JPH08167529A - Cooling method for coil of inductor, the coil of the inductor using the method, and transformer - Google Patents

Cooling method for coil of inductor, the coil of the inductor using the method, and transformer

Info

Publication number
JPH08167529A
JPH08167529A JP6307555A JP30755594A JPH08167529A JP H08167529 A JPH08167529 A JP H08167529A JP 6307555 A JP6307555 A JP 6307555A JP 30755594 A JP30755594 A JP 30755594A JP H08167529 A JPH08167529 A JP H08167529A
Authority
JP
Japan
Prior art keywords
coil
inductor
cooling water
hollow
inductor coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6307555A
Other languages
Japanese (ja)
Inventor
Naoki Miki
直樹 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP6307555A priority Critical patent/JPH08167529A/en
Publication of JPH08167529A publication Critical patent/JPH08167529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To supply larger current in a compact structure and small size by forming a coil for an inductor by spirally winding a wire on the outer periphery of a hollow cylindrical member made of an insulator, and supplying cooling water to the hollow member. CONSTITUTION: A coil 1 for an inductor is formed by spirally winding a lead 3 covered with insulator such as enamel or Teflon, etc., on a hollow cylindrical member 5 made of insulator such as ceramics or plastic at a suitable pitch. In order to cool the coil 1 for the inductor, cooling water of suitable temperature and flow rate is reversely suppled from a cooling water supply port into the member 5 to cool the coil from the interior via the member 5, and the water raised at its temperature is drained from a drain port opposed to the supply port. Accordingly, the coil is cooled via the member, and hence a larger current can be supplied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気回路部品であるイン
ダクター用コイルの冷却方法およびその冷却方法を用い
たインダクター用コイルおよび変圧器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling an inductor coil, which is an electric circuit component, and an inductor coil and a transformer using the cooling method.

【0002】[0002]

【従来の技術】従来、高周波交流励起のレーザー発振器
の電源装置に使用されているインダクター用のコイルに
は、通常は線径が3mm〜5mmのエナメル線の空芯コ
イルが使用されており、このコイルの温度上昇を押さえ
るために冷却用ファンが使用されている。しかし空冷方
式での冷却能力はあまり大きくないので大電力での使用
は困難であった。そこで大電力で使用されるインダクタ
ー用コイルは、銅などのチューブでインダクター用コイ
ルを製造し、そのチューブ内に冷却水を流して冷却する
という方法がとられている。
2. Description of the Related Art Conventionally, an air-core coil of an enameled wire having a wire diameter of 3 mm to 5 mm has been used as a coil for an inductor used in a power supply device for a laser oscillator of high frequency AC excitation. A cooling fan is used to suppress the temperature rise of the coil. However, the cooling capacity of the air-cooling system is not so large that it was difficult to use it with high power. Therefore, for the inductor coil used with high power, a method is used in which the inductor coil is manufactured with a tube of copper or the like, and cooling water is caused to flow in the tube to cool it.

【0003】また上記の高周波交流励起のレーザー発振
器の電源装置に使用される変圧器においては、電磁結合
の結合係数を1に近付けるために磁芯(コア)が使用さ
れており、この磁芯にはコイルの巻き数に対するインダ
クタンスが大きく、かつ磁束の閉じ込め作用の強いトロ
イダルコアがよく使用されている。
Further, in the transformer used in the power supply device of the above-mentioned laser oscillator of high frequency AC excitation, a magnetic core is used to bring the coupling coefficient of electromagnetic coupling close to 1, and this magnetic core is used. Is often used as a toroidal core that has a large inductance with respect to the number of turns of the coil and has a strong magnetic flux confinement effect.

【0004】[0004]

【発明が解決しようとする課題】高周波交流励起のレー
ザー発振器の電源に使用されるインダクター用コイル
は、レーザー発振器の高出力化にともない大電力に耐え
るものが要求されている。しかし上述のように従来のエ
ナメル線を使用した空芯コイルの場合、冷却能力上の限
界から大電力での使用が出来ないという問題がある。
The inductor coil used in the power supply of a high frequency AC excitation laser oscillator is required to withstand a large amount of power as the laser oscillator increases in output. However, as described above, the conventional air-core coil using the enameled wire has a problem that it cannot be used with a large electric power due to the limit of the cooling capacity.

【0005】また、チューブ内に冷却水を流してインダ
クター用コイルを冷却するチューブ製のコイルは、空冷
方式より冷却効率が高いため空冷方式より大きい電力を
流すことが可能ではある。しかし、チューブ径が小さく
管路が長いものでは、チューブがつまり易くなると共に
水流の抵抗が増大して十分な冷却水が流せなくなるとい
う問題がある。
Further, since the coil made of a tube for cooling the inductor coil by flowing cooling water in the tube has a higher cooling efficiency than the air cooling system, it is possible to flow electric power larger than that in the air cooling system. However, when the tube diameter is small and the tube length is long, there is a problem that the tube is easily clogged and the resistance of the water flow increases to prevent sufficient cooling water from flowing.

【0006】またチューブ製のコイルの場合には、コイ
ルの直径を小さくしようとするとチューブの断面形状が
偏平に変形して冷却水が流れにくくなるので、コイルの
直径をあまり小さくできないという問題もある。
Further, in the case of a coil made of a tube, if the diameter of the coil is reduced, the cross-sectional shape of the tube is deformed to a flat shape, which makes it difficult for cooling water to flow. .

【0007】周知のように、変圧器には巻線の抵抗によ
る銅損や磁芯における鉄損が存在する。これらの損失は
電流の周波数に大きく依存しており、変圧器の磁芯に適
した高い透磁率の磁芯の場合、高周波数になると急激に
損失が増加するという問題点がある。また、変圧器の1
次側の入力がDC−DCコンバーターで得た矩形波の場
合には、前記鉄損がさらに増加して変圧器の温度上昇率
が大きくなるという問題もある。
As is well known, transformers have copper loss due to winding resistance and iron loss in the magnetic core. These losses largely depend on the frequency of the current, and in the case of a magnetic core having a high magnetic permeability suitable for the magnetic core of a transformer, there is a problem that the loss rapidly increases at high frequencies. Also, one of the transformer
When the input on the secondary side is a rectangular wave obtained by a DC-DC converter, there is a problem that the iron loss further increases and the temperature rise rate of the transformer increases.

【0008】またトロイダルコアを使用した変圧器の場
合、容量を大きくするためにトロイダルコアを大型化す
るのは製造上の困難が大きく価格も非常に高価なものと
なる。その対応策として、トロイダルコアを使用した小
容量の変圧器を複数個並列にして使用する方法も考えら
れるが、これも電源装置の大型を免れず価格的な面でも
問題がある。
In the case of a transformer using a toroidal core, increasing the size of the toroidal core in order to increase the capacity is difficult to manufacture and the price is very expensive. As a countermeasure, a method of using a plurality of small-capacity transformers using a toroidal core in parallel is conceivable, but this also suffers from a large price of the power supply device and there is a problem in terms of cost.

【0009】また上述のトロイダルコア方式の変圧器の
冷却手段としては、空冷または変圧器全体を油浸にする
油冷方式がある。この油冷方式は空冷にくらべて冷却効
率がよいが冷却油を冷却する熱交換装置などが必要であ
り、やはりコストの面で問題がある。
As the cooling means for the toroidal core type transformer, there is an air cooling type or an oil cooling type in which the entire transformer is immersed in oil. This oil cooling system has better cooling efficiency than air cooling, but requires a heat exchange device for cooling the cooling oil, which is also problematic in terms of cost.

【0010】本発明は上述の如き問題点に鑑みてなされ
たものであり、本発明の目的はインダクター用コイルの
効率的冷却方法の提供と、本発明の冷却方法を使用した
コンパクトなサイズでより大きな電流を流すことが可能
なインダクター用コイルの提供ならびにコンパクトなサ
イズでより大きな電流を流すことが可能であり、かつ外
部へ雑音電波がでない変圧器とを提供をすることであ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an efficient cooling method for an inductor coil and a compact size using the cooling method of the present invention. (EN) It is possible to provide an inductor coil capable of passing a large current, and to provide a transformer capable of passing a larger current in a compact size and free of noise radio waves to the outside.

【0011】[0011]

【課題を解決するための手段】本発明は上述のごとき問
題点に鑑みてなされたもので、本発明のインダクター用
コイルの冷却方法は、絶縁体からなる中空の円筒部材の
外周に電線を螺旋状に巻き付けてインダクター用コイル
を形成し、前記中空の円筒部材の内部に冷却水を流通さ
せてインダクター用コイルを冷却する方法である。
The present invention has been made in view of the problems as described above, and a method for cooling an inductor coil according to the present invention is such that an electric wire is spirally wound around an outer periphery of a hollow cylindrical member made of an insulating material. It is a method in which the inductor coil is formed by winding the inductor coil in a circular shape, and cooling water is circulated inside the hollow cylindrical member to cool the inductor coil.

【0012】また、本発明のインダクター用コイルは、
絶縁体からなる中空の円筒部材の内部に冷却水を流通自
在に設け、該中空の円筒部材の外周に電線を螺旋状に巻
き付けてなるものである。
The inductor coil of the present invention is
Cooling water is provided in a hollow cylindrical member made of an insulating material so that the cooling water can flow freely, and an electric wire is spirally wound around the outer circumference of the hollow cylindrical member.

【0013】さらに、本発明のインダクター用コイル
は、絶縁体からなる中空円環状部材の内部に冷却水を流
通自在に設け、該中空円環状部材の外周に電線を螺旋状
に巻き付けてなるものである。
Further, the inductor coil of the present invention comprises a hollow annular member made of an insulating material, through which cooling water can freely flow, and an electric wire spirally wound around the outer periphery of the hollow annular member. is there.

【0014】さらにまた、本発明のインダクター用コイ
ルは、絶縁体からなる中空円環状部材の内部に冷却水を
流通自在に設け、該中空円環状部材の内部の円環状の空
洞部にトロイダルコアを同軸に設置すると共に該中空円
環状部材の外周に電線を螺旋状に巻き付けてなるもので
ある。
Further, in the inductor coil of the present invention, cooling water is circulated in a hollow annular member made of an insulating material, and a toroidal core is provided in an annular cavity inside the hollow annular member. The wire is spirally wound around the outer circumference of the hollow annular member while being coaxially installed.

【0015】本発明の変圧器は、絶縁体からなる中空円
環状部材の内部に冷却水を流通自在に設け、該中空円環
状部材の内部の円環状の空洞部にトロイダルコアを同軸
に設置し、該中空円環状部材の外周に1次側巻線と2次
側巻線とを螺旋状に巻き付けてなるものである。
In the transformer of the present invention, cooling water is circulated inside a hollow annular member made of an insulating material, and a toroidal core is coaxially installed in an annular cavity inside the hollow annular member. A primary winding and a secondary winding are spirally wound around the outer circumference of the hollow annular member.

【0016】[0016]

【作用】本発明のインダクター用コイルの冷却方法は、
絶縁体からなる中空の円筒部材の外周に電線を螺旋状に
巻き付けてインダクター用コイルを形成し、前記中空の
円筒部材の内部に冷却水を流通させてインダクター用コ
イルを冷却する方法であるから、インダクター用コイル
を絶縁体からなる中空の円筒部材を介して内側から冷却
することができる。
The cooling method for the inductor coil of the present invention is as follows.
An inductor is formed by spirally winding an electric wire around the outer periphery of a hollow cylindrical member made of an insulator, and a cooling water is circulated inside the hollow cylindrical member to cool the inductor coil. The inductor coil can be cooled from the inside through the hollow cylindrical member made of an insulator.

【0017】また、本発明のインダクター用コイルの冷
却方法を用いたインダクター用コイルは、絶縁体からな
る中空の円筒部材の内部に冷却水を流通自在に設け、該
中空の円筒部材の外周に電線を螺旋状に巻き付けてなる
ものであるから、コイルは円筒部材を介して冷却され、
より大きな電流を流すことができる。
In the inductor coil using the inductor coil cooling method of the present invention, cooling water is circulated inside a hollow cylindrical member made of an insulating material, and an electric wire is provided on the outer periphery of the hollow cylindrical member. Since the coil is wound in a spiral shape, the coil is cooled through the cylindrical member,
A larger current can be passed.

【0018】さらにまた、本発明のインダクター用コイ
ルの冷却方法を用いたインダクター用コイルは、絶縁体
からなる中空円環状部材の内部に冷却水を流通自在に設
け、該中空円環状部材の外周に電線を螺旋状に巻き付け
てなるものであるから、コイルは円環状部材を介して冷
却され、より大きな電流を流すことができる。
Furthermore, an inductor coil using the method for cooling an inductor coil according to the present invention is such that a cooling water is circulated inside a hollow annular member made of an insulating material, and the cooling water is provided on the outer periphery of the hollow annular member. Since the wire is formed by spirally winding the wire, the coil is cooled through the annular member, and a larger current can flow.

【0019】そしてまた、本発明のインダクター用コイ
ルの冷却方法を用いたインダクター用コイルは、絶縁体
からなる中空円環状部材の内部に冷却水を流通自在に設
け、該中空円環状部材の内部の円環状の空洞部にトロイ
ダルコアを同軸に設置すると共に該中空円環状部材の外
周に電線を螺旋状に巻き付けてなるものであるから、巻
線とトロイダルコアとが同時に冷却され、より大きな電
流を流すことができる。またコイルの中の磁束密度が著
しく増加するのでインダクタンスもこれに比例して著し
く増加し、少ない巻き数で大きなインダクタンスを得る
ことができる。さらにトロイダルコアから外部への漏洩
磁束がほとんどない。
Further, in the inductor coil using the method for cooling an inductor coil according to the present invention, cooling water is provided in a hollow annular member made of an insulating material so that the cooling water can flow freely inside the hollow annular member. Since the toroidal core is coaxially installed in the annular cavity and the electric wire is spirally wound around the outer periphery of the hollow annular member, the winding and the toroidal core are cooled at the same time, and a larger current is supplied. Can be flushed. Further, since the magnetic flux density in the coil is remarkably increased, the inductance is remarkably increased in proportion to this, and a large inductance can be obtained with a small number of turns. Furthermore, there is almost no leakage magnetic flux from the toroidal core to the outside.

【0020】本発明のインダクター用コイルの冷却方法
を用いた変圧器は、絶縁体からなる中空円環状部材の内
部に冷却水を流通自在に設け、該中空円環状部材の内部
の円環状の空洞部にトロイダルコアを同軸に設置し、該
中空円環状部材の外周に1次側巻線と2次側巻線とを螺
旋状に巻き付けてなるものであるから、巻線とトロイダ
ルコアとが同時に冷却され、より大きな電流を流すこと
ができる。さらにトロイダルコアから外部への漏洩磁束
がほとんどないので電磁結合率も大きくなる。
A transformer using the method for cooling an inductor coil according to the present invention has a hollow annular member made of an insulating material, through which cooling water can flow freely, and an annular cavity inside the hollow annular member. Since the toroidal core is coaxially installed in the portion, and the primary winding and the secondary winding are spirally wound around the outer periphery of the hollow annular member, the winding and the toroidal core are simultaneously formed. It is cooled and can carry a larger current. Furthermore, since there is almost no leakage magnetic flux from the toroidal core to the outside, the electromagnetic coupling rate also increases.

【0021】[0021]

【実施例】次に本発明のインダクター用コイルの冷却方
法および同方法を用いたインダクター用コイルについて
図面を用いて説明する。図1は、本発明のインダクター
用コイルの冷却方法を用いたインダクター用コイルの第
1実施例である。インダクター用コイル1は、エナメル
またはテフロンなどの絶縁体で被覆された導電線3をセ
ラミックスまたはプラスチックスなどの絶縁体で出来た
中空の円筒部材5に適宜なピッチで螺旋状に巻きつけて
構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for cooling an inductor coil according to the present invention and an inductor coil using the method will be described with reference to the drawings. FIG. 1 is a first embodiment of an inductor coil using the method for cooling an inductor coil according to the present invention. The inductor coil 1 is constructed by spirally winding a conductive wire 3 covered with an insulator such as enamel or Teflon around a hollow cylindrical member 5 made of an insulator such as ceramics or plastics at an appropriate pitch. ing.

【0022】この円筒部材5の両端部にはフランジ部
(7A,7B)が設けられており、該フランジ部にはキ
ャップ(9A,9B)が図示しないボルトなどにより固
定されている。この両端部のキャップには、冷却水を給
排水するための給排水穴(11A,11B)が設けられ
ている。前記フランジ部と前記キャップとの間にはシー
ル部材(13A,13B)が介在させてあり、該フラン
ジ部から冷却水が漏洩しないようになっている。なお前
記円筒部材5と前記キャップ(9A,9B)とは一体的
に成形加工したものを使用してもよい。その場合には前
記シール部材(13A,13B)は不要となる。
Flange portions (7A, 7B) are provided at both ends of the cylindrical member 5, and caps (9A, 9B) are fixed to the flange portions by bolts (not shown) or the like. The caps at both ends are provided with water supply / drain holes (11A, 11B) for supplying / draining cooling water. Sealing members (13A, 13B) are interposed between the flange portion and the cap so that cooling water does not leak from the flange portion. The cylindrical member 5 and the caps (9A, 9B) may be integrally molded and used. In that case, the sealing members (13A, 13B) are unnecessary.

【0023】前記円筒部材5の軸方向の長さと直径と
は、前記インダクター用コイル1に要求されるインダク
タンスの大きさに合わせて適宜に製作されるものであ
り、前記冷却水の温度と流量はコイルの温度が一定の温
度以下になるように適宜に設定されるものである。
The axial length and diameter of the cylindrical member 5 are appropriately manufactured according to the magnitude of the inductance required for the inductor coil 1, and the temperature and flow rate of the cooling water are The temperature of the coil is appropriately set so as to be below a certain temperature.

【0024】上記構成のインダクター用コイル1を冷却
するには、前記円筒部材5の中に前記冷却水給水口から
適宜な温度と流量の冷却水を送水する。送水された冷却
水はインダクター用コイルを円筒部材5を介してコイル
を内側から冷却し、これにより温度の上昇した冷却水は
送水口と対向する排水口から排水され、該インダクター
用コイル1は効率的に冷却されることになる。なお容易
に想到さることであるが前記インダクター用コイル1
は、前記円筒部材5の中に磁芯を挿入して有芯コイルと
することも可能である。
In order to cool the inductor coil 1 having the above structure, cooling water having an appropriate temperature and flow rate is fed into the cylindrical member 5 through the cooling water supply port. The supplied cooling water cools the inductor coil from the inside through the cylindrical member 5, and the cooling water whose temperature has risen by this is discharged from the drain port facing the water inlet, and the inductor coil 1 is efficiently Will be cooled. It should be easily understood that the inductor coil 1 is
It is also possible to insert a magnetic core into the cylindrical member 5 to form a cored coil.

【0025】本発明のインダクター用コイルの冷却方法
を用いたインダクター用コイルの第2実施例が図2およ
び図3に示してある。図2を参照するに、この第2実施
例のインダクター用コイル20は、筒状部材を円環状に
形成した中空円環状部材21の外周にエナメルまたはテ
フロンなどの絶縁体で被覆された導電線3が適宜な巻き
数で巻き付けられて構成されている。
A second embodiment of the inductor coil using the inductor coil cooling method of the present invention is shown in FIGS. Referring to FIG. 2, in the inductor coil 20 of the second embodiment, a conductive wire 3 in which an outer circumference of a hollow annular member 21 in which a tubular member is formed in an annular shape is covered with an insulator such as enamel or Teflon. Is wound with an appropriate number of turns.

【0026】図3は図2のIII−III線に沿った側
断面図であり前記導電線3を除外して示しある。この図
3により中空円環状部材21の内部構造を説明する。上
記中空円環状部材21は、断面形状が「コ」の字状をし
た円環状部材本体23と蓋部材25とからなり、円環状
部材本体23と蓋部材25とは「ネジ」などの図示しな
い適宜固定手段により固定されている。また円環状部材
本体23と蓋部材25との間にはリング状のOリングな
どのシール部材(27A,27B)が設けられている。
なお前記円環状部材本体23と蓋部材25の材質は前記
円筒部材5と同様にセラミックスまたはプラスチックス
などの絶縁体で製作されている。
FIG. 3 is a side sectional view taken along the line III-III in FIG. 2 and is shown without the conductive line 3. The internal structure of the hollow annular member 21 will be described with reference to FIG. The hollow annular member 21 is composed of an annular member main body 23 and a lid member 25 having a U-shaped cross section, and the annular member main body 23 and the lid member 25 are not shown such as “screws”. It is fixed by appropriate fixing means. A seal member (27A, 27B) such as a ring-shaped O-ring is provided between the annular member main body 23 and the lid member 25.
The material of the annular member main body 23 and the lid member 25 is made of an insulating material such as ceramics or plastics like the cylindrical member 5.

【0027】上記構成の中空円環状部材21の内部に形
成される円環状の空洞部29には、冷却水の入り口31
と排出口33とが設けられており、この冷却水の入り口
31から給水された冷却水は、円環状の空洞部29を2
方向に分かれて流れて前記排出口33から外部へ排出さ
れることになる。また、この円環状の空洞部29には、
磁束の閉じ込め作用の強いトロイダルコア35を前記円
環状部材本体23と同軸に設置してある。
An inlet 31 for cooling water is provided in the annular cavity 29 formed inside the hollow annular member 21 having the above-mentioned structure.
And a discharge port 33 are provided, and the cooling water supplied from the cooling water inlet 31 flows into the annular cavity 29.
It is divided into directions and flows to be discharged from the discharge port 33 to the outside. Further, in the annular cavity 29,
A toroidal core 35 having a strong magnetic flux confinement action is installed coaxially with the annular member body 23.

【0028】上記構成により、中空円環状部材21の外
周に巻かれた導電線3とトロイダルコア35とは前記空
洞部29を流通する冷却水により効率的に冷却されるの
で、従来の空冷方式のインダクター用コイルより大きな
電流を流すことができる。またこのトロイダルコア35
によりコイルの中の磁束密度が著しく増加するのでイン
ダクタンスもこれに比例して著しく増加する。すなわち
空芯コイルと比較した場合、トロイダルコア入りのコイ
ルは少ない巻き数で大きなインダクタンスを得ることが
できる。また、トロイダルコア入りのコイルは磁束がト
ロイダルコアの外部に漏洩しないので外部に雑音電波を
出すことがない。
With the above structure, the conductive wire 3 and the toroidal core 35 wound around the outer circumference of the hollow annular member 21 are efficiently cooled by the cooling water flowing through the cavity 29, so that the conventional air cooling system is used. It is possible to pass a larger current than the inductor coil. Also, this toroidal core 35
As a result, the magnetic flux density in the coil increases remarkably, and the inductance also increases remarkably in proportion to this. That is, when compared with the air-core coil, the coil with the toroidal core can obtain a large inductance with a small number of turns. In addition, since the magnetic flux does not leak to the outside of the toroidal core, the coil containing the toroidal core does not emit noise radio waves to the outside.

【0029】なお、前記円環状部材21の断面形状は
「コ」の字状に限定されるものではなく、例えば円形の
断面形状にすればコイル用の導電線を巻き易いなどの効
果もある。
The cross-sectional shape of the annular member 21 is not limited to the "U" shape. For example, if the circular-shaped member 21 has a circular cross-sectional shape, the conductive wire for a coil can be easily wound.

【0030】図4は、本発明のインダクター用コイルの
冷却方法を用いた変圧器の実施例である。図4に示され
る変圧器40の構成は、コイルの巻き方以外は前記イン
ダクター用コイル20と同一であるので同一の構成部分
の説明は省略する。変圧器40は1次側巻線41と2次
側巻線43とが前記中空円環状部材21の外周にそれぞ
れ巻かれたものである。
FIG. 4 shows an embodiment of a transformer using the method for cooling an inductor coil according to the present invention. The configuration of the transformer 40 shown in FIG. 4 is the same as that of the inductor coil 20 except for the winding method of the coil, and the description of the same components will be omitted. The transformer 40 is formed by winding a primary winding 41 and a secondary winding 43 around the outer circumference of the hollow annular member 21.

【0031】上記構成の変圧器40の1次側巻線41と
2次側巻線43とは、前記インダクター用コイル20の
場合と同様に前記空洞部29を流通する冷却水により効
率的に冷却されるので大電流を流すことができる。ま
た、トロイダルコア35によりコイルの中の磁束密度が
著しく増加するので電磁結合率も大きく変圧器のエネル
ギー損失が少ない。また磁束がトロイダルコアの外部に
漏洩しないので外部に雑音電波を出すことがない。
As in the case of the inductor coil 20, the primary winding 41 and the secondary winding 43 of the transformer 40 having the above structure are efficiently cooled by the cooling water flowing through the cavity 29. Therefore, a large current can be passed. Moreover, since the magnetic flux density in the coil is remarkably increased by the toroidal core 35, the electromagnetic coupling rate is large and the energy loss of the transformer is small. Moreover, since the magnetic flux does not leak to the outside of the toroidal core, no noise radio wave is emitted to the outside.

【0032】[0032]

【発明の効果】以上の如き実施例の説明から理解される
ように、本発明のインダクター用コイルの冷却方法は、
絶縁体からなる中空の円筒部材の外周に電線を螺旋状に
巻き付けてインダクター用コイルを形成し、前記中空の
円筒部材の内部に冷却水を流通させてインダクター用コ
イルを冷却する方法であるから、インダクター用コイル
を効率的に冷却することができる。
As can be understood from the above description of the embodiments, the cooling method for inductor coils according to the present invention is
An inductor is formed by spirally winding an electric wire around the outer periphery of a hollow cylindrical member made of an insulator, and a cooling water is circulated inside the hollow cylindrical member to cool the inductor coil. The inductor coil can be cooled efficiently.

【0033】そして、本発明のインダクター用コイルの
冷却方法を用いたインダクター用コイルは、絶縁体から
なる中空の円筒部材の内部に冷却水を流通自在に設け、
該中空の円筒部材の外周に電線を螺旋状に巻き付けてな
るものであるから、コイルの巻線にチューブなどを使用
することなくコンパクトなサイズでより大きな電流を流
すことが可能なコイルを製作できる。
In the inductor coil using the inductor coil cooling method of the present invention, cooling water is circulated in a hollow cylindrical member made of an insulating material,
Since the electric wire is spirally wound around the outer circumference of the hollow cylindrical member, it is possible to manufacture a coil capable of passing a larger current in a compact size without using a tube or the like for winding the coil. .

【0034】さらにまた、本発明のインダクター用コイ
ルの冷却方法を用いたインダクター用コイルは、絶縁体
からなる中空円環状部材の内部に冷却水を流通自在に設
け、該中空円環状部材の外周に電線を螺旋状に巻き付け
てなるものであるから、円環状でないコイルと同様にコ
ンパクトなサイズで、より大きな電流を流すことが可能
である。
Furthermore, in the inductor coil using the inductor coil cooling method of the present invention, cooling water is provided in a hollow annular member made of an insulating material so that cooling water can flow through the hollow annular member. Since the electric wire is wound in a spiral shape, it is possible to pass a larger current with a compact size like a non-circular coil.

【0035】そしてまた、本発明のインダクター用コイ
ルの冷却方法を用いたインダクター用コイルは、絶縁体
からなる中空円環状部材の内部に冷却水を流通自在に設
け、該中空円環状部材の内部の円環状の空洞部にトロイ
ダルコアを同軸に設置すると共に該中空円環状部材の外
周に電線を螺旋状に巻き付けてなるものであるから、巻
線とトロイダルコアとが同時に冷却され、より大きな電
流を流すことができる。またトロイダルコアから外部へ
の漏洩磁束がほとんどないので少ない巻き数で大きなイ
ンダクタンスを得ることができる。その結果コンパクト
なサイズのコイルを製作できる。そして漏洩磁束がほと
んどないのでコイルから外部へ雑音電波がでない。
Further, in the inductor coil using the method for cooling an inductor coil according to the present invention, cooling water is provided in a hollow annular member made of an insulating material so that cooling water can flow through the inside of the hollow annular member. Since the toroidal core is coaxially installed in the annular cavity and the electric wire is spirally wound around the outer periphery of the hollow annular member, the winding and the toroidal core are cooled at the same time, and a larger current is supplied. Can be flushed. Further, since there is almost no leakage magnetic flux from the toroidal core to the outside, a large inductance can be obtained with a small number of turns. As a result, a compact size coil can be manufactured. And since there is almost no leakage magnetic flux, there is no noise radio wave from the coil to the outside.

【0036】本発明のインダクター用コイルの冷却方法
を用いた変圧器は、絶縁体からなる中空円環状部材の内
部に冷却水を流通自在に設け、該中空円環状部材の内部
の円環状の空洞部にトロイダルコアを同軸に設置し、該
中空円環状部材の外周に1次側巻線と2次側巻線とを螺
旋状に巻き付けてなるものであるから、巻線とトロイダ
ルコアとが同時に冷却され、より大きな電流を流すこと
ができる。またトロイダルコアから外部への漏洩磁束が
ほとんどないので電磁結合率も大きくなり、変圧器での
エネルギー損失が低下する。そしてまた、漏洩磁束がほ
とんどないのでコイルから外部へ雑音電波がでない。
A transformer using the method for cooling an inductor coil according to the present invention has a hollow toroidal member made of an insulating material, through which cooling water can freely flow, and an annular cavity inside the hollow toroidal member. Since the toroidal core is coaxially installed in the portion, and the primary winding and the secondary winding are spirally wound around the outer periphery of the hollow annular member, the winding and the toroidal core are simultaneously formed. It is cooled and can carry a larger current. Moreover, since there is almost no leakage magnetic flux from the toroidal core to the outside, the electromagnetic coupling rate also increases, and the energy loss in the transformer decreases. Also, since there is almost no leakage magnetic flux, no noise radio waves are transmitted from the coil to the outside.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のインダクター用コイルの冷却方法を用
いたインダクター用コイルの第1実施例。
FIG. 1 is a first embodiment of an inductor coil using the inductor coil cooling method of the present invention.

【図2】本発明のインダクター用コイルの冷却方法を用
いたインダクター用コイルの第2実施例。
FIG. 2 is a second example of an inductor coil using the method for cooling an inductor coil according to the present invention.

【図3】図2のIII−III線に沿った側断面図から
導電線3を除外した図。
FIG. 3 is a view in which a conductive wire 3 is excluded from a side sectional view taken along line III-III in FIG.

【図4】本発明のインダクター用コイルの冷却方法を用
いた変圧器の実施例。
FIG. 4 is an example of a transformer using the inductor coil cooling method of the present invention.

【符号の説明】[Explanation of symbols]

1 インダクター用コイル 3 導電線 5 円筒部材 7A,7B フランジ部 9A,9B キャップ 11A,11B 給排水穴 20 インダクター用コイル 21 中空円環状部材 23 円環状部材本体 25 蓋部材 29 円環状の空洞部 35 トロイダルコア 40 変圧器 41 1次側巻線 43 2次側巻線 1 Inductor Coil 3 Conductive Wire 5 Cylindrical Member 7A, 7B Flange 9A, 9B Cap 11A, 11B Water Supply / Drainage Hole 20 Inductor Coil 21 Hollow Annular Member 23 Annular Member Main Body 25 Lid Member 29 Annular Cavity 35 Toroidal Core 40 Transformer 41 Primary winding 43 Secondary winding

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体からなる中空の円筒部材5の外周
に電線3を螺旋状に巻き付けてインダクター用コイル1
を形成し、前記中空の円筒部材5の内部に冷却水を流通
させてインダクター用コイルを冷却する方法。
1. An inductor coil 1 comprising an electric wire 3 spirally wound around an outer circumference of a hollow cylindrical member 5 made of an insulating material.
And cooling water is flowed through the hollow cylindrical member 5 to cool the inductor coil.
【請求項2】 絶縁体からなる中空の円筒部材5の内部
に冷却水を流通自在に設け、該中空の円筒部材5の外周
に電線3を螺旋状に巻き付けてなることを特徴とするイ
ンダクター用コイル。
2. An inductor, characterized in that cooling water is circulated inside a hollow cylindrical member (5) made of an insulating material, and an electric wire (3) is spirally wound around the outer circumference of the hollow cylindrical member (5). coil.
【請求項3】 絶縁体からなる中空円環状部材21の内
部に冷却水を流通自在に設け、該中空円環状部材21の
外周に電線3を螺旋状に巻き付けてなることを特徴とす
るインダクター用コイル。
3. An inductor, characterized in that cooling water is freely circulated inside a hollow annular member (21) made of an insulator, and an electric wire (3) is spirally wound around the outer periphery of the hollow annular member (21). coil.
【請求項4】 絶縁体からなる中空円環状部材21の内
部に冷却水を流通自在に設け、該中空円環状部材21の
内部の円環状の空洞部29にトロイダルコア35を同軸
に設置すると共に該中空円環状部材21の外周に電線3
を螺旋状に巻き付けてなることを特徴とするインダクタ
ー用コイル。
4. A hollow toroidal member 21 made of an insulating material is provided so that cooling water can flow freely, and a toroidal core 35 is coaxially installed in an annular cavity 29 inside the hollow toroidal member 21. The electric wire 3 is provided on the outer circumference of the hollow annular member 21.
A coil for an inductor, which is formed by spirally winding.
【請求項5】 絶縁体からなる中空円環状部材21の内
部に冷却水を流通自在に設け、該中空円環状部材21の
内部の円環状の空洞部29にトロイダルコア35を同軸
に設置し、該中空円環状部材21の外周に1次側巻線4
1と2次側巻線43とを螺旋状に巻き付けてなることを
特徴とする変圧器。
5. A cooling water is circulated in an inside of a hollow annular member 21 made of an insulating material, and a toroidal core 35 is coaxially installed in an annular hollow portion 29 inside the hollow annular member 21. The primary winding 4 is provided on the outer circumference of the hollow annular member 21.
A transformer characterized in that the first winding and the secondary winding 43 are wound in a spiral shape.
JP6307555A 1994-12-12 1994-12-12 Cooling method for coil of inductor, the coil of the inductor using the method, and transformer Pending JPH08167529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307555A JPH08167529A (en) 1994-12-12 1994-12-12 Cooling method for coil of inductor, the coil of the inductor using the method, and transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307555A JPH08167529A (en) 1994-12-12 1994-12-12 Cooling method for coil of inductor, the coil of the inductor using the method, and transformer

Publications (1)

Publication Number Publication Date
JPH08167529A true JPH08167529A (en) 1996-06-25

Family

ID=17970502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307555A Pending JPH08167529A (en) 1994-12-12 1994-12-12 Cooling method for coil of inductor, the coil of the inductor using the method, and transformer

Country Status (1)

Country Link
JP (1) JPH08167529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092158A1 (en) * 2007-01-22 2008-07-31 Johnson Controls Technology Company Cooling system for variable speed drives and inductors
US7957166B2 (en) 2007-10-30 2011-06-07 Johnson Controls Technology Company Variable speed drive
US8149579B2 (en) 2008-03-28 2012-04-03 Johnson Controls Technology Company Cooling member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092158A1 (en) * 2007-01-22 2008-07-31 Johnson Controls Technology Company Cooling system for variable speed drives and inductors
US7876561B2 (en) 2007-01-22 2011-01-25 Johnson Controls Technology Company Cooling systems for variable speed drives and inductors
US7957166B2 (en) 2007-10-30 2011-06-07 Johnson Controls Technology Company Variable speed drive
US8149579B2 (en) 2008-03-28 2012-04-03 Johnson Controls Technology Company Cooling member

Similar Documents

Publication Publication Date Title
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
US4897626A (en) Cooling electromagnetic devices
GB2226221A (en) Inductively heated apparatus
US11355273B2 (en) Non-liquid immersed transformers with improved coil cooling
JP4651260B2 (en) Stationary induction machine and cable therefor
JPH07106140A (en) Common mode choke coil
CN213277725U (en) Solid core inductance coil
JPH08167529A (en) Cooling method for coil of inductor, the coil of the inductor using the method, and transformer
JP2004047192A (en) Transformer discharge type plasma generating device by magnet-permeating core
JP4615425B2 (en) Matching transformer
Lu et al. Application and analysis of adjustable profile high frequency switchmode transformer having a U-shaped winding structure
JPH08148346A (en) High frequency transformer
CN106252033A (en) A kind of high-power high-frequency transformer with radiating structure
KR100996606B1 (en) A high frequency cable for a high frequency induction heating device
JP2008270347A (en) Transformer
US20240153694A1 (en) Liquid cooled bobbin for a wire wound magnetic device
KR101086471B1 (en) Transformer Structure For High Voltage
CN219066578U (en) Magnetic element and power electronic transformer
CN219512922U (en) Transformer convenient for heat dissipation
KR20100026408A (en) A high frequency induction heating device
JP3195373B2 (en) Induction electromagnetic device and encapsulated induction electromagnetic device using the same
Gradinger et al. Analysis and comparison of air and water cooled inductors for medium-voltage power-electronic applications
JP2007149946A (en) Saturable reactor and non-contact power feeding apparatus utilizing the same
JPH07335447A (en) Transformer
CN115172004A (en) Magnetic element, filter and imaging device