JPH08148180A - Total solid lithium secondary battery - Google Patents

Total solid lithium secondary battery

Info

Publication number
JPH08148180A
JPH08148180A JP7240323A JP24032395A JPH08148180A JP H08148180 A JPH08148180 A JP H08148180A JP 7240323 A JP7240323 A JP 7240323A JP 24032395 A JP24032395 A JP 24032395A JP H08148180 A JPH08148180 A JP H08148180A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
active material
battery
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7240323A
Other languages
Japanese (ja)
Other versions
JP3332133B2 (en
Inventor
Kazuya Iwamoto
和也 岩本
Noboru Aotani
登 青谷
Kazunori Takada
和典 高田
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24032395A priority Critical patent/JP3332133B2/en
Publication of JPH08148180A publication Critical patent/JPH08148180A/en
Application granted granted Critical
Publication of JP3332133B2 publication Critical patent/JP3332133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To prevent dendrite from being generated at a negative electrode or an active material from dropping by containing lithium at least in one of the active material of a positive electrode and the metallic material of a negative electrode. CONSTITUTION: This total solid lithium secondary battery has a positive electrode containing a compound as a component active material selected from a group of transition metal oxides and transition metal sulfides, a lithium ion conductive solid glass electrolyte containing Li2 S, and a negative electrode containing a metal for alloying lithium. In addition, at least one of the electrode active material and the negative electrode metal of the battery contains lithium. Also, the metallic active material of the positive electrode contains lithium at least in a charging condition, while the active material of the positive electrode contains lithium at least in a discharging condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン導
電性固体電解質を用いた全固体リチウム二次電池に関す
るものである。
TECHNICAL FIELD The present invention relates to an all solid lithium secondary battery using a lithium ion conductive solid electrolyte.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR・携帯電話等
のポータブル機器の小型化・軽量化が進むなかで、その
電源としての電池に対して、高エネルギー密度化が望ま
れている。特に、リチウム電池は、リチウムが小さな原
子量を持ちかつイオン化エネルギーが大きな物質である
ことから、高エネルギー密度を得ることができる電池と
して各方面で盛んに研究が行われている。
2. Description of the Related Art In recent years, as portable devices such as a camera-integrated VTR and a mobile phone have become smaller and lighter, higher energy density has been demanded for a battery as a power source thereof. In particular, since lithium is a substance having a small atomic weight and a large ionization energy, a lithium battery has been actively researched in various fields as a battery capable of obtaining a high energy density.

【0003】その一方、これらの用途に用いられるリチ
ウム二次電池には、電解液として有機電解液が使用され
ている。このため、負極にアルミニウムやインジウムと
いった金属を用いた場合にはリチウムとの合金化によっ
て脆化し、活物質が微細化し、電極の結着性が悪くな
る。そして、電極から活物質の脱落が生じ、見かけの表
面積の低下を引き起こしたり、電解液との反応により金
属負極が不動態化し、インピーダンスが増大したりす
る。その結果、インピーダンスの低い部分に電流集中が
起こり、デンドライトが発生し、このデンドライトが正
負極間に存在するセパレータを貫通し、これによって電
池が内部短絡するといった問題が生じやすい。一方、ヨ
ウ化リチウムなどのハロゲン化物からなる固体電解質を
用いた固体電池においては、金属負極表面にハロゲン化
物が生成することにより、高インピーダンス部が生じ
る。このためインピーダンスの低い部分に電流集中が起
こり、デンドライトが発生するといった問題が生じた
り、また、高インピーダンス部が生成することにより、
この部分で電気化学反応速度が低下し、見かけ上、反応
表面積が減少する結果、充放電サイクル特性の劣化を招
くといった問題が生じやすい。このようなデンドライト
発生の問題を解決し電池の信頼性を高めるために、層間
にリチウムを吸蔵・放出することが可能な炭素材料を用
いたり、電解液中にデンドライト抑制剤を添加するなど
の方法が提案されている。
On the other hand, an organic electrolytic solution is used as an electrolytic solution in a lithium secondary battery used for these purposes. Therefore, when a metal such as aluminum or indium is used for the negative electrode, it becomes brittle due to alloying with lithium, the active material becomes finer, and the binding property of the electrode deteriorates. Then, the active material falls off from the electrode, causing an apparent decrease in surface area, or the reaction with the electrolytic solution causes the metal negative electrode to be passivated and the impedance to increase. As a result, current concentration occurs in the portion with low impedance, dendrites are generated, and the dendrites penetrate the separator existing between the positive and negative electrodes, which easily causes a problem such as internal short circuit of the battery. On the other hand, in a solid battery using a solid electrolyte made of a halide such as lithium iodide, a high impedance portion is generated due to the formation of the halide on the surface of the metal negative electrode. For this reason, current concentration occurs in the low impedance part, which causes problems such as dendrites, and the high impedance part creates
At this portion, the electrochemical reaction rate decreases, and apparently the reaction surface area decreases. As a result, problems such as deterioration of charge / discharge cycle characteristics tend to occur. In order to solve such a problem of dendrite generation and improve the reliability of the battery, a method of using a carbon material capable of inserting and extracting lithium between layers, adding a dendrite suppressor to the electrolytic solution, etc. Is proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、こうし
た方法をとった場合でも、大電流で充電を行った場合に
おいては、完全にデンドライトの発生を抑制することが
できなかった。また、有機電解液を用いたリチウム電池
では、そのエネルギー密度の高さのために、リチウムデ
ンドライトの発生により正負極間の短絡が生じた際に
は、電池が発火する恐れがあった。本発明は、このよう
な課題を解決するものであり、有機電解液や、ハロゲン
化物からなる固体電解質を用いた場合に発生していた負
極でのデンドライトの発生や活物質の脱落を防止するこ
とができる全固体リチウム二次電池を提供することを目
的とするものである。
However, even when such a method is adopted, it is not possible to completely suppress the generation of dendrites when charging is performed with a large current. Further, in the lithium battery using the organic electrolytic solution, due to its high energy density, when the short circuit between the positive and negative electrodes occurs due to the generation of lithium dendrite, the battery may ignite. The present invention is to solve such a problem, and to prevent the generation of dendrites or the dropout of the active material in the negative electrode that has occurred when an organic electrolyte solution or a solid electrolyte composed of a halide is used. It is an object of the present invention to provide an all-solid-state lithium secondary battery capable of achieving the above.

【0005】[0005]

【課題を解決するための手段】本発明は、正極活物質と
して遷移金属酸化物および遷移金属硫化物よりなる群か
ら選択される化合物を含む正極、Li2Sを含むガラス
からなるリチウムイオン導電性の固体電解質、およびリ
チウムと合金化する金属を含む負極を具備し、前記正極
の活物質および負極金属の少なくとも一方がリチウムを
含む全固体リチウム二次電池を提供する。さらに詳しく
は、本発明の全固体リチウム二次電池は、負極の金属活
物質は、少なくとも充電状態においてリチウムを含み、
正極の活物質は少なくとも放電状態においてリチウムを
含む。
According to the present invention, a positive electrode containing a compound selected from the group consisting of transition metal oxides and transition metal sulfides as a positive electrode active material, and a lithium ion conductive film made of glass containing Li 2 S. An all-solid-state lithium secondary battery is provided, which comprises a solid electrolyte of 1 above, and a negative electrode containing a metal alloying with lithium, and at least one of the positive electrode active material and the negative electrode metal contains lithium. More specifically, in the all-solid-state lithium secondary battery of the present invention, the metal active material of the negative electrode contains lithium at least in a charged state,
The positive electrode active material contains lithium at least in a discharged state.

【0006】本発明の好ましい態様において、負極の金
属活物質は、In、Pb、Zn、Sn、Sb、Bi、C
d、Ga、およびTiよりなる群から選ばれる単一の金
属、または二種以上の金属からなる合金である。本発明
はまた、In、Pb、Zn、Sn、Sb、Bi、Cd、
Ga、およびTiよりなる群から選ばれる少なくとも一
種を主成分とする合金を負極に用いることもできる。本
発明の好ましい他の態様において、負極の金属活物質
は、AlまたはAlを主成分とする合金である。前記負
極の金属活物質は、少なくとも充電状態においてはリチ
ウムと合金化している。
In a preferred embodiment of the present invention, the metal active material of the negative electrode is In, Pb, Zn, Sn, Sb, Bi, C.
It is a single metal selected from the group consisting of d, Ga, and Ti, or an alloy composed of two or more metals. The present invention also includes In, Pb, Zn, Sn, Sb, Bi, Cd,
An alloy containing at least one selected from the group consisting of Ga and Ti as the main component can also be used for the negative electrode. In another preferred embodiment of the present invention, the metal active material of the negative electrode is Al or an alloy containing Al as a main component. The metal active material of the negative electrode is alloyed with lithium at least in a charged state.

【0007】本発明の好ましい態様において、正極の活
物質はLixCoO2、LixMnO2、LixMn24
LixNiO2、LixTiS2、LixMoS2、およびL
xMo68よりなる群から選択される化合物(ただ
し、x≧0)である。本発明の好ましい態様において、
前記固体電解質は、さらにSiS2、Al23、P
25、およびB23よりなる群から選択される少なくと
も一種を含む。本発明のさらに好ましい態様において、
前記固体電解質は、さらにLi2O、Li3PO4、Li2
SO4、およびLi2CO3よりなる群から選択される少
なくとも一種を含んでいる。
In a preferred embodiment of the present invention, the positive electrode active material is Li x CoO 2 , Li x MnO 2 , Li x Mn 2 O 4 ,
Li x NiO 2 , Li x TiS 2 , Li x MoS 2 , and L
It is a compound (provided that x ≧ 0) selected from the group consisting of i x Mo 6 S 8 . In a preferred embodiment of the present invention,
The solid electrolyte further includes SiS 2 , Al 2 S 3 , P
At least one selected from the group consisting of 2 S 5 and B 2 S 3 . In a further preferred embodiment of the present invention,
The solid electrolyte further includes Li 2 O, Li 3 PO 4 , Li 2
It contains at least one selected from the group consisting of SO 4 and Li 2 CO 3 .

【0008】本発明の全固体リチウム二次電池は、好ま
しい態様において、電解質層にLi2S−X、またはL
2S−X−Yからなるガラス固体電解質を用いてい
る。ここで、XはSiS2、Al23、P25、および
23よりなる群から選択される少なくとも一種を表
し、YはLi2O、Li3PO4、Li2SO4、およびL
2CO3よりなる群から選択される少なくとも一種を表
す。これらのガラス固体電解質は、ハロゲン化物を含ま
ないため、負極金属活物質表面にハロゲン化物との反応
による高インピーダンス層は生成しない。また、固体電
解質が負極表面に接しているので、負極活物質がリチウ
ムとの合金化によって微細化しても、電極からの脱落を
防止することができ、さらに反応表面積の増大といった
好ましい作用を示す。その結果、電流分布が均一とな
り、リチウムデンドライトが発生せず、このデンドライ
トによる電池の内部短絡を防止することができ、極めて
信頼性の高いリチウム二次電池を得ることができる。
In a preferred embodiment of the all-solid-state lithium secondary battery of the present invention, Li 2 S-X or L is used as the electrolyte layer.
A glass solid electrolyte composed of i 2 S-X-Y is used. Here, X represents at least one selected from the group consisting of SiS 2 , Al 2 S 3 , P 2 S 5 , and B 2 S 3 , and Y is Li 2 O, Li 3 PO 4 , Li 2 SO 4 , And L
It represents at least one selected from the group consisting of i 2 CO 3 . Since these glass solid electrolytes do not contain a halide, a high impedance layer is not formed on the surface of the negative electrode metal active material by the reaction with a halide. Further, since the solid electrolyte is in contact with the surface of the negative electrode, even if the negative electrode active material is made finer by alloying with lithium, it is possible to prevent the negative electrode active material from coming off from the electrode, and further it is preferable to increase the reaction surface area. As a result, the current distribution becomes uniform, lithium dendrites do not occur, it is possible to prevent an internal short circuit of the battery due to the dendrites, and it is possible to obtain an extremely reliable lithium secondary battery.

【0009】ここにおいて、固体電解質の組成をaLi
2S−(1−a)XまたはbY−(1−b)[aLi2
−(1−a)X]で表したとき、0.3<a、b<0.
3であることが好ましい。電極活物質に粉末を用いる場
合は、固体電解質粉末と混合して電極を構成するのが好
ましい。正極活物質粉末と固体電解質粉末との混合比は
重量比で、活物質:電解質=3:7〜9.5:0.5が
好ましい。また、負極においては、合金粉末の重量百分
率25%以上が好ましい。硫化物のみからなる固体電解
質は、分解電圧が3〜3.5V(vs.Li+/Li)
程度と低い。このため同電解質は、正極活物質に約4V
(vs.Li+/Li)の高い起電力を発生する遷移金
属酸化物を用いる電池に適用すると、酸化されて分解す
る。従って、遷移金属酸化物を正極活物質に用いる電池
の電解質には、本発明によるLi2S−X−Yからなる
固体電解質が適している。
Here, the composition of the solid electrolyte is aLi
2 S- (1-a) X or bY- (1-b) [aLi 2 S
-(1-a) X], 0.3 <a, b <0.
It is preferably 3. When a powder is used as the electrode active material, it is preferable to mix it with the solid electrolyte powder to form the electrode. The mixing ratio of the positive electrode active material powder and the solid electrolyte powder is a weight ratio, and the active material: electrolyte = 3: 7 to 9.5: 0.5 is preferable. Further, in the negative electrode, the weight percentage of the alloy powder is preferably 25% or more. A solid electrolyte composed of only sulfide has a decomposition voltage of 3 to 3.5 V (vs. Li + / Li).
The degree is low. Therefore, the same electrolyte was added to the positive electrode active material at about 4V.
When applied to a battery using a transition metal oxide that generates a high electromotive force of (vs. Li + / Li), it is oxidized and decomposed. Therefore, the solid electrolyte composed of Li 2 S—X—Y according to the present invention is suitable for the electrolyte of the battery using the transition metal oxide as the positive electrode active material.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を説明す
る。以下の実施例における操作は全て不活性ガスを満た
したドライボックス中にて行った。また、以下の実施例
において、固体電解質は次のようにして製造した。すな
わち、所定量の原材料を十分に混合した後、グラッシー
カーボン製るつぼに充填し、アルゴンガス気流中におい
て1000℃で2時間反応させた後、得られた融液を双
ローラーを用いて超急冷して固体電解質ガラスを得た。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. All the operations in the following examples were carried out in a dry box filled with an inert gas. Further, in the following examples, the solid electrolyte was manufactured as follows. That is, after thoroughly mixing a predetermined amount of raw materials, a glassy carbon crucible was filled and allowed to react at 1000 ° C. for 2 hours in an argon gas stream, and then the resulting melt was rapidly quenched using twin rollers. A solid electrolyte glass was obtained.

【0011】[実施例1]負極活物質としてインジウム
(In)箔を用い、リチウムイオン導電性固体電解質と
して0.01Li3PO4−0.63Li2S−0.36
SiS2 ガラスを用い、正極活物質にコバルト酸リチウ
ム(LiCoO2)を用いて、リチウム電池を構成し
た。以下にその詳細を示す。まず、0.01Li3PO4
−0.63Li2S−0.36SiS2で表されるリチウ
ムイオン導電性ガラス状固体電解質を乳鉢で100メッ
シュ以下に粉砕し、直径10mm、厚さ1.0mmのデ
ィスク状に加圧成形した。
Example 1 Indium (In) foil was used as the negative electrode active material, and 0.01 Li 3 PO 4 -0.63 Li 2 S-0.36 was used as the lithium ion conductive solid electrolyte.
A lithium battery was constructed by using SiS 2 glass and using lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material. The details are shown below. First, 0.01Li 3 PO 4
A lithium ion conductive glassy solid electrolyte represented by -0.63Li 2 S-0.36SiS 2 was crushed to 100 mesh or less in a mortar and pressure-molded into a disk shape having a diameter of 10 mm and a thickness of 1.0 mm.

【0012】また、コバルト酸リチウム(LiCo
2)と前記リチウムイオン導電性ガラス状固体電解質
粉末を重量比で2:3の割合で混合し、この混合物を加
圧成形して厚さ0.5mm、直径10mmの円盤状正極
とした。負極は厚さ0.1mmのインジウム箔を直径1
0mmの円盤に切り抜いて用いた。そして、前記固体電
解質の成形体を前記正極および負極で挟んで圧接し、全
固体リチウム二次電池とした。
Also, lithium cobalt oxide (LiCo
O 2 ) and the lithium ion conductive glassy solid electrolyte powder were mixed in a weight ratio of 2: 3, and the mixture was pressure-molded to obtain a disk-shaped positive electrode having a thickness of 0.5 mm and a diameter of 10 mm. The negative electrode is 0.1 mm thick indium foil with a diameter of 1
It was cut out into a 0 mm disk for use. Then, the molded body of the solid electrolyte was sandwiched between the positive electrode and the negative electrode and pressure-welded to obtain an all-solid lithium secondary battery.

【0013】このリチウム二次電池を電流密度100μ
A/cm2で充放電サイクル試験を行った。その結果、
1000サイクル経過しても充放電容量は初期から低下
することなく、また充放電効率も100%で推移し安定
に動作することがわかった。また、このリチウム電池を
充電状態で解体し、負極と固体電解質の界面の状態を顕
微鏡で観察したところ、リチウムデンドライトの発生は
認められなかった。さらに、充電状態にあるこの電池を
80℃の恒温槽に入れ、インピーダンスの経時変化を測
定した結果、2000時間経過してもインピーダンスの
変化は認められなかった。以上のように、本発明による
とリチウムデンドライトの生成がなく安全性が高いリチ
ウム二次電池を得ることができることがわかった。
This lithium secondary battery has a current density of 100 μm.
A charge / discharge cycle test was performed at A / cm 2 . as a result,
It was found that the charge / discharge capacity did not decrease from the beginning even after 1000 cycles, and the charge / discharge efficiency remained at 100% to operate stably. Further, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, generation of lithium dendrite was not observed. Further, the battery in a charged state was placed in a constant temperature bath at 80 ° C. and the change in impedance with time was measured. As a result, no change in impedance was observed even after 2000 hours. As described above, according to the present invention, it was found that a lithium secondary battery having high safety without generation of lithium dendrite can be obtained.

【0014】[実施例2〜30]以下に、正極、固体電
解質、負極の材料を変え種々の組み合わせによって実施
例1と同様にして電池を構成した。これらの組み合わせ
を表1、3および5に、また実施例1と同条件での評価
結果を表2、4および表6にそれぞれ示す。
[Examples 2 to 30] A battery was constructed in the same manner as in Example 1 except that the materials of the positive electrode, the solid electrolyte and the negative electrode were changed and various combinations were made. These combinations are shown in Tables 1, 3 and 5, and the evaluation results under the same conditions as in Example 1 are shown in Tables 2, 4 and 6, respectively.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【表6】 [Table 6]

【0021】[比較例1]比較のために負極に直径10
mm、厚さ0.1mmの円盤状インジウム箔を用い、正
極にコバルト酸リチウム(LiCoO2)の粉末を加圧
成形し厚さ0.5mm、直径10mmの円盤としたもの
を用い、これらをポリエチレン製のセパレータを介して
それぞれを対向させ、電池ケースに収納した。そして1
M−LiClO4 のプロピレンカーボネート溶液を電池
ケースに注入して有機電解液リチウム二次電池を構成し
た。
Comparative Example 1 For comparison, the negative electrode had a diameter of 10
mm, 0.1 mm thick disc-shaped indium foil, using lithium cobalt oxide (LiCoO 2 ) powder pressure-molded on the positive electrode to form a disc with a thickness of 0.5 mm and a diameter of 10 mm. They were faced to each other via a separator made of, and housed in a battery case. And 1
A propylene carbonate solution of M-LiClO 4 was injected into the battery case to form an organic electrolyte lithium secondary battery.

【0022】この電池を電流密度100μA/cm2
充放電サイクル試験を行った。その結果、初期および2
回目の放電容量が著しく異なり、2回目の放電容量は初
期の約80%を示した。その後約50サイクルを経過す
ると、充放電容量の低下が認められ、230サイクルで
充放電不能となった。この電池を解体し、観察した結
果、負極のリチウムと合金化したインジウムが微細化
し、部分的に脱落しているのがわかった。また、脱落に
到っていない部分においてリチウムのデンドライトが発
生しており、デンドライトがセパレータを貫通している
のが確認された。また、同様の構成の電池を充電状態で
80℃の恒温槽に入れ、インピーダンスの経時変化を測
定したところ、金属負極表面の不動態化によると考えら
れるインピーダンスの増加が初期段階より観測された。
This battery was subjected to a charge / discharge cycle test at a current density of 100 μA / cm 2 . As a result, initial and 2
The discharge capacities of the second time were remarkably different, and the discharge capacities of the second time were about 80% of the initial values. After about 50 cycles, a decrease in charge / discharge capacity was observed, and charge / discharge was impossible after 230 cycles. As a result of disassembling and observing this battery, it was found that indium alloyed with lithium in the negative electrode was finely divided and partly dropped. In addition, it was confirmed that dendrites of lithium were generated in the portions that had not fallen off and that the dendrites penetrated the separator. In addition, when a battery having the same configuration was put in a thermostat at 80 ° C. in a charged state and the change in impedance with time was measured, an increase in impedance, which was considered to be due to passivation of the surface of the metal negative electrode, was observed from the initial stage.

【0023】[比較例2]比較のために固体電解質を
0.45LiI−0.35Li2S−0.2SiS2ガラ
スとした以外は実施例13と同様の電池を構成した。こ
のリチウム電池について電流密度100μA/cm2
充放電サイクル試験を行ったところ、サイクル数を重ね
るごとに放電容量が漸次減少する現象が認められ、30
0サイクルを経過したところで充電途中で電圧が上昇し
なくなった。このリチウム電池を解体し、負極と固体電
解質の界面の状態を顕微鏡で観察したところ、デンドラ
イトの生成が観察された。デンドライトにより短絡した
ために充電が不能になったと考えられる。さらに、充電
状態にある電池を80℃の恒温槽に入れ、インピーダン
スの経時変化を測定した結果、15時間後からインピー
ダンスの増大が観測された。
Comparative Example 2 For comparison, a battery similar to that of Example 13 was constructed except that 0.45LiI-0.35Li 2 S-0.2SiS 2 glass was used as the solid electrolyte. When a charge / discharge cycle test was conducted on this lithium battery at a current density of 100 μA / cm 2 , a phenomenon was observed in which the discharge capacity gradually decreased as the number of cycles increased.
The voltage did not rise during charging when 0 cycles had elapsed. When this lithium battery was disassembled and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, generation of dendrites was observed. It is thought that charging was disabled because of a short circuit due to a dendrite. Furthermore, the battery in the charged state was placed in a constant temperature bath at 80 ° C., and the change in impedance with time was measured. As a result, an increase in impedance was observed after 15 hours.

【0024】[比較例3]比較のために固体電解質を
0.6Li2S−0.4B23ガラスとした以外は実施
例13と同様の電池を構成した。このリチウム電池につ
いて電流密度100μA/cm2で充放電サイクル試験
を行ったところ、サイクル数を重ねるごとに放電容量が
漸次低下した。また、この電池を充放電サイクル試験を
しながら、充電後の休止時間中にインピーダンス測定を
行った結果、サイクル数の進行とともにインピーダンス
の増加が認められたことから、固体電解質の分解が起こ
っているものと考えられる。
[Comparative Example 3] For comparison, a battery similar to that of Example 13 was constructed except that the solid electrolyte was changed to 0.6Li 2 S-0.4B 2 S 3 glass. A charge / discharge cycle test was conducted on this lithium battery at a current density of 100 μA / cm 2 , and the discharge capacity gradually decreased as the number of cycles increased. In addition, while performing a charge-discharge cycle test on this battery, impedance measurement was performed during a rest period after charging, and as a result, an increase in impedance was observed as the number of cycles progressed, and thus solid electrolyte decomposition occurred. It is considered to be a thing.

【0025】[比較例4]比較のために固体電解質を
0.6Li2S−0.4P25ガラスに、正極活物質を
LiNiO2 に、負極金属をPbとした以外は実施例1
と同様にして電池を構成した。このリチウム電池につい
て電流密度100μA/cm2で充放電サイクル試験を
行ったところ、サイクル数を重ねるごとに放電容量が十
数%の減少が認められた。また、この電池を充放電サイ
クル試験をしながら、充電後の休止時間中にインピーダ
ンス測定を行った結果、サイクル数の進行とともにイン
ピーダンスの増加が認められたことから、固体電解質の
分解が起こっているものと考えられる。
Comparative Example 4 For comparison, Example 1 was used except that the solid electrolyte was 0.6Li 2 S-0.4P 2 S 5 glass, the positive electrode active material was LiNiO 2 , and the negative electrode metal was Pb.
A battery was constructed in the same manner as in. When this lithium battery was subjected to a charge / discharge cycle test at a current density of 100 μA / cm 2 , the discharge capacity was found to decrease by more than 10% as the number of cycles was increased. In addition, while performing a charge-discharge cycle test on this battery, impedance measurement was performed during a rest period after charging, and as a result, an increase in impedance was observed as the number of cycles progressed, and thus solid electrolyte decomposition occurred. It is considered to be a thing.

【0026】[実施例31]負極にインジウム(In)
粉末を、リチウムイオン導電性固体電解質として0.0
1Li3 PO4 −0.63Li2S−0.36SiS2
ラスを、正極にコバルト酸リチウム(LiCoO2) を
用いて、リチウム電池を構成した。以下にその詳細を示
す。まず、0.01Li3 PO4 −0.63Li2S−
0.36SiS2で表されるリチウムイオン導電性ガラ
ス状固体電解質を乳鉢で100メッシュ以下に粉砕し、
直径10mm、厚さ0.5mmの円盤に加圧成形した。
また、コバルト酸リチウム(LiCoO2) と上記リチ
ウムイオン導電性ガラス状固体電解質粉末を重量比で
2:3の割合で混合し、この混合物を加圧成形して厚さ
0.5mm、直径10mmの円盤状正極とした。負極は
インジウム粉末と上記リチウムイオン導電性ガラス状固
体電解質粉末を重量比で2:1の割合で混合したものを
加圧成形し、厚さ0.1mm、直径10mmの円盤とし
たものを用いた。そして、前記固体電解質の成形体を前
記正極および負極で挟んで圧接し、全固体リチウム二次
電池を構成した。
[Example 31] Indium (In) was used for the negative electrode.
The powder was used as a lithium ion conductive solid electrolyte with 0.0
The 1Li 3 PO 4 -0.63Li 2 S- 0.36SiS 2 glass, using a lithium cobaltate (LiCoO 2) in the positive electrode, to constitute a lithium battery. The details are shown below. First, 0.01Li 3 PO 4 -0.63Li 2 S-
Lithium ion conductive glassy solid electrolyte represented by 0.36SiS 2 is pulverized in a mortar to 100 mesh or less,
It was pressure molded into a disk having a diameter of 10 mm and a thickness of 0.5 mm.
Further, lithium cobalt oxide (LiCoO 2 ) and the above lithium ion conductive glassy solid electrolyte powder were mixed in a weight ratio of 2: 3, and this mixture was pressure-molded to have a thickness of 0.5 mm and a diameter of 10 mm. A disk-shaped positive electrode was used. As the negative electrode, a mixture of indium powder and the above lithium ion conductive glassy solid electrolyte powder in a weight ratio of 2: 1 was pressure-molded and used as a disk having a thickness of 0.1 mm and a diameter of 10 mm. . Then, the molded body of the solid electrolyte was sandwiched between the positive electrode and the negative electrode and pressed into contact with each other to form an all-solid lithium secondary battery.

【0027】このリチウム二次電池を電流密度100μ
A/cm2で充放電サイクル試験を行った結果、800
サイクル経過しても充放電容量は初期から低下すること
なく、また充放電効率も100%で推移し安定に動作す
ることがわかった。また、電池を充電状態で解体し、負
極と電解質の界面を顕微鏡観察を行ったが、デンドライ
トの生成は認められなかった。さらに、この構成の電池
を80℃の恒温槽に入れ、インピーダンスの経時変化を
測定した結果、1000時間経過してもインピーダンス
の変化は認められなかった。
This lithium secondary battery was tested with a current density of 100 μm.
The result of the charge / discharge cycle test at A / cm 2 is 800
It was found that the charge / discharge capacity did not decrease from the beginning even after the cycle passed, and the charge / discharge efficiency remained at 100% and the operation was stable. Further, the battery was disassembled in a charged state, and the interface between the negative electrode and the electrolyte was observed under a microscope, but no dendrite formation was observed. Further, the battery having this structure was placed in a constant temperature bath at 80 ° C., and the change in impedance with time was measured. As a result, no change in impedance was observed even after 1000 hours had elapsed.

【0028】[実施例32]負極にインジウム−鉛合金
(0.6In−0.4Pb)箔を用いた以外は、実施例
13と同様の方法で全固体リチウム二次電池を構成し
た。インジウム−鉛合金は、インジウム箔と鉛箔を原子
比で3:2の割合のものを圧接し、アルゴン雰囲気中に
おいて200℃で48時間固相反応させることにより得
た。このリチウム電池の充放電サイクル試験を電流密度
100μA/cm2で行ったところ、800サイクルに
到達しても初期の放電容量を維持し、さらに充放電効率
は100%となり、充放電曲線にも変化は起こらなかっ
た。また、このリチウム電池を充電状態で解体し、負極
と固体電解質の界面の状態を顕微鏡で観察したところ、
デンドライトの生成は認められなかった。
[Example 32] An all-solid-state lithium secondary battery was constructed in the same manner as in Example 13 except that an indium-lead alloy (0.6In-0.4Pb) foil was used for the negative electrode. The indium-lead alloy was obtained by press-contacting an indium foil and a lead foil with an atomic ratio of 3: 2 and performing a solid phase reaction at 200 ° C. for 48 hours in an argon atmosphere. When the charge / discharge cycle test of this lithium battery was performed at a current density of 100 μA / cm 2 , the initial discharge capacity was maintained even after reaching 800 cycles, and the charge / discharge efficiency was 100%, and the charge / discharge curve also changed. Did not happen. Further, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope,
No dendrite formation was observed.

【0029】なお、上記実施例においては、負極に特定
の金属を用いたが、他のインジウム、鉛、錫、亜鉛、カ
ドミウム、アンチモン、ビスマス、ガリウム、チタンの
いずれか、またはこれらのうちの二種以上からなる合金
を用いても同様の効果が得られる。正極材料、負極材料
および固体電解質の組み合わせあるいは組成比を本発明
の材料の範囲内で変えても本質的な効果に差違はなく同
様な効果が得られる。
Although a specific metal was used for the negative electrode in the above-mentioned examples, any other indium, lead, tin, zinc, cadmium, antimony, bismuth, gallium, titanium, or two of these may be used. The same effect can be obtained by using an alloy composed of at least one kind. Even if the combination or composition ratio of the positive electrode material, the negative electrode material and the solid electrolyte is changed within the range of the material of the present invention, there is no difference in the essential effect and the same effect can be obtained.

【0030】[実施例33]負極活物質としてインジウ
ム−リチウム合金(0.5In−0.5Li)箔を用
い、リチウムイオン導電性固体電解質として0.01L
3PO4−0.63Li2S−0.36SiS2ガラスを
用い、正極活物質にコバルト酸リチウム(LiCo
2)を用いて、リチウム電池を構成した。以下にその
詳細を示す。まず、0.01Li3PO4−0.63Li
2S−0.36SiS2で表されるリチウムイオン導電性
ガラス状固体電解質を乳鉢で100メッシュ以下に粉砕
し、直径10mm、厚さ1.0mmのディスク状に加圧
成形した。また、コバルト酸リチウム(LiCoO2
と前記リチウムイオン導電性ガラス状固体電解質粉末を
重量比で2:3の割合で混合したものを加圧成形し、厚
さ0.5mm、直径10mmの円盤状正極とした。負極
は厚さ0.1mmのインジウム−リチウム合金(0.5
In−0.5Li)箔を直径10mmの円盤に切り抜い
て用いた。このインジウム−リチウム合金箔は、インジ
ウム箔とリチウム箔とを原子比で1:1の割合となる量
を圧接し、厚さ0.1mmまで圧延することにより得
た。そして、前記固体電解質の成形体を前記正極および
負極で挟んで圧接し、全固体リチウム二次電池とした。
[Example 33] Indium-lithium alloy (0.5In-0.5Li) foil was used as the negative electrode active material, and 0.01 L was used as the lithium ion conductive solid electrolyte.
i 3 PO 4 -0.63Li 2 using S-0.36SiS 2 glass, lithium cobaltate positive electrode active material (LiCo
A lithium battery was constructed using O 2 ). The details are shown below. First, 0.01Li 3 PO 4 -0.63Li
A lithium ion conductive glassy solid electrolyte represented by 2 S-0.36SiS 2 was crushed to 100 mesh or less in a mortar and pressure-molded into a disk shape having a diameter of 10 mm and a thickness of 1.0 mm. In addition, lithium cobalt oxide (LiCoO 2 )
And a mixture of the lithium ion conductive glassy solid electrolyte powder in a weight ratio of 2: 3 were pressure-molded to obtain a disk-shaped positive electrode having a thickness of 0.5 mm and a diameter of 10 mm. The negative electrode is a 0.1 mm thick indium-lithium alloy (0.5
The In-0.5Li) foil was used by cutting it into a disk having a diameter of 10 mm. This indium-lithium alloy foil was obtained by press-contacting an indium foil and a lithium foil in an atomic ratio of 1: 1 and rolling to a thickness of 0.1 mm. Then, the molded body of the solid electrolyte was sandwiched between the positive electrode and the negative electrode and pressure-welded to obtain an all-solid lithium secondary battery.

【0031】このリチウム二次電池を電流密度100μ
A/cm2で充放電サイクル試験を行った。その結果、
1000サイクル経過しても充放電容量は初期から低下
することなく、また充放電効率もほぼ100%で推移し
安定に動作することがわかった。また、このリチウム電
池を充電状態で解体し、負極と固体電解質の界面の状態
を顕微鏡で観察したところ、デンドライトの発生は認め
られなかった。さらに、充電状態にあるこの電池を80
℃の恒温槽に入れインピーダンスの経時変化を測定した
結果、2000時間経過してもインピーダンスの変化は
認められなかった。以上のように、本発明によると、リ
チウムデンドライトの生成がなく、安全性が高いリチウ
ム二次電池を得ることができることがわかった。
This lithium secondary battery was tested with a current density of 100 μm.
A charge / discharge cycle test was performed at A / cm 2 . as a result,
It was found that the charge / discharge capacity did not decrease from the beginning even after 1000 cycles, and the charge / discharge efficiency remained at almost 100% and the operation was stable. Further, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, generation of dendrite was not observed. In addition, charge this battery 80
As a result of measuring the change with time of impedance in a constant temperature bath of ° C, no change in impedance was observed even after 2000 hours. As described above, according to the present invention, it was found that a lithium secondary battery having high safety without generation of lithium dendrite can be obtained.

【0032】[実施例34〜62]以下に、正極、固体
電解質、負極の材料を変え種々の組み合わせによって実
施例33と同様にして電池を構成した。これらの組み合
わせを表7、9および11に、また評価結果を表8、1
0および表12に示す。
[Examples 34 to 62] In the following, batteries were constructed in the same manner as in Example 33, except that the materials of the positive electrode, the solid electrolyte and the negative electrode were changed. These combinations are shown in Tables 7, 9 and 11, and the evaluation results are shown in Tables 8 and 1.
0 and Table 12.

【0033】[0033]

【表7】 [Table 7]

【0034】[0034]

【表8】 [Table 8]

【0035】[0035]

【表9】 [Table 9]

【0036】[0036]

【表10】 [Table 10]

【0037】[0037]

【表11】 [Table 11]

【0038】[0038]

【表12】 [Table 12]

【0039】[比較例5]比較のために負極に10m
m、厚さ0.1mmのインジウム−リチウム合金(0.
5In−0.5Li)箔を用い、正極にコバルト酸リチ
ウム(LiCoO2)の粉末を加圧成形し厚さ0.5m
m、直径10mmの円盤状ディスクとしたものを用い、
これらをポリエチレン製のセパレータを介してそれぞれ
を対向させ、電池ケースに収納した。そして1M−Li
ClO4のプロピレンカーボネート溶液を電池ケースに
注入して有機電解液を用いたリチウム二次電池を構成し
た。
[Comparative Example 5] For comparison, the negative electrode had a length of 10 m.
m, 0.1 mm thick indium-lithium alloy (0.
5In-0.5Li) foil was used, and lithium cobalt oxide (LiCoO 2 ) powder was pressure-molded on the positive electrode to form a 0.5 m thick film.
m, using a disc-shaped disc with a diameter of 10 mm,
These were made to oppose each other through the polyethylene separator and housed in the battery case. And 1M-Li
A propylene carbonate solution of ClO 4 was injected into a battery case to form a lithium secondary battery using an organic electrolytic solution.

【0040】この電池を電流密度100μA/cm2
充放電サイクル試験を行った。その結果、初期および2
回目の放電容量が著しく異なり、2回目の放電容量は初
期の約80%を示した。その後、約80サイクルを経過
すると、充放電容量の低下が認められ、250サイクル
で充放電不能となった。この電池を解体し、観察した結
果、負極のインジウム−リチウム合金箔が微細化し、部
分的に脱落しているのがわかった。また、脱落に到って
いない部分においてリチウムのデンドライトが発生して
おり、セパレータを貫通しているのが確認された。ま
た、同様の構成の電池を充電状態で80℃の恒温槽に入
れ、インピーダンスの経時変化を測定したところ、金属
負極表面の不動態化によると考えられるインピーダンス
の増加が初期段階より観測された。
The battery was subjected to a charge / discharge cycle test at a current density of 100 μA / cm 2 . As a result, initial and 2
The discharge capacities of the second time were remarkably different, and the discharge capacities of the second time were about 80% of the initial values. Then, after about 80 cycles, a decrease in charge / discharge capacity was observed, and charge / discharge became impossible after 250 cycles. As a result of disassembling and observing this battery, it was found that the indium-lithium alloy foil of the negative electrode was miniaturized and partially dropped off. In addition, it was confirmed that dendrite of lithium was generated in a portion that had not fallen off and penetrated the separator. Further, when a battery having the same configuration was charged in a thermostat at 80 ° C. in a charged state and the change in impedance with time was measured, an increase in impedance, which was considered to be due to passivation of the surface of the metal negative electrode, was observed from the initial stage.

【0041】[比較例6]比較のために固体電解質を
0.45LiI−0.35Li2S−0.2SiS2ガラ
スとした以外は実施例45と同様の電池を構成した。こ
のリチウム電池について電流密度100μA/cm2
充放電サイクル試験を行ったところ、サイクル数を重ね
るごとに放電容量が漸次減少する現象が認められ、30
0サイクルを経過したところで充電途中で電圧が上昇し
なくなった。このリチウム電池を解体し、負極と固体電
解質の界面の状態を顕微鏡で観察したところ、デンドラ
イトの生成が観察された。電池の充電が不能になったの
は、短絡したためと考えられる。さらに、充電状態にあ
る電池を80℃の恒温槽に入れインピーダンスの経時変
化を測定した結果、20時間後からインピーダンスの増
大が観測された。
[Comparative Example 6] For comparison, a battery was prepared in the same manner as in Example 45 except that the solid electrolyte was 0.45LiI-0.35Li 2 S-0.2SiS 2 glass. When a charge / discharge cycle test was conducted on this lithium battery at a current density of 100 μA / cm 2 , a phenomenon was observed in which the discharge capacity gradually decreased as the number of cycles increased.
The voltage did not rise during charging when 0 cycles had elapsed. When this lithium battery was disassembled and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, generation of dendrites was observed. The reason why the battery could not be charged is probably due to a short circuit. Furthermore, as a result of placing the battery in a charged state in a thermostat at 80 ° C. and measuring the change in impedance over time, an increase in impedance was observed after 20 hours.

【0042】[比較例7]比較のために固体電解質を
0.6Li2S−0.4B23ガラスとした以外は実施
例45と同様の電池を構成した。このリチウム電池につ
いて電流密度100μA/cm2で充放電サイクル試験
を行ったところ、サイクル数を重ねるごとに放電容量が
漸次低下した。また、この電池を充放電サイクル試験を
しながら充電後の休止時間中にインピーダンス測定を行
った結果、サイクル数の進行とともにインピーダンスの
増加が認められたことから、固体電解質の分解が起こっ
ているものと考えられる。
[Comparative Example 7] A battery was prepared in the same manner as in Example 45 except that the solid electrolyte was changed to 0.6Li 2 S-0.4B 2 S 3 glass for comparison. A charge / discharge cycle test was conducted on this lithium battery at a current density of 100 μA / cm 2 , and the discharge capacity gradually decreased as the number of cycles increased. In addition, as a result of impedance measurement during the rest period after charging while charging / discharging cycle test of this battery, an increase in impedance was observed as the number of cycles progressed, so that decomposition of the solid electrolyte occurred. it is conceivable that.

【0043】[比較例8]比較のために固体電解質を
0.6Li2S−0.4P25ガラスに、正極活物質を
LiNiO2に、負極金属をPb−Li合金(0.6P
b−0.4Li)とした以外は実施例33と同様にして
電池を構成した。このリチウム電池について電流密度1
00μA/cm2で充放電サイクル試験を行ったとこ
ろ、サイクル数を重ねるごとに放電容量が十数%の減少
が認められた。また、この電池を充放電サイクル試験を
しながら充電後の休止時間中にインピーダンス測定を行
った結果、サイクル数の進行とともにインピーダンスの
増加が認められたことから、固体電解質の分解が起こっ
ているものと考えられる。
[Comparative Example 8] For comparison, the solid electrolyte was 0.6Li 2 S-0.4P 2 S 5 glass, the positive electrode active material was LiNiO 2 , and the negative electrode metal was Pb-Li alloy (0.6P).
A battery was constructed in the same manner as in Example 33 except that b-0.4Li) was used. Current density 1 for this lithium battery
When the charge / discharge cycle test was performed at 00 μA / cm 2 , the discharge capacity was decreased by 10% or more as the number of cycles was increased. In addition, as a result of impedance measurement during the rest period after charging while charging / discharging cycle test of this battery, an increase in impedance was observed as the number of cycles progressed, so that decomposition of the solid electrolyte occurred. it is conceivable that.

【0044】[実施例63]負極にインジウム−リチウ
ム合金(0.5In−0.5Li)粉末を、リチウムイ
オン導電性固体電解質として0.01Li3PO4−0.
63Li2S−0.36SiS2ガラスを、正極にコバル
ト酸リチウム(LiCoO2)を用いて、リチウム二次
電池を構成した。以下にその詳細を示す。まず、0.0
1Li3PO4−0.63Li2S−0.36SiS2で表
されるリチウムイオン導電性ガラス状固体電解質を乳鉢
で100メッシュ以下に粉砕し、直径10mm、厚さ
0.5mmの円盤に加圧成形した。また、コバルト酸リ
チウム(LiCoO2)と上記リチウムイオン導電性ガ
ラス状固体電解質粉末を重量比で2:3の割合で混合し
たものを加圧成形し、厚さ0.5mm、直径10mmの
円盤状正極とした。負極はインジウム−リチウム合金
(0.5In−0.5Li)粉末と上記リチウムイオン
導電性ガラス状固体電解質粉末を重量比で2:1の割合
で混合し、その混合物を加圧成形し、厚さ0.1mm、
直径10mmの円盤としたものを用いた。そして、前記
固体電解質の成形体を前記正極および負極で挟んで圧接
し、全固体リチウム二次電池を構成した。
[0044] [Example 63] anode of indium - lithium alloy (0.5In-0.5Li) powder, 0.01Li 3 PO 4 -0 as a lithium-ion conductive solid electrolyte.
A lithium secondary battery was constructed by using 63Li 2 S-0.36SiS 2 glass and lithium cobalt oxide (LiCoO 2 ) for the positive electrode. The details are shown below. First, 0.0
1 Li 3 PO 4 -0.63Li 2 S-0.36SiS 2 Lithium ion conductive glassy solid electrolyte is crushed to 100 mesh or less in a mortar and pressed into a disk with a diameter of 10 mm and a thickness of 0.5 mm. Molded. Further, a mixture of lithium cobalt oxide (LiCoO 2 ) and the above lithium ion conductive glassy solid electrolyte powder in a weight ratio of 2: 3 was pressure-molded to form a disk shape having a thickness of 0.5 mm and a diameter of 10 mm. It was used as the positive electrode. The negative electrode was prepared by mixing the indium-lithium alloy (0.5In-0.5Li) powder and the lithium ion conductive glassy solid electrolyte powder in a weight ratio of 2: 1 and press-molding the mixture to obtain a thickness. 0.1 mm,
A disc having a diameter of 10 mm was used. Then, the molded body of the solid electrolyte was sandwiched between the positive electrode and the negative electrode and pressed into contact with each other to form an all-solid lithium secondary battery.

【0045】このリチウム二次電池を電流密度100μ
A/cm2で充放電サイクル試験を行った結果、900
サイクル経過しても充放電容量は初期から低下すること
なく、また充放電効率も100%で推移し安定に動作す
ることがわかった。また、電池を充電状態で解体し、負
極と電解質の界面を顕微鏡観察を行ったが、デンドライ
トの生成は認められなかった。さらに、この構成の電池
を80℃の恒温槽に入れ、インピーダンスの経時変化を
測定した結果、1000時間経過してもインピーダンス
の変化は認められなかった。
This lithium secondary battery was tested with a current density of 100 μm.
As a result of charge / discharge cycle test at A / cm 2 , 900
It was found that the charge / discharge capacity did not decrease from the beginning even after the cycle passed, and the charge / discharge efficiency remained at 100% and the operation was stable. Further, the battery was disassembled in a charged state, and the interface between the negative electrode and the electrolyte was observed under a microscope, but no dendrite formation was observed. Further, the battery having this structure was placed in a constant temperature bath at 80 ° C., and the change in impedance with time was measured. As a result, no change in impedance was observed even after 1000 hours had elapsed.

【0046】[実施例64]負極にインジウム−鉛−リ
チウム合金(0.5In−0.2Pb−0.3Li)箔
を用いた以外は、実施例45と同様の方法で全固体リチ
ウム二次電池を構成した。インジウム−鉛−リチウム合
金箔は、インジウム箔と鉛箔およびリチウム箔を原子比
で5:2:3となる割合の量を圧接し、アルゴン雰囲気
中において150℃で48時間固相反応させることによ
り得た。
[Example 64] An all-solid-state lithium secondary battery was manufactured in the same manner as in Example 45 except that an indium-lead-lithium alloy (0.5In-0.2Pb-0.3Li) foil was used for the negative electrode. Configured. The indium-lead-lithium alloy foil is obtained by pressing indium foil, lead foil, and lithium foil in an amount of 5: 2: 3 in atomic ratio, and subjecting them to solid phase reaction at 150 ° C. for 48 hours in an argon atmosphere. Obtained.

【0047】このリチウム電池の充放電サイクル試験を
電流密度100μA/cm2で行ったところ、800サ
イクルに到達しても初期の放電容量を維持し、さらに充
放電効率は100%となり、充放電曲線にも変化は起こ
らなかった。また、このリチウム電池を充電状態で解体
し、負極と固体電解質の界面の状態を顕微鏡で観察した
ところ、デンドライトの生成は認められなかった。
When a charge / discharge cycle test of this lithium battery was conducted at a current density of 100 μA / cm 2 , the initial discharge capacity was maintained even after reaching 800 cycles, and the charge / discharge efficiency was 100%. No change occurred. In addition, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, dendrite formation was not observed.

【0048】[実施例65]負極にガリウム−アルミニ
ウム−リチウム合金(0.5Ga−0.3Al−0.2
Li)粉末を用いた以外は、実施例45と同様の全固体
リチウム二次電池を構成した。ガリウム−アルミニウム
−リチウム合金は、アルミニウム粉末とガリウム粉末お
よびリチウム粉末の原子比で3:5:2の割合の混合物
を乳鉢で粉末状になるまで充分混合した後、アルゴン雰
囲気中において150℃で24時間反応させることによ
り得た。この合金粉末と0.02Li3PO4−0.63
Li2S−0.35SiS2で表されるリチウムイオン導
電性ガラス粉末を重量比で2:1の割合で混合し、厚さ
0.1mm、直径10mmの円盤に加圧成形し、負極と
して用いた。
[Example 65] A gallium-aluminum-lithium alloy (0.5Ga-0.3Al-0.2) was used for the negative electrode.
An all-solid lithium secondary battery was constructed in the same manner as in Example 45 except that Li) powder was used. The gallium-aluminum-lithium alloy was prepared by thoroughly mixing a mixture of aluminum powder, gallium powder and lithium powder in an atomic ratio of 3: 5: 2 until powdery in a mortar, and then adding 24 at 150 ° C. in an argon atmosphere. Obtained by reacting for a time. This alloy powder and 0.02Li 3 PO 4 -0.63
A lithium ion conductive glass powder represented by Li 2 S-0.35SiS 2 is mixed at a weight ratio of 2: 1 and pressure-molded into a disk having a thickness of 0.1 mm and a diameter of 10 mm to be used as a negative electrode. I was there.

【0049】このリチウム電池を電流密度100μA/
cm2で充放電サイクル試験を行ったところ、900サ
イクルに到達しても初期の放電容量を維持し、さらに充
放電効率は100%となり、充放電曲線にも変化は起こ
らなかった。また、このリチウム電池を充電状態で解体
し、負極と固体電解質の界面の状態を顕微鏡で観察した
ところ、デンドライトの生成は認められなかった。
This lithium battery was tested with a current density of 100 μA /
When the charge / discharge cycle test was conducted at cm 2 , the initial discharge capacity was maintained even after reaching 900 cycles, the charge / discharge efficiency was 100%, and the charge / discharge curve did not change. In addition, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, dendrite formation was not observed.

【0050】なお、上記実施例33〜65においては、
負極のリチウム合金として特定の合金を用いて説明した
が、他のインジウム−リチウム、鉛−リチウム、錫−リ
チウム、亜鉛−リチウム、カドミウム−リチウム、アン
チモン−リチウム、ビスマス−リチウム、ガリウム−リ
チウム、チタン−リチウムのいずれか、もしくはこれら
を主体とする合金を用いても同様の効果が得られる。本
発明は合金種について上記に限定されるものではない。
Incidentally, in the above Examples 33 to 65,
Although a specific alloy has been described as the lithium alloy for the negative electrode, other indium-lithium, lead-lithium, tin-lithium, zinc-lithium, cadmium-lithium, antimony-lithium, bismuth-lithium, gallium-lithium, titanium. The same effect can be obtained by using any one of lithium or an alloy mainly containing them. The present invention is not limited to the above alloy types.

【0051】[実施例66]負極活物質としてアルミニ
ウム(Al)箔を用い、リチウムイオン導電性固体電解
質として0.01Li3PO4−0.63Li2S−0.
36SiS2ガラスを用い、正極活物質にコバルト酸リ
チウム(LiCoO2)を用いて、リチウム電池を構成
した。以下にその詳細を示す。まず、0.01Li3
4−0.63Li2S−0.36SiS2で表されるリ
チウムイオン導電性ガラス状固体電解質を乳鉢で100
メッシュ以下に粉砕し、直径10mm、厚さ1.0mm
のディスク状に加圧成形した。また、コバルト酸リチウ
ム(LiCoO2)と前記リチウムイオン導電性ガラス
状固体電解質粉末を重量比で2:3の割合で混合し、こ
の混合物を加圧成形し厚さ0.5mm、直径10mmの
円盤状正極とした。負極は厚さ0.1mmのアルミニウ
ム箔を直径10mmの円盤に切り抜いて用いた。そし
て、前記固体電解質の成形体を前記正極および負極で挟
んで圧接し、全固体リチウム二次電池とした。
Example 66 Aluminum (Al) foil was used as the negative electrode active material, and 0.01 Li 3 PO 4 -0.63 Li 2 S-0.
A lithium battery was constructed by using 36SiS 2 glass and using lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material. The details are shown below. First, 0.01Li 3 P
A lithium ion conductive glassy solid electrolyte represented by O 4 -0.63Li 2 S-0.36SiS 2 was used in a mortar for 100 times.
Grinded into mesh or less, diameter 10 mm, thickness 1.0 mm
Was pressed into a disk shape. Further, lithium cobalt oxide (LiCoO 2 ) and the lithium ion conductive glassy solid electrolyte powder were mixed in a weight ratio of 2: 3, and this mixture was pressure-molded to form a disk having a thickness of 0.5 mm and a diameter of 10 mm. Shaped positive electrode. For the negative electrode, an aluminum foil having a thickness of 0.1 mm was cut out into a disk having a diameter of 10 mm and used. Then, the molded body of the solid electrolyte was sandwiched between the positive electrode and the negative electrode and pressure-welded to obtain an all-solid lithium secondary battery.

【0052】このリチウム二次電池を電流密度100μ
A/cm2で充放電サイクル試験を行った。その結果、
1000サイクル経過しても充放電容量は初期から低下
することなく、また充放電効率もほぼ100%で推移し
安定に動作することがわかった。また、このリチウム電
池を充電状態で解体し、負極と固体電解質の界面の状態
を顕微鏡で観察したところ、デンドライトの発生は認め
られなかった。さらに、充電状態にあるこの電池を80
℃の恒温槽に入れインピーダンスの経時変化を測定した
結果、1800時間経過してもインピーダンスの変化は
認められなかった。以上のように、本発明によるとリチ
ウムデンドライトの生成がなく安全性が高いリチウム二
次電池を得ることができることがわかった。
This lithium secondary battery was tested at a current density of 100 μm.
A charge / discharge cycle test was performed at A / cm 2 . as a result,
It was found that the charge / discharge capacity did not decrease from the beginning even after 1000 cycles, and the charge / discharge efficiency remained at almost 100% and the operation was stable. Further, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, generation of dendrite was not observed. In addition, charge this battery 80
As a result of measuring the change with time of impedance in a constant temperature bath at ℃, no change in impedance was observed even after 1800 hours. As described above, according to the present invention, it was found that a lithium secondary battery having high safety without generation of lithium dendrite can be obtained.

【0053】[実施例67〜87]以下に、正極、固体
電解質、負極の材料を変え種々の組み合わせによって実
施例66と同様にして電池を構成した。これらの組み合
わせを表13、15および17に、また評価結果を表1
4、16および表17にそれぞれ示す。
[Examples 67 to 87] In the following, batteries were constructed in the same manner as in Example 66 by changing the materials of the positive electrode, the solid electrolyte and the negative electrode, and various combinations. These combinations are shown in Tables 13, 15 and 17, and the evaluation results are shown in Table 1.
4, 16 and Table 17, respectively.

【0054】[0054]

【表13】 [Table 13]

【0055】[0055]

【表14】 [Table 14]

【0056】[0056]

【表15】 [Table 15]

【0057】[0057]

【表16】 [Table 16]

【0058】[0058]

【表17】 [Table 17]

【0059】[0059]

【表18】 [Table 18]

【0060】[比較例9]比較のために負極に直径10
mm、厚さ0.1mmの円盤状アルミニウム−リチウム
合金(0.6Al−0.4Li)箔を用い、正極にコバ
ルト酸リチウム(LiCoO2)の粉末を加圧成形し厚
さ0.5mm、直径10mmの円盤としたものを用い、
これらをポリエチレン製のセパレータを介してそれぞれ
を対向させ、電池ケースに収納した。そして、1M−L
iClO4のプロピレンカーボネート溶液を電池ケース
に注入して有機電解液を用いたリチウム二次電池を構成
した。
Comparative Example 9 For comparison, the negative electrode had a diameter of 10
mm-thickness 0.1 mm thick disc-shaped aluminum-lithium alloy (0.6Al-0.4Li) foil is used, and lithium cobalt oxide (LiCoO 2 ) powder is pressure-molded on the positive electrode to have a thickness of 0.5 mm and a diameter. Using a 10 mm disc,
These were made to oppose each other through the polyethylene separator and housed in the battery case. And 1M-L
A propylene carbonate solution of iClO 4 was injected into a battery case to form a lithium secondary battery using an organic electrolytic solution.

【0061】この電池を電流密度100μA/cm2
充放電サイクル試験を行った。その結果、初期および2
回目の放電容量が著しく異なり、2回目の放電容量は1
回目の約80%を示した。その後約80サイクルを経過
すると、充放電容量の低下が認められ、250サイクル
で充放電不能となった。この電池を解体し、観察した結
果、負極のインジウム−リチウム合金箔が微細化し、部
分的に脱落しているのがわかった。また、脱落に到って
いない部分においてリチウムのデンドライトが発生して
おり、セパレータを貫通しているのが確認された。ま
た、同様の構成の電池を充電状態で80℃の恒温槽に入
れ、インピーダンスの経時変化を測定したところ、金属
負極表面の不動態化によると考えられるインピーダンス
の増加が初期段階より観測された。
The battery was subjected to a charge / discharge cycle test at a current density of 100 μA / cm 2 . As a result, initial and 2
The discharge capacity of the second time is significantly different, and the discharge capacity of the second time is 1
It showed about 80% of the first time. After about 80 cycles, a decrease in charge / discharge capacity was observed, and charge / discharge became impossible after 250 cycles. As a result of disassembling and observing this battery, it was found that the indium-lithium alloy foil of the negative electrode was miniaturized and partially dropped off. In addition, it was confirmed that dendrite of lithium was generated in a portion that had not fallen off and penetrated the separator. Further, when a battery having the same configuration was charged in a thermostat at 80 ° C. in a charged state and the change in impedance with time was measured, an increase in impedance, which was considered to be due to passivation of the surface of the metal negative electrode, was observed from the initial stage.

【0062】[比較例10]比較のために固体電解質を
0.45LiI−0.35Li2S−0.2SiS2ガラ
スとした以外は実施例79と同様の電池を構成した。
[Comparative Example 10] For comparison, a battery was constructed in the same manner as in Example 79 except that 0.45LiI-0.35Li 2 S-0.2SiS 2 glass was used as the solid electrolyte.

【0063】このリチウム電池について電流密度100
μA/cm2で充放電サイクル試験を行ったところ、サ
イクル数を重ねるごとに放電容量が漸次減少する現象が
認められ、300サイクルを経過したところで充電途中
で電圧が上昇しなくなった。このリチウム電池を解体
し、負極と固体電解質の界面の状態を顕微鏡で観察した
ところ、デンドライトの生成が観察された。短絡したた
めに充電が不能になったと考えられる。さらに、充電状
態にある電池を80℃の恒温槽に入れインピーダンスの
経時変化を測定した結果、30時間後からインピーダン
スの増大が観測された。
Regarding this lithium battery, the current density was 100.
When a charge / discharge cycle test was conducted at μA / cm 2 , a phenomenon in which the discharge capacity gradually decreased as the number of cycles was repeated was observed, and after 300 cycles, the voltage did not rise during charging. When this lithium battery was disassembled and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, generation of dendrites was observed. It is considered that charging was disabled due to a short circuit. Furthermore, as a result of placing the battery in a charged state in a thermostat at 80 ° C. and measuring the time-dependent change in impedance, an increase in impedance was observed after 30 hours.

【0064】[比較例11]比較のために固体電解質を
0.6Li2S−0.4B23ガラスとした以外は実施
例79と同様の電池を構成した。
[Comparative Example 11] For comparison, a battery was constructed in the same manner as in Example 79 except that the solid electrolyte was changed to 0.6Li 2 S-0.4B 2 S 3 glass.

【0065】このリチウム電池について電流密度100
μA/cm2で充放電サイクル試験を行ったところ、サ
イクル数を重ねるごとに放電容量が漸次低下した。ま
た、この電池を充放電サイクル試験をしながら充電後の
休止時間中にインピーダンス測定を行った結果、サイク
ル数の進行とともにインピーダンスの増加が認められた
ことから、固体電解質の分解が起こっているものと考え
られる。
This lithium battery has a current density of 100.
When a charge / discharge cycle test was performed at μA / cm 2 , the discharge capacity gradually decreased as the number of cycles was increased. In addition, as a result of impedance measurement during the rest period after charging while charging / discharging cycle test of this battery, an increase in impedance was observed as the number of cycles progressed, so that decomposition of the solid electrolyte occurred. it is conceivable that.

【0066】[比較例12]比較のために固体電解質を
0.6Li2S−0.4P25ガラスに、正極活物質を
LiNiO2に、負極金属をアルミニウム−鉛−リチウ
ム合金(0.5Al−0.2Pb−0.3Li)とした
以外は実施例66と同様にして電池を構成した。
COMPARATIVE EXAMPLE 12 For comparison, the solid electrolyte was 0.6Li 2 S-0.4P 2 S 5 glass, the positive electrode active material was LiNiO 2 , and the negative electrode metal was aluminum-lead-lithium alloy (0. A battery was formed in the same manner as in Example 66, except that 5Al-0.2Pb-0.3Li) was used.

【0067】このリチウム電池について電流密度100
μA/cm2で充放電サイクル試験を行ったところ、サ
イクル数を重ねるごとに放電容量が十数%の減少が認め
られた。また、この電池を充放電サイクル試験をしなが
ら充電後の休止時間中にインピーダンス測定を行った結
果、サイクル数の進行とともにインピーダンスの増加が
認められたことから、固体電解質の分解が起こっている
ものと考えられる。
This lithium battery has a current density of 100.
When the charge / discharge cycle test was conducted at μA / cm 2 , the discharge capacity decreased by 10% or more as the number of cycles was increased. In addition, as a result of impedance measurement during the rest period after charging while charging / discharging cycle test of this battery, an increase in impedance was observed as the number of cycles progressed, so that decomposition of the solid electrolyte occurred. it is conceivable that.

【0068】[実施例88]負極にアルミニウム−リチ
ウム(0.5Al−0.5Li)合金粉末を、リチウム
イオン導電性固体電解質として0.01Li3PO4
0.63Li2S−0.36SiS2ガラスを、正極にコ
バルト酸リチウム(LiCoO2)を用いて、リチウム
電池を構成した。以下にその詳細を示す。まず、0.0
1Li3PO4−0.63Li2S−0.36SiS2で表
されるリチウムイオン導電性ガラス状固体電解質を乳鉢
で100メッシュ以下に粉砕し、直径10mm、厚さ
0.5mmの円盤に加圧成形した。また、コバルト酸リ
チウム(LiCoO2)と上記リチウムイオン導電性ガ
ラス状固体電解質粉末を重量比で2:3の割合で混合
し、この混合物を加圧成形して厚さ0.5mm、直径1
0mmの円盤状正極とした。負極はインジウム−リチウ
ム合金(0.5Al−0.5Li)粉末と上記リチウム
イオン導電性ガラス状固体電解質粉末を重量比で2:1
の割合で混合し、この混合物を加圧成形し、厚さ0.1
mm、直径10mmの円盤としたものを用いた。そし
て、前記固体電解質の成形体を前記正極および負極で挟
んで圧接し、全固体リチウム二次電池を構成した。
[0068] [Example 88] aluminum anode - 0.01Li 3 PO 4 and lithium (0.5Al-0.5Li) alloy powder, a lithium ion conductive solid electrolyte -
A lithium battery was constructed using 0.63Li 2 S-0.36SiS 2 glass and lithium cobalt oxide (LiCoO 2 ) for the positive electrode. The details are shown below. First, 0.0
1 Li 3 PO 4 -0.63Li 2 S-0.36SiS 2 Lithium ion conductive glassy solid electrolyte is crushed to 100 mesh or less in a mortar and pressed into a disk with a diameter of 10 mm and a thickness of 0.5 mm. Molded. Further, lithium cobalt oxide (LiCoO 2 ) and the lithium ion conductive glassy solid electrolyte powder were mixed in a weight ratio of 2: 3, and this mixture was pressure-molded to have a thickness of 0.5 mm and a diameter of 1 mm.
The disk-shaped positive electrode was 0 mm. The negative electrode is composed of indium-lithium alloy (0.5Al-0.5Li) powder and the lithium ion conductive glassy solid electrolyte powder in a weight ratio of 2: 1.
And the mixture is pressure-molded to a thickness of 0.1.
A disc having a diameter of 10 mm and a diameter of 10 mm was used. Then, the molded body of the solid electrolyte was sandwiched between the positive electrode and the negative electrode and pressed into contact with each other to form an all-solid lithium secondary battery.

【0069】このリチウム二次電池を電流密度100μ
A/cm2で充放電サイクル試験を行った結果、800
サイクル経過しても充放電容量は初期から低下すること
なく、また充放電効率も100%で推移し安定に動作す
ることがわかった。また、電池を充電状態で解体し、負
極と電解質の界面を顕微鏡観察を行ったが、デンドライ
トの生成は認められなかった。さらに、この構成の電池
を80℃の恒温槽に入れ、インピーダンスの経時変化を
測定した結果、1000時間経過してもインピーダンス
の変化は認められなかった。
This lithium secondary battery was tested with a current density of 100 μm.
The result of the charge / discharge cycle test at A / cm 2 is 800
It was found that the charge / discharge capacity did not decrease from the beginning even after the cycle passed, and the charge / discharge efficiency remained at 100% and the operation was stable. Further, the battery was disassembled in a charged state, and the interface between the negative electrode and the electrolyte was observed under a microscope, but no dendrite formation was observed. Further, the battery having this structure was placed in a constant temperature bath at 80 ° C., and the change in impedance with time was measured. As a result, no change in impedance was observed even after 1000 hours had elapsed.

【0070】[実施例89]負極にアルミニウム−イン
ジウム−リチウム合金(0.4Al−0.4In−0.
2Li)箔を用いた以外は、実施例79と同様の方法で
全固体リチウム二次電池を構成した。アルミニウム−イ
ンジウム−リチウム合金箔は、アルミニウム箔とインジ
ウム箔およびリチウム箔を原子比で4:4:2の割合と
なる量を圧接し、アルゴン雰囲気において150℃で4
8時間固相反応させることにより得た。
[Example 89] An aluminum-indium-lithium alloy (0.4Al-0.4In-0.
2Li) An all-solid-state lithium secondary battery was constructed in the same manner as in Example 79 except that the foil was used. The aluminum-indium-lithium alloy foil is obtained by pressing aluminum foil, indium foil and lithium foil in an atomic ratio of 4: 4: 2 at a ratio of 4 at 150 ° C. in an argon atmosphere.
It was obtained by solid phase reaction for 8 hours.

【0071】このリチウム電池の充放電サイクル試験を
電流密度100μA/cm2で行ったところ、900サ
イクルに到達しても初期の放電容量を維持し、さらに充
放電効率は100%となり、充放電曲線にも変化は起こ
らなかった。また、このリチウム電池を充電状態で解体
し、負極と固体電解質の界面の状態を顕微鏡で観察した
ところ、デンドライトの生成は認められなかった。
When the charge / discharge cycle test of this lithium battery was conducted at a current density of 100 μA / cm 2 , the initial discharge capacity was maintained even after 900 cycles were reached, and the charge / discharge efficiency was 100%. No change occurred. In addition, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, dendrite formation was not observed.

【0072】[実施例90]負極にアルミニウム−ガリ
ウム−リチウム合金(0.4Al−0.3Ga−0.3
Li)粉末を用いた以外は、実施例79と同様の全固体
リチウム二次電池を構成した。アルミニウム−ガリウム
−リチウム合金は、アルミニウム粉末とガリウム粉末、
およびリチウム箔を原子比で4:3:3の割合で混ぜ、
これを乳鉢で粉末状になるまで充分混合した後、アルゴ
ン雰囲気において150℃で24時間反応させることに
より得た。この合金粉末と0.02Li3PO4−0.6
3Li2S−0.35SiS2で表されるリチウムイオン
導電性ガラス粉末を重量比で2:1の割合で混合し、こ
の混合物を厚さ0.1mm、直径10mmの円盤に加圧
成形し、負極として用いた。
Example 90 An aluminum-gallium-lithium alloy (0.4Al-0.3Ga-0.3) was used as the negative electrode.
An all-solid lithium secondary battery was constructed in the same manner as in Example 79 except that Li) powder was used. Aluminum-gallium-lithium alloy, aluminum powder and gallium powder,
And lithium foil at an atomic ratio of 4: 3: 3,
It was obtained by thoroughly mixing it in a mortar until it became powdery and then reacting it at 150 ° C. for 24 hours in an argon atmosphere. The alloy powder and 0.02Li 3 PO 4 -0.6
Lithium ion conductive glass powder represented by 3Li 2 S-0.35SiS 2 was mixed at a weight ratio of 2: 1, and this mixture was pressure-molded into a disk having a thickness of 0.1 mm and a diameter of 10 mm, Used as a negative electrode.

【0073】このリチウム電池を用いて、電流密度10
0μA/cm2で充放電サイクル試験を行ったところ、
800サイクルに到達しても初期の放電容量を維持し、
さらに充放電効率は100%となり、充放電曲線にも変
化は起こらなかった。また、このリチウム電池を充電状
態で解体し、負極と固体電解質の界面の状態を顕微鏡で
観察したところ、デンドライトの生成は認められなかっ
た。
Using this lithium battery, a current density of 10
When the charge / discharge cycle test was performed at 0 μA / cm 2 ,
Maintains the initial discharge capacity even after reaching 800 cycles,
Further, the charging / discharging efficiency was 100%, and the charging / discharging curve did not change. In addition, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, dendrite formation was not observed.

【0074】なお、上記の実施例66〜90において
は、アルミニウム−リチウムを主体とする合金としてア
ルミニウム−インジウム−リチウム合金、アルミニウム
−ガリウム−リチウム合金を用いて説明したが、他の合
金を用いても同様の効果が得られる。本発明は合金種に
ついて上記に限定されるものではない。
In the above Examples 66 to 90, aluminum-indium-lithium alloy and aluminum-gallium-lithium alloy were used as the alloy mainly containing aluminum-lithium, but other alloys were used. Also has the same effect. The present invention is not limited to the above alloy types.

【0075】また、上記実施例においては、正極と負極
および固体電解質の組成や組み合わせを特定のものに限
定して説明したが、本発明はそれらに限定されるもので
はない。
Further, in the above embodiments, the composition and combination of the positive electrode, the negative electrode and the solid electrolyte are limited to specific ones, but the present invention is not limited to them.

【0076】[0076]

【発明の効果】以上のように本発明によれば、デンドラ
イトの発生による短絡がなく、充放電サイクル特性に優
れた安全性の高い全固体リチウム二次電池が得られる。
As described above, according to the present invention, it is possible to obtain an all-solid-state lithium secondary battery which is free from short circuit due to generation of dendrite and has excellent charge / discharge cycle characteristics and high safety.

フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continued (72) Inventor Shigeo Kondo 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質として遷移金属酸化物および
遷移金属硫化物よりなる群から選択される化合物を含む
正極、Li2Sを含むリチウムイオン導電性のガラス固
体電解質、およびリチウムと合金化する金属を活物質と
して含む負極を具備し、前記正極の活物質および負極金
属活物質の少なくとも一方がリチウムを含むことを特徴
とする全固体リチウム二次電池。
1. A positive electrode containing a compound selected from the group consisting of transition metal oxides and transition metal sulfides as a positive electrode active material, a lithium ion conductive glass solid electrolyte containing Li 2 S, and an alloy with lithium. An all-solid-state lithium secondary battery comprising a negative electrode containing a metal as an active material, wherein at least one of the positive electrode active material and the negative electrode metal active material contains lithium.
【請求項2】 負極の金属活物質が、In、Pb、Z
n、Sn、Sb、Bi、Cd、Ga、およびTiよりな
る群から選ばれる金属、または前記金属の少なくとも一
種を含む合金である請求項1記載の全固体リチウム二次
電池
2. The metal active material of the negative electrode is In, Pb, Z
The all-solid-state lithium secondary battery according to claim 1, which is a metal selected from the group consisting of n, Sn, Sb, Bi, Cd, Ga, and Ti, or an alloy containing at least one of the metals.
【請求項3】 負極の金属活物質が、AlまたはAlを
主成分とする合金である請求項1記載の全固体リチウム
二次電池。
3. The all-solid-state lithium secondary battery according to claim 1, wherein the metal active material of the negative electrode is Al or an alloy containing Al as a main component.
【請求項4】 負極の金属活物質が、リチウムと合金化
している請求項2または3記載の全固体リチウム二次電
池。
4. The all-solid-state lithium secondary battery according to claim 2, wherein the metal active material of the negative electrode is alloyed with lithium.
【請求項5】 正極の活物質が、LixCoO2、Lix
MnO2、LixMn24、LixNiO2、LixTi
2、LixMoS2、およびLixMo68よりなる群か
ら選択される化合物(ただし、x≧0)である請求項1
記載の全固体リチウム二次電池。
5. The active material of the positive electrode is Li x CoO 2 , Li x
MnO 2 , Li x Mn 2 O 4 , Li x NiO 2 , Li x Ti
A compound (where x ≧ 0) selected from the group consisting of S 2 , Li x MoS 2 , and Li x Mo 6 S 8.
The all-solid-state lithium secondary battery described.
【請求項6】 固体電解質が、さらにSiS2、Al2
3、P25、およびB23よりなる群から選択される少
なくとも一種を含む請求項1〜5のいずれかに記載の全
固体リチウム二次電池。
6. The solid electrolyte further comprises SiS 2 , Al 2 S
The all-solid-state lithium secondary battery according to any one of claims 1 to 5, containing at least one selected from the group consisting of 3 , P 2 S 5 , and B 2 S 3 .
【請求項7】 前記固体電解質が式aLi2S−X(た
だし、XはSiS2、Al23、P25、およびB23
よりなる群から選択される少なくとも一種であり、0.
3<a)で表される請求項6記載の全固体リチウム二次
電池。
7. The solid electrolyte has the formula aLi 2 S—X, where X is SiS 2 , Al 2 S 3 , P 2 S 5 , and B 2 S 3.
At least one selected from the group consisting of:
The all-solid-state lithium secondary battery according to claim 6, represented by 3 <a).
【請求項8】 固体電解質が、さらにLi2O、Li3
4、Li2SO4、およびLi2CO3よりなる群から選
択される少なくとも一種を含む請求項6記載の全固体リ
チウム二次電池。
8. The solid electrolyte further comprises Li 2 O and Li 3 P.
The all-solid-state lithium secondary battery according to claim 6, containing at least one selected from the group consisting of O 4 , Li 2 SO 4 , and Li 2 CO 3 .
【請求項9】 前記固体電解質が式bY−(1−b)
[aLi2S−(1−a)X](ただし、XはSiS2
Al23、P25、およびB23よりなる群から選択さ
れる少なくとも一種であり、YはLi2O、Li3
4、Li2SO4、およびLi2CO3よりなる群から選
択される少なくとも一種であり、0.3<a、b<0.
3)で表される請求項8記載の全固体リチウム二次電
池。
9. The solid electrolyte has the formula bY- (1-b).
[ALi 2 S- (1-a) X] (where X is SiS 2 ,
At least one selected from the group consisting of Al 2 S 3 , P 2 S 5 , and B 2 S 3 , and Y is Li 2 O, Li 3 P
At least one selected from the group consisting of O 4 , Li 2 SO 4 , and Li 2 CO 3 , and 0.3 <a, b <0.
The all-solid-state lithium secondary battery according to claim 8, which is represented by 3).
JP24032395A 1994-09-21 1995-09-19 All-solid lithium secondary battery Expired - Fee Related JP3332133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24032395A JP3332133B2 (en) 1994-09-21 1995-09-19 All-solid lithium secondary battery

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP22657894 1994-09-21
JP6-226580 1994-09-21
JP6-226578 1994-09-21
JP6-226579 1994-09-21
JP22657994 1994-09-21
JP22658094 1994-09-21
JP24032395A JP3332133B2 (en) 1994-09-21 1995-09-19 All-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08148180A true JPH08148180A (en) 1996-06-07
JP3332133B2 JP3332133B2 (en) 2002-10-07

Family

ID=27477221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24032395A Expired - Fee Related JP3332133B2 (en) 1994-09-21 1995-09-19 All-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3332133B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2006179243A (en) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd Lithium secondary battery
WO2008123394A1 (en) * 2007-03-23 2008-10-16 Toyota Jidosha Kabushiki Kaisha Mixed material layer, method for production of the mixed material layer, solid battery, and method for production of the solid battery
US7517616B2 (en) 2001-02-28 2009-04-14 Sumitomo Electric Industries, Ltd. Inorganic solid electrolyte and lithium cell component
WO2009048146A1 (en) * 2007-10-10 2009-04-16 Kobelco Research Institute, Inc. Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery
JP2010003679A (en) * 2008-05-23 2010-01-07 Idemitsu Kosan Co Ltd Anode mixture, anode mixture mixed liquid, anode, lithium battery and device
JP2010015964A (en) * 2008-06-05 2010-01-21 Kobelco Kaken:Kk Negative electrode active material for secondary battery, and secondary battery using this
JP2010245038A (en) * 2009-03-18 2010-10-28 Idemitsu Kosan Co Ltd Positive electrode mixture and lithium battery
JP2010282815A (en) * 2009-06-04 2010-12-16 Osaka Prefecture Univ Totally solid battery system
WO2011010552A1 (en) 2009-07-22 2011-01-27 住友電気工業株式会社 Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery
JP2011096372A (en) * 2009-10-27 2011-05-12 National Institute Of Advanced Industrial Science & Technology Electrode active material for lithium ion secondary battery, and method of manufacturing the same
JP2014154267A (en) * 2013-02-06 2014-08-25 Ngk Spark Plug Co Ltd All-solid battery, and manufacturing method thereof
JP2015076180A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9034524B2 (en) 2011-03-07 2015-05-19 Samsung Sdi Co., Ltd. Solid electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
JP2015146240A (en) * 2014-02-03 2015-08-13 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery
JP2015185237A (en) * 2014-03-20 2015-10-22 パナソニックIpマネジメント株式会社 Positive electrode for all-solid type lithium secondary batteries, and all-solid type lithium secondary battery arranged by use thereof
JP2016062708A (en) * 2014-09-17 2016-04-25 古河機械金属株式会社 Positive electrode material, positive electrode, lithium ion battery, and method for manufacturing positive electrode material
JP2016062707A (en) * 2014-09-17 2016-04-25 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive
JP2019057506A (en) * 2018-11-28 2019-04-11 古河機械金属株式会社 Positive electrode material, positive electrode, lithium ion battery, and method for manufacturing positive electrode material
JP2019071286A (en) * 2019-01-09 2019-05-09 古河機械金属株式会社 Positive electrode material, positive electrode and lithium ion battery
US10305092B2 (en) 2015-05-29 2019-05-28 Hyundai Motor Company Method of preparing positive electrode active material-solid electrolyte complex for all-solid-state lithium sulfur battery
WO2021206118A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Laminate for lithium secondary battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534264B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP4534263B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7517616B2 (en) 2001-02-28 2009-04-14 Sumitomo Electric Industries, Ltd. Inorganic solid electrolyte and lithium cell component
JP2006179243A (en) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd Lithium secondary battery
WO2008123394A1 (en) * 2007-03-23 2008-10-16 Toyota Jidosha Kabushiki Kaisha Mixed material layer, method for production of the mixed material layer, solid battery, and method for production of the solid battery
JP2008270137A (en) * 2007-03-23 2008-11-06 Toyota Motor Corp Mixture layer and its manufacturing method as well as solid battery and its manufacturing method
US8574766B2 (en) 2007-03-23 2013-11-05 Toyota Jidosha Kabushiki Kaisha Composite material layer and method of producing the same, and solid state battery and method of producing the same
WO2009048146A1 (en) * 2007-10-10 2009-04-16 Kobelco Research Institute, Inc. Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery
JP2010003679A (en) * 2008-05-23 2010-01-07 Idemitsu Kosan Co Ltd Anode mixture, anode mixture mixed liquid, anode, lithium battery and device
JP2010015964A (en) * 2008-06-05 2010-01-21 Kobelco Kaken:Kk Negative electrode active material for secondary battery, and secondary battery using this
JP2010245038A (en) * 2009-03-18 2010-10-28 Idemitsu Kosan Co Ltd Positive electrode mixture and lithium battery
JP2010282815A (en) * 2009-06-04 2010-12-16 Osaka Prefecture Univ Totally solid battery system
WO2011010552A1 (en) 2009-07-22 2011-01-27 住友電気工業株式会社 Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery
JP2011096372A (en) * 2009-10-27 2011-05-12 National Institute Of Advanced Industrial Science & Technology Electrode active material for lithium ion secondary battery, and method of manufacturing the same
US9034524B2 (en) 2011-03-07 2015-05-19 Samsung Sdi Co., Ltd. Solid electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
JP2014154267A (en) * 2013-02-06 2014-08-25 Ngk Spark Plug Co Ltd All-solid battery, and manufacturing method thereof
JP2016518012A (en) * 2013-07-30 2016-06-20 エルジー・ケム・リミテッド Positive electrode mixture for secondary battery containing irreversible additive
US10218002B2 (en) 2013-07-30 2019-02-26 Lg Chem, Ltd. Positive electrode mix for secondary batteries including irreversible additive
JP2015076180A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2015146240A (en) * 2014-02-03 2015-08-13 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery
JP2015185237A (en) * 2014-03-20 2015-10-22 パナソニックIpマネジメント株式会社 Positive electrode for all-solid type lithium secondary batteries, and all-solid type lithium secondary battery arranged by use thereof
JP2016062707A (en) * 2014-09-17 2016-04-25 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery
JP2016062708A (en) * 2014-09-17 2016-04-25 古河機械金属株式会社 Positive electrode material, positive electrode, lithium ion battery, and method for manufacturing positive electrode material
US10305092B2 (en) 2015-05-29 2019-05-28 Hyundai Motor Company Method of preparing positive electrode active material-solid electrolyte complex for all-solid-state lithium sulfur battery
JP2019057506A (en) * 2018-11-28 2019-04-11 古河機械金属株式会社 Positive electrode material, positive electrode, lithium ion battery, and method for manufacturing positive electrode material
JP2019071286A (en) * 2019-01-09 2019-05-09 古河機械金属株式会社 Positive electrode material, positive electrode and lithium ion battery
WO2021206118A1 (en) * 2020-04-09 2021-10-14 住友化学株式会社 Laminate for lithium secondary battery

Also Published As

Publication number Publication date
JP3332133B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3332133B2 (en) All-solid lithium secondary battery
EP0704920B1 (en) Solid-state lithium secondary battery
US5283136A (en) Rechargeable batteries
EP0615296B1 (en) Non-aqueous electrolyte secondary battery and method of producing the same
JP5348607B2 (en) All-solid lithium secondary battery
US20230155109A1 (en) All-solid lithium secondary battery, manufacturing method thereof, method of use thereof, and charging method thereof
JP2009211910A (en) All-solid lithium secondary battery
US8420261B2 (en) Thin film alloy electrodes
JPS61208750A (en) Lithium organic secondary battery
US4844996A (en) Lithium cell
US20190372106A1 (en) All solid state battery
JP2012113933A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017157473A (en) Lithium ion secondary battery
JPS6166369A (en) Lithium secondary battery
JPH10302776A (en) Totally solid lithium secondary battery
JP2839627B2 (en) Rechargeable battery
JPH03196467A (en) Secondary battery
JPH06275312A (en) Full solid lithium battery
JPH10144351A (en) Total solid lithium secondary battery, assembled-type battery, and charging method therefor
US20230106063A1 (en) Solid-state battery and method for producing solid-state battery
US20240039042A1 (en) Solid electrolyte for solid-state battery and method for preparing the same
JPH06187990A (en) Nonaqueous electrolyte secondary battery
Gilmour A novel rechargeable lithium composite cathode system
JPH0424828B2 (en)
JP2001076719A (en) Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacturing method, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees