a block diagram of a photovoltaic power generation system using an interconnection inverter having a booster circuit built therein.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 連系インバータ 3 系統電源 Iin 入力電流 Iout出力電流 Vin 入力電圧 Vout出力電圧1 solar duplicate system inverter 3 system power source I in input current I out output current V in input voltage V out output voltage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/48 M 9181−5H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H02M 7/48 M 9181-5H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池を電源として、該太陽電池の直
流出力を系統と同品質の交流電力に変換し、系統と連系
運転する連系インバータの経年劣化予測方法において、 前記連系インバータの運転制御に用いる検出信号の入力
電流・電圧及び出力電流・電圧を演算して、連系インバ
ータの入出力電力比を求め、該入出力電力比と予め記憶
しておいた初期値の入出力電力比とを比較し、入出力電
力比の増加により連系インバータ自身で回路劣化を予測
する連系インバータの経年劣化予測方法。
1. A method for predicting aged deterioration of a grid-connected inverter, which uses a solar cell as a power source, converts the DC output of the solar cell into AC power of the same quality as the grid, and operates with the grid. The input current / voltage and the output current / voltage of the detection signal used for operation control are calculated to obtain the input / output power ratio of the interconnection inverter, and the input / output power ratio and the input / output power of the initial value stored in advance. A method for predicting aged deterioration of a grid-connected inverter by comparing the ratio and the input / output power ratio to predict circuit deterioration in the grid-connected inverter itself.
【請求項2】 太陽電池を電源として、該太陽電池の直
流出力を系統と同品質の交流電力に変換し、系統と連系
運転する連系インバータの経年劣化予測方法において、 前記連系インバータの運転制御に用いる検出信号の入力
電圧からリップル電圧を検出し、該リップル電圧と予め
記憶しておいた初期値のリップル電圧とを比較しリップ
ル電圧の増加により、連系インバータ自身で直流フィル
タのコンデンサの劣化を予測する連系インバータの経年
劣化予測方法。
2. A method for predicting secular deterioration of a grid-connected inverter, which uses a solar cell as a power source, converts the DC output of the solar cell into AC power of the same quality as the grid, and operates with the grid. The ripple voltage is detected from the input voltage of the detection signal used for operation control, the ripple voltage is compared with the initial value of the ripple voltage stored in advance, and the ripple voltage is increased. Method for predicting deterioration over time of interconnected inverters.
JP32609194A 1994-12-27 1994-12-27 Aging prediction method for interconnection inverter Expired - Fee Related JP3719729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32609194A JP3719729B2 (en) 1994-12-27 1994-12-27 Aging prediction method for interconnection inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32609194A JP3719729B2 (en) 1994-12-27 1994-12-27 Aging prediction method for interconnection inverter

Publications (2)

Publication Number Publication Date
JPH08181343A true JPH08181343A (en) 1996-07-12
JP3719729B2 JP3719729B2 (en) 2005-11-24

Family

ID=18184006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32609194A Expired - Fee Related JP3719729B2 (en) 1994-12-27 1994-12-27 Aging prediction method for interconnection inverter

Country Status (1)

Country Link
JP (1) JP3719729B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978884A3 (en) * 1998-06-12 2000-03-22 Canon Kabushiki Kaisha Solar cell module, solar cell module string, solar cell system, and method for supervising said solar cell module or solar cell module string
JP2001309561A (en) * 2000-04-24 2001-11-02 Mitsubishi Electric Corp Linking apparatus
JP2002325462A (en) * 2001-04-25 2002-11-08 Mitsubishi Electric Corp Power converter solar power generation
JP2003284355A (en) * 2002-03-25 2003-10-03 Matsushita Electric Works Ltd Photovoltaic power generating system
WO2010111412A3 (en) * 2009-03-24 2011-01-20 Infinirel Corporation Systems, devices and methods for predicting power electronics failure
JP2011072137A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Grid-connected inverter device
JP2014132823A (en) * 2009-11-06 2014-07-17 Panasonic Corp Power distribution system
US9438037B2 (en) 2007-10-15 2016-09-06 Ampt, Llc Systems for optimized solar power inversion
US9442504B2 (en) 2009-04-17 2016-09-13 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
JP2019037024A (en) * 2017-08-10 2019-03-07 株式会社日立プラントメカニクス Igbt lifetime prediction method for inverter in crane, and device therefor
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2022176622A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Failure prediction system, failure prediction method, and failure prediction program
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403556B1 (en) * 2012-12-03 2014-06-03 청주대학교 산학협력단 Mppt control method for grid-connected pv inverter

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978884A3 (en) * 1998-06-12 2000-03-22 Canon Kabushiki Kaisha Solar cell module, solar cell module string, solar cell system, and method for supervising said solar cell module or solar cell module string
JP2001309561A (en) * 2000-04-24 2001-11-02 Mitsubishi Electric Corp Linking apparatus
JP2002325462A (en) * 2001-04-25 2002-11-08 Mitsubishi Electric Corp Power converter solar power generation
JP2003284355A (en) * 2002-03-25 2003-10-03 Matsushita Electric Works Ltd Photovoltaic power generating system
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9438037B2 (en) 2007-10-15 2016-09-06 Ampt, Llc Systems for optimized solar power inversion
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2010111412A3 (en) * 2009-03-24 2011-01-20 Infinirel Corporation Systems, devices and methods for predicting power electronics failure
EP2412074A2 (en) * 2009-03-24 2012-02-01 Infinirel Corporation Systems, devices and methods for predicting power electronics failure
EP2412074A4 (en) * 2009-03-24 2013-08-28 Infinirel Corp Systems, devices and methods for predicting power electronics failure
US9442504B2 (en) 2009-04-17 2016-09-13 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
JP2011072137A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Grid-connected inverter device
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
JP2014132823A (en) * 2009-11-06 2014-07-17 Panasonic Corp Power distribution system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
JP2019037024A (en) * 2017-08-10 2019-03-07 株式会社日立プラントメカニクス Igbt lifetime prediction method for inverter in crane, and device therefor
WO2022176622A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Failure prediction system, failure prediction method, and failure prediction program

Also Published As

Publication number Publication date
JP3719729B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JPH08181343A (en) Method of deterioration prediction of interconnected inverter
US7079406B2 (en) Power converting apparatus, control method therefor, and solar power generation apparatus
JP5323818B2 (en) Method for diagnosing defects in a stand-alone system driven by an intermittent power supply
US7944083B2 (en) Method and apparatus for characterizing a circuit coupled to an AC line
US5669987A (en) Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same
JPH08185235A (en) Linkage type solar light power generating device with abnormality checking function for solar battery module
EP2887526B1 (en) Method and power converter for determining cell capacitor degradation in a converter cell
US20020059035A1 (en) Diagnosis method and diagnosis apparatus of photovoltaic power system
KR100944793B1 (en) Power Conditioning System with Diagnosis Function of Photovoltaic Array Deterioration and method for Processing thereof
EP2613164B1 (en) Distributed power generation device and method for operating same
US20120197557A1 (en) String Failure Monitoring
JP6096099B2 (en) Photovoltaic power generation system and solar cell module diagnostic method
JP3474711B2 (en) Interconnected solar power generator
JP3258862B2 (en) Interconnected inverter with solar cell output inspection function
KR20160118693A (en) The apparatus and method for detecting ground fault of photovoltaic module by using voltage measurement
JPH07123594A (en) Abnormality detector for solar cell
JP2021141688A (en) Power conversion device
JPH11175177A (en) Solar battery monitoring device
JPH09172784A (en) Link type inverter device
JP4926146B2 (en) Isolated operation detection method and isolated operation detection device
JPH0862082A (en) Inspection device for pressure sensor
JP2008519400A (en) Calculation of direct current for controlling fuel cells
JP6300148B2 (en) Solar power generation device management device
US5471135A (en) Tester and method for testing a rectifier-regulator
KR102182635B1 (en) A method for detecting inverter failure and the system therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees