JPH08112516A - Ceramic filter and method for carrying catalyst - Google Patents

Ceramic filter and method for carrying catalyst

Info

Publication number
JPH08112516A
JPH08112516A JP6250354A JP25035494A JPH08112516A JP H08112516 A JPH08112516 A JP H08112516A JP 6250354 A JP6250354 A JP 6250354A JP 25035494 A JP25035494 A JP 25035494A JP H08112516 A JPH08112516 A JP H08112516A
Authority
JP
Japan
Prior art keywords
filter
combustion
ceramic filter
catalyst
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6250354A
Other languages
Japanese (ja)
Inventor
Kosuke Kusakari
浩介 草刈
Yukio Saito
幸雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6250354A priority Critical patent/JPH08112516A/en
Publication of JPH08112516A publication Critical patent/JPH08112516A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To reduce thermal shock to a ceramic filter, to prevent the breakage of the filter and to improve the reliability of the filter by carrying a TiO2 or Nb2 O5 negative catalyst for combustion on the surfaces of the pores in a ceramic porous body. CONSTITUTION: An alcoholic soln. of Nb or Ti alkoxide is prepd., a porous ceramic filter is immersed in the soln. and a TiO2 or Nb2 O5 negative catalyst for combustion is carried on the surfaces of the pores in the ceramic filter. At the time of back cleaning, unburnt carbon deposited on the surface of the filter is burned with air for back cleaning. This burning is inhibited by the catalyst, the generation of heat is suppressed and thermal shock to the filter is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックフィルタに係
り、特に、石炭火力燃焼ガスからのダスト分離に用いる
に好適な負燃焼触媒担持セラミックフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic filter, and more particularly to a negative combustion catalyst-supporting ceramic filter suitable for separating dust from coal-fired combustion gas.

【0002】[0002]

【従来の技術】石炭の高効率利用の観点から、発電効率
の高い加圧流動床ボイラ複合発電プラントが注目されて
いる。加圧流動床ボイラでは、高温の石炭燃焼ガスを直
接ガスタービンに送り発電するシステムで、高い高温脱
塵技術が必要である。多段サイクロの使用も可能である
が、集塵効率が低いので飛散ダストによるガスタービン
部品のエロージョンの発生が心配される。特に、燃焼ガ
ス量の変動等によって、サイクロンの集塵効率が低下す
るとガスタービン動翼破損等が懸念される。
2. Description of the Related Art From the viewpoint of highly efficient use of coal, a pressurized fluidized bed boiler combined cycle power plant with high power generation efficiency has been attracting attention. In a pressurized fluidized bed boiler, a high-temperature dedusting technology is required because it is a system that sends hot coal combustion gas directly to a gas turbine to generate electricity. It is possible to use a multi-stage cyclo, but since the dust collection efficiency is low, there is concern that erosion of gas turbine parts due to scattered dust will occur. In particular, if the dust collection efficiency of the cyclone decreases due to fluctuations in the amount of combustion gas, etc., there is concern that the turbine blades of the gas turbine will be damaged.

【0003】このような観点から、最近では文献(Cera
mics Bulletin,vol.70,No.9(1991)1491)や旭硝子研究
報告(vol.42,No.1(1992)81)に見られるように、高温高
効率脱塵可能なセラミックスフィルタが注目されてい
る。これは、コージェライト,アルミナ,ムライト,S
iC等の多孔質体表面にミクロンないしサブミクロンオ
ーダの微細孔を持つ濾過層を設けたものである。この微
細孔により高い集塵効率が得られ、ガスタービンのエロ
ージョンの問題が解消される。
From such a viewpoint, recently, there is a document (Cera
mics Bulletin, vol.70, No.9 (1991) 1491) and Asahi Glass Research Report (vol.42, No.1 (1992) 81), ceramic filters capable of high temperature and high efficiency dedusting have attracted attention. ing. This is cordierite, alumina, mullite, S
A filtration layer having micropores of micron to submicron order is provided on the surface of a porous body such as iC. The fine holes provide high dust collection efficiency and solve the problem of gas turbine erosion.

【0004】しかし、セラミックスフィルタは熱衝撃性
に弱く、破損し易いという問題がある。特に、スタート
アップ時、運転条件変更時等に発生し易い未燃固体炭素
がフィルタに堆積すると、逆洗時の空気によってこの未
燃炭素が燃焼し、急激に温度が上昇してセラミックスフ
ィルタに熱衝撃を与え、破損に至る場合がある。
However, the ceramic filter has a problem that it is weak in thermal shock and is easily damaged. In particular, when unburned solid carbon, which is likely to be generated during startup or when operating conditions are changed, is deposited on the filter, the unburned carbon is burned by the air during backwashing and the temperature rises rapidly, causing thermal shock to the ceramic filter. May result in damage.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、セラミックスフィルタの熱衝撃を緩和する
ことである。これにより、セラミックスフィルタの破損
を防止し、セラミックスフィルタの信頼性を改善するこ
とにある。
The problem to be solved by the present invention is to alleviate the thermal shock of the ceramics filter. This is intended to prevent damage to the ceramic filter and improve reliability of the ceramic filter.

【0006】[0006]

【課題を解決するための手段】上記問題点は、TiO2
又はNb25からなる燃焼負触媒をセラミックスフィル
タ濾過層に担持させることにより解決できる。
[Means for Solving the Problems] The above problems are caused by TiO 2
Alternatively, it can be solved by supporting a combustion negative catalyst made of Nb 2 O 5 on the ceramic filter layer.

【0007】[0007]

【作用】高温部材が使用中に受ける熱衝撃は、部材に既
存するクラックやポアのような微少欠陥の成長を招き、
強度を低下させ、しばしば部材を破壊する。この破壊を
防止するには、部材が受ける熱衝撃を小さくすればよ
い。加圧流動床ボイラ用多孔質セラミックスフィルタの
熱衝撃は、逆洗時が特に大きい。それは、フィルタ表面
に堆積した未燃炭素が逆洗の空気により燃焼し、急激に
温度が上がるからである。フィルタ上の堆積炭素の燃焼
を抑制できれば、熱の発生を抑え、フィルタが受ける熱
衝撃を緩和できる。
[Function] The thermal shock that a high temperature member receives during use causes the growth of minute defects such as cracks and pores existing in the member.
It reduces strength and often destroys parts. In order to prevent this destruction, it is sufficient to reduce the thermal shock received by the member. The thermal shock of the porous ceramics filter for a pressurized fluidized bed boiler is particularly large during backwashing. This is because unburned carbon deposited on the filter surface is burned by backwashing air and the temperature rises rapidly. If the combustion of the deposited carbon on the filter can be suppressed, the generation of heat can be suppressed and the thermal shock received by the filter can be mitigated.

【0008】TiO2 やNb25を多孔質セラミックフ
ィルタ濾過面に担持すると、これらは炭素の燃焼に対し
て負触媒効果を持ち、空気逆洗時のフィルタ上に堆積し
た未燃炭素の燃焼を抑えるので、セラミックスフィルタ
の急激な温度上昇が防止できる。
When TiO 2 and Nb 2 O 5 are carried on the filtration surface of the porous ceramic filter, they have a negative catalytic effect on the combustion of carbon, and the combustion of unburned carbon deposited on the filter during air backwashing is carried out. As a result, the temperature rise of the ceramic filter can be prevented from rising rapidly.

【0009】[0009]

【実施例】加圧流動床ボイラ複合発電プラントは、加圧
流動床で発生する石炭燃焼ガスをガスタービンに供給
し、ガスタービンを回し発電するものである。加圧流動
床の石炭燃焼ガスは約800℃の高温であり、ダストを
数百mg/Nm3 と多量に含む。ダストを含有する石炭燃焼
ガスがタービンに送られると、ガスタービン部品が激し
くエロージョンしてしまうので、ダストを高温,高効率
で除去する必要がある。
EXAMPLES A pressurized fluidized bed boiler combined cycle power plant supplies coal combustion gas generated in a pressurized fluidized bed to a gas turbine and rotates the gas turbine to generate electricity. The coal combustion gas in the pressurized fluidized bed has a high temperature of about 800 ° C. and contains a large amount of dust such as several hundred mg / Nm 3 . When coal combustion gas containing dust is sent to the turbine, gas turbine parts are severely eroded. Therefore, it is necessary to remove dust at high temperature and high efficiency.

【0010】ダスト除去法として、サイクロン等も候補
として検討されているが、除塵効率が十分ではない。セ
ラミックスフィルタは除塵効率が高く、有望な加圧流動
床石炭ボイラ複合発電用ダスト除去法である。セラミッ
クスフィルタの材料は、コージェライト,アルミナ,ム
ライト,SiC等が検討されているが、加圧流動床用フ
ィルタ材料は、熱膨張率が小さいコージェライトが最も
好ましい。
As a dust removing method, a cyclone or the like has been examined as a candidate, but the dust removing efficiency is not sufficient. The ceramics filter has high dust removal efficiency and is a promising method for removing dust from combined power generation coal bed boiler combined power generation. Although cordierite, alumina, mullite, SiC, etc. have been studied as the material of the ceramics filter, cordierite having a small coefficient of thermal expansion is most preferable as the filter material for the pressurized fluidized bed.

【0011】セラミックスフィルタをダスト除去に用い
ると、濾過中にダストがフィルタ表面に堆積する。フィ
ルタ表面にダストが堆積すると、差圧が大きくなるの
で、堆積ダストを表面から定期的に除去する必要があ
る。これは、数分に1回の割合で瞬時に逆方向から空気
を供給することにより行われる。
When a ceramics filter is used to remove dust, dust accumulates on the filter surface during filtration. If the dust accumulates on the surface of the filter, the differential pressure increases, so it is necessary to periodically remove the accumulated dust from the surface. This is done by instantaneously supplying air from the opposite direction once every few minutes.

【0012】堆積したダスト中の未燃炭素分は、通常負
荷運転では微量であるが、スタートアップ時や負荷変更
時等は多くなる。未燃炭素を多く含有するダストがフィ
ルタ上に堆積した場合、逆洗用空気を供給すると、未燃
炭素が急激に燃焼し、フィルタの表面温度が短時間に通
常の使用温度である約800℃から約1200℃へ急激
に上昇する。
The unburned carbon content in the accumulated dust is very small during normal load operation, but increases during start-up or load change. When dust containing a large amount of unburned carbon is deposited on the filter, when backwashing air is supplied, the unburned carbon rapidly burns and the surface temperature of the filter is about 800 ° C, which is the normal operating temperature in a short time. To about 1200 ° C.

【0013】表面温度の急激な上昇により、セラミック
スフィルタに熱衝撃が発生する。これが繰り返し行われ
ると、セラミックスフィルタの微少クラックやポア等の
内在欠陥が成長して大きな亀裂となり、結果としてフィ
ルタの強度の劣化や破壊が起きる。破壊などの機械的劣
化を防止するためには部材が受ける温度差を小さくして
熱衝撃を緩和すればよい。
Due to the rapid rise of the surface temperature, thermal shock is generated in the ceramics filter. When this is repeated, minute defects in the ceramic filter or internal defects such as pores grow and become large cracks, resulting in deterioration of the strength of the filter or destruction. In order to prevent mechanical deterioration such as breakage, it is only necessary to reduce the temperature difference that the members receive and reduce the thermal shock.

【0014】加圧流動床ボイラ複合発電プラント用のダ
スト分離にセラミックスフィルタを用いた場合、熱衝撃
は逆洗時、セラミックスフィルタ表面上に堆積した未燃
炭素の急激な燃焼により起きる。従って、フィルタ上の
堆積未燃炭素の逆洗時の燃焼が抑制できれば、発生熱量
を抑えることで、フィルタが受ける熱衝撃が緩和でき
る。
When a ceramics filter is used for dust separation for a pressurized fluidized bed boiler combined cycle power plant, thermal shock is caused by rapid combustion of unburned carbon deposited on the surface of the ceramics filter during backwashing. Therefore, if the combustion of the accumulated unburned carbon on the filter during backwashing can be suppressed, the thermal shock received by the filter can be alleviated by suppressing the amount of heat generated.

【0015】(実施例1)固体炭素の例としてグラファ
イト,セラミックフィルタ材の例としてα−Al2
3(平均粒径0.6μm),固体炭素燃焼負触媒候補材と
してBaO(平均粒径0.3μm),MgO(平均粒径
0.7μm),Nb25(平均粒径0.6μm),SiO
2(平均粒径0.4μm)およびTiO2(平均粒径0.6
μm)を選定し、これら候補の固体炭素燃焼触媒活性を
調べた。
Example 1 Graphite is an example of solid carbon, and α-Al 2 O is an example of a ceramic filter material.
3 (average particle size 0.6 μm), solid carbon combustion negative catalyst candidate materials BaO (average particle size 0.3 μm), MgO (average particle size 0.7 μm), Nb 2 O 5 (average particle size 0.6 μm) , SiO
2 (average particle size 0.4 μm) and TiO 2 (average particle size 0.6
μm) was selected and the solid carbon combustion catalytic activity of these candidates was investigated.

【0016】グラファイト60mol%に対しα−Al2
330mol%,候補材10mol% を混合し、この混合粉末
を指差熱分析装置(DTA)を用いて熱分析し、重量減
少開始点をもって燃焼開始温度と定義した。負触媒の活
性度は、グラファイト+α−Al23の混合粉末の燃焼
開始温度と、触媒+グラファイト+α−Al23の混合
粉末の燃焼開始温度との差で定性的に定義した。この値
が−側に大きいほど、その触媒の固体炭素燃焼負触媒活
性度が大きくなる。
Α-Al 2 O for 60 mol% of graphite
30 mol% of 3 and 10 mol% of the candidate material were mixed, and the mixed powder was subjected to thermal analysis using a differential thermal analyzer (DTA), and the weight loss starting point was defined as the combustion starting temperature. Activity of the negative catalyst, a combustion start temperature of the mixed powder of graphite + α-Al 2 O 3, qualitatively defined by the difference between the combustion start temperature of the mixed powder of the catalyst + graphite + α-Al 2 O 3. The larger this value in the negative side, the greater the solid carbon combustion negative catalyst activity of the catalyst.

【0017】最初にグラファイトのみの燃焼開始温度を
測定したところ、燃焼開始温度は630℃であった。グ
ラファイトとα−Al23との混合粉末の燃焼開始温度
は573℃であった。グラファイト単体の燃焼開始温度
と比較すると、α−Al2O3の固体炭素燃焼触媒活性は5
7℃であった。α−Al23には固体炭素燃焼触媒効果
があり、逆洗時、堆積炭素の燃焼を促進し、フィルタに
熱衝撃を増加させる可能性がある。
When the combustion starting temperature of only graphite was first measured, the combustion starting temperature was 630 ° C. The combustion starting temperature of the mixed powder of graphite and α-Al 2 O 3 was 573 ° C. Compared with the combustion start temperature of graphite alone, the solid carbon combustion catalytic activity of α-Al 2 O 3 is 5
It was 7 ° C. α-Al 2 O 3 has a solid carbon combustion catalytic effect and may promote combustion of deposited carbon during backwashing and increase thermal shock on the filter.

【0018】続いて、候補材のBaO,MgO,Nb2
5,SiO2 及びTiO2 をグラファイトとα−Al2
3に混合して、それら候補材の負触媒活性度を測定し
た。結果を表1に示す。
Subsequently, the candidate materials BaO, MgO, Nb 2
O 5 , SiO 2 and TiO 2 are mixed with graphite and α-Al 2
The negative catalyst activity of these candidate materials was measured by mixing with O 3 . The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】燃焼触媒候補材を添加した場合はいずれも
触媒活性度が負の値であるので、これら候補材はいずれ
も負燃焼触媒作用を持つことがわかる。しかし、Ba
O,MgO,SiO2 の負触媒活性度は低く、TiO2
とNb25のそれは高い。よって、固体炭素燃焼負触媒
としてTiO2 とNb25が好ましい。
When the combustion catalyst candidate materials are added, the catalytic activity has a negative value, so it is understood that all of these candidate materials have a negative combustion catalytic action. But Ba
The negative catalytic activity of O, MgO, and SiO 2 is low, and TiO 2
And that of Nb 2 O 5 is high. Therefore, TiO 2 and Nb 2 O 5 are preferable as the solid carbon combustion negative catalyst.

【0021】(実施例2)平均粒径1μmの結晶化コー
ジェライト粉末100重量部に対し、エチルアルコール
300重量部とバインダとしてポリビニルブチラールを
3重量部を加え、ボールミルで24hr混合した。得ら
れたスラリをスプレードライヤで噴霧造粒し、造粒粉を
得た。この造粒粉を金型で成形し、800℃で2hr仮
焼し、その後、1300℃で30分焼結して、気孔率が
15%の多孔質セラミックス焼結体を得た。このコージ
ェライト多孔質をTi(OCH(CH3)2)4 5wt%エ
チルアルコール溶液に含浸し、エチルアルコール溶液が
蒸発するまで加熱した。その後、1000℃で1hr焼
成して、TiO2 触媒担持セラミックフィルタを得た。
得られたセラミックフィルタの表面をTEM及びSEM
/EDMを用いて観察及び分析を行った。表面には平均
粒径約0.35μmのTiO2が分散していた。これによ
りコージェライトフィルタの表面にTiO2 炭素燃焼負
触媒が担持されていることが確認された。
Example 2 To 100 parts by weight of crystallized cordierite powder having an average particle diameter of 1 μm, 300 parts by weight of ethyl alcohol and 3 parts by weight of polyvinyl butyral as a binder were added and mixed in a ball mill for 24 hours. The obtained slurry was spray granulated with a spray dryer to obtain granulated powder. The granulated powder was molded with a mold, calcined at 800 ° C. for 2 hours, and then sintered at 1300 ° C. for 30 minutes to obtain a porous ceramics sintered body having a porosity of 15%. The cordierite porous impregnated with Ti (OCH (CH 3) 2 ) 4 5wt% ethyl alcohol solution was heated to ethyl alcohol solution is evaporated. Then, it was fired at 1000 ° C. for 1 hour to obtain a TiO 2 catalyst-supporting ceramic filter.
The surface of the obtained ceramic filter is TEM and SEM.
/ EDM was used for observation and analysis. TiO 2 having an average particle size of about 0.35 μm was dispersed on the surface. This confirmed that the TiO 2 carbon combustion negative catalyst was carried on the surface of the cordierite filter.

【0022】こうして得られたTiO2 負触媒担持コー
ジェライト多孔質焼結体をセラミックスフィルタとして
小型模擬試験装置に組み込み、表面温度を測定しながら
脱塵実験を行った。通常運転時の表面温度は平均805
℃であったが、逆洗時に表面温度は最高984℃に上昇
した。通常運転→逆洗→通常運転のサイクルを百回繰り
返した後、供試したTiO2 負触媒担持フィルタの一部
を切り出し、強度を評価した。4点曲げ強度は、サイク
ル前の90MPaから83MPaへ低下し、約10%の
強度低下が見られる。一千サイクル後では、セラミック
フィルタの破損は見られず、4点曲げ強度は81MPa
であった。
The TiO 2 negative catalyst-supported cordierite porous sintered body thus obtained was incorporated as a ceramics filter into a small simulated tester, and a dusting test was conducted while measuring the surface temperature. Average surface temperature during normal operation is 805
However, the surface temperature rose to a maximum of 984 ° C during backwashing. After repeating the cycle of normal operation → backwashing → normal operation 100 times, a part of the TiO 2 negative catalyst-carrying filter tested was cut out and the strength was evaluated. The 4-point bending strength decreased from 90 MPa before the cycle to 83 MPa, and a strength decrease of about 10% was observed. After 1000 cycles, the ceramic filter was not damaged and the 4-point bending strength was 81 MPa.
Met.

【0023】比較例として、触媒を担持していない気孔
率15%のコージェライト多孔質焼結体をフィルタとし
て小型試験装置に組み込み、表面温度を測定しながら脱
塵実験を行った。通常作動時のフィルタの表面温度は平
均807℃であったが、逆洗時には表面温度が最高12
15℃に上昇した。通常運転→逆洗→通常運転のサイク
ルを百回繰り返した後、供試したコージェライトフィル
タの一部を切り出し、強度を評価した。4点曲げ強度は
サイクル前の90MPaから75MPaへ低下し、約1
7%の強度低下が見られる。一千サイクル後では、4点
曲げ強度は58MPaへ低下し、約36%の強度低下が
見られた。
As a comparative example, a dust removal experiment was conducted while measuring the surface temperature by incorporating a cordierite porous sintered body having no porosity of 15% as a filter into a small-sized test apparatus. The surface temperature of the filter during normal operation was 807 ° C on average, but the maximum surface temperature was 12 when backwashing.
Raised to 15 ° C. After repeating the cycle of normal operation → backwash → normal operation 100 times, a part of the cordierite filter tested was cut out and the strength was evaluated. 4-point bending strength decreased from 90 MPa before cycle to 75 MPa, about 1
A strength decrease of 7% is observed. After 1,000 cycles, the 4-point bending strength decreased to 58 MPa, and a strength decrease of about 36% was observed.

【0024】(実施例3)平均粒径1μmのα−Al2
3粉末100重量部に対し、バインダとしてポリビニ
ルブチラールを3重量部とエチルアルコール300重量
部をボールミルを用いて24hr混合してスラリを作製
した。その後、このスラリをスプレードライヤで噴霧造
粒し、α−Al23造粒粉を得た。この造粒粉を金型成
形し、800℃で2hr仮焼し、その後1300℃で3
0分焼結し、気孔率が約20%の焼結体を得た。このα
−Al23多孔質表面にNb(OC35)55wt%エチ
ルアルコール溶液を表面積1cm3 当たり10ml噴霧し
て、乾燥器で200℃で5hr乾燥させた。その後、1
000℃で1hr焼成して、Nb25触媒担持セラミッ
クフィルタを得た。
Example 3 α-Al 2 having an average particle size of 1 μm
A slurry was prepared by mixing 3 parts by weight of polyvinyl butyral as a binder and 300 parts by weight of ethyl alcohol with 100 parts by weight of O 3 powder for 24 hours using a ball mill. Then, this slurry was spray-granulated with a spray dryer to obtain α-Al 2 O 3 granulated powder. This granulated powder is molded into a mold, calcined at 800 ° C for 2 hours, and then at 1300 ° C for 3 hours.
After sintering for 0 minutes, a sintered body having a porosity of about 20% was obtained. This α
10 ml of Nb (OC 3 H 5 ) 5 5 wt% ethyl alcohol solution was sprayed per 1 cm 3 of surface area on the porous surface of Al 2 O 3 and dried at 200 ° C. for 5 hours in a dryer. Then 1
It was fired at 000 ° C. for 1 hour to obtain a Nb 2 O 5 catalyst-supported ceramic filter.

【0025】このようにして得られた多孔質焼結体の表
面をTEM及びSEM/EDMを用いて観察及び分析を
行った。表面には平均粒径約0.27μmのNb25
分散していた。これによりα−Al23多孔質焼結体の
表面にNb25炭素燃焼負触媒が担持されていることが
確認された。
The surface of the porous sintered body thus obtained was observed and analyzed using TEM and SEM / EDM. Nb 2 O 5 having an average particle size of about 0.27 μm was dispersed on the surface. This confirmed that the Nb 2 O 5 carbon burning negative catalyst was carried on the surface of the α-Al 2 O 3 porous sintered body.

【0026】こうして得られたNb25負触媒担持α−
Al23多孔質焼結体をセラミックフィルタとして小型
模擬試験装置に組み込み、表面温度を測定しながら脱塵
実験を行った。通常運転時の表面温度は平均805℃で
あったが、逆洗時に表面温度は最高984℃に上昇し
た。通常運転→逆洗→通常運転のサイクルを百回繰り返
した後、供試したNb25負触媒担持フィルタの一部を
切り出し、強度を評価した。4点曲げ強度はサイクル前
の90MPaから83MPaへ低下し、約10%の強度
低下が見られる。一千サイクル後では、セラミックフィ
ルタの破損は見られず、4点曲げ強度は81MPaであ
った。
The thus obtained Nb 2 O 5 negative catalyst-supported α-
The Al 2 O 3 porous sintered body was incorporated as a ceramic filter in a small-sized simulated test device, and a dust removal experiment was conducted while measuring the surface temperature. The surface temperature during normal operation was 805 ° C on average, but the surface temperature rose to a maximum of 984 ° C during backwashing. After repeating the cycle of normal operation → backwash → normal operation 100 times, a part of the Nb 2 O 5 negative catalyst-carrying filter tested was cut out and the strength was evaluated. The 4-point bending strength decreased from 90 MPa before the cycle to 83 MPa, and a strength decrease of about 10% was observed. After 1,000 cycles, the ceramic filter was not damaged, and the 4-point bending strength was 81 MPa.

【0027】比較例として、触媒を担持していない気孔
率15%のα−Al23多孔質焼結体をフィルタとして
試験した場合は、4点曲げ強度が百サイクル後では71MP
a に、一千サイクル後では60MPaに低下した。
As a comparative example, when an α-Al 2 O 3 porous sintered body having a porosity of 15% which does not carry a catalyst was tested as a filter, the four-point bending strength was 71MP after 100 cycles.
In a, it decreased to 60 MPa after 1,000 cycles.

【0028】[0028]

【発明の効果】本発明の炭素燃焼負触媒担持セラミック
フィルタは、フィルタ上に堆積する固体炭素を含有した
塵埃の逆洗時の急速な燃焼を抑制し、熱衝撃が緩和でき
る。この効果により、本発明の炭素燃焼負触媒担持セラ
ミックスフィルタを石炭火力燃焼ガスからのダスト分離
用に用いた場合、強度劣化を低減することができる。
EFFECTS OF THE INVENTION The carbon burning negative catalyst supporting ceramic filter of the present invention suppresses rapid combustion of dust containing solid carbon deposited on the filter at the time of backwashing and can reduce thermal shock. Due to this effect, strength deterioration can be reduced when the carbon burning negative catalyst-supporting ceramics filter of the present invention is used for separating dust from coal-fired combustion gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】逆洗による熱衝撃サイクルの回数とフィルタの
4点曲げ強度の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the number of thermal shock cycles by backwashing and the 4-point bending strength of a filter.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/20 A 37/02 301 M Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01J 23/20 A 37/02 301 M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】セラミック多孔体の空孔表面にTiO2
はNb25燃焼負触媒を担持させたことを特徴とするセ
ラミックフィルタ。
1. A ceramic filter characterized in that a TiO 2 or Nb 2 O 5 combustion negative catalyst is carried on the surface of pores of a ceramic porous body.
【請求項2】請求項1において、Nb又はTiのアルコ
キシドのアルコール溶液を作製し、これに多孔質セラミ
ックフィルタを浸漬した後、燃成する触媒の担持法。
2. The method for supporting a catalyst according to claim 1, wherein an alcohol solution of an alkoxide of Nb or Ti is prepared, a porous ceramic filter is immersed in the alcohol solution, and then the mixture is combusted.
【請求項3】請求項1において、Nb又はTiのアルコ
キシドのアルコール溶液を作製し、これを多孔質セラミ
ックフィルタの濾過面に噴霧した後、焼成する触媒の担
持法。
3. A method of supporting a catalyst according to claim 1, wherein an alcohol solution of Nb or Ti alkoxide is prepared, sprayed on the filtration surface of the porous ceramic filter, and then calcined.
JP6250354A 1994-10-17 1994-10-17 Ceramic filter and method for carrying catalyst Pending JPH08112516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6250354A JPH08112516A (en) 1994-10-17 1994-10-17 Ceramic filter and method for carrying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6250354A JPH08112516A (en) 1994-10-17 1994-10-17 Ceramic filter and method for carrying catalyst

Publications (1)

Publication Number Publication Date
JPH08112516A true JPH08112516A (en) 1996-05-07

Family

ID=17206676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6250354A Pending JPH08112516A (en) 1994-10-17 1994-10-17 Ceramic filter and method for carrying catalyst

Country Status (1)

Country Link
JP (1) JPH08112516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378033C (en) * 2003-06-20 2008-04-02 松下电器产业株式会社 Porous body and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378033C (en) * 2003-06-20 2008-04-02 松下电器产业株式会社 Porous body and its production method

Similar Documents

Publication Publication Date Title
JP3954501B2 (en) Manufacturing method of wall flow monolith filter
US7785695B2 (en) Honeycomb structured body
US5213781A (en) Method of cleaning nitrogen oxide containing exhaust gas
JP2017121624A (en) Catalyzed soot filter manufacture and systems
WO2009122535A1 (en) Process for producing honeycomb structure
JP2013502316A5 (en)
JPWO2007058006A1 (en) Honeycomb structure
JP2005152774A (en) Particulate filter catalyst and its manufacturing method
JP6526847B1 (en) Exhaust gas purification catalyst and method for producing the same
JP3900563B2 (en) Exhaust gas purification catalyst and exhaust gas purification filter using the same
JPH08112516A (en) Ceramic filter and method for carrying catalyst
KR20090106483A (en) Method for obtaining a porous structure based on silicon carbide
JP6523496B1 (en) Exhaust gas purification catalyst and method for producing the same
JPH01307452A (en) Waste gas purification catalyst
KR20110011641A (en) Catalytic filter or substrate containing silicon carbide and aluminum titanate
JPH08270930A (en) Dust removing filter for coal burning and pressurized fluidized bed boiler
JP6617181B1 (en) Exhaust gas purification catalyst
JPH02261511A (en) Catalyst for removing fine grain in diesel exhaust and its filter
WO2012023494A1 (en) Oxidation catalyst suitable for combustion of light oil component
JP5871817B2 (en) Exhaust gas purification catalyst manufacturing method and exhaust gas purification device
JPWO2009122537A1 (en) Manufacturing method of honeycomb structure
WO2021059883A1 (en) Exhaust-gas-purifying catalyst production method
JP2007275874A (en) Catalyst and particulate filter type catalyst for cleaning exhaust gas
JP6265813B2 (en) Exhaust purification filter
EP3260435A1 (en) Method for producing honeycomb structure