JPH0739014A - Charging device for vehicle - Google Patents

Charging device for vehicle

Info

Publication number
JPH0739014A
JPH0739014A JP5182434A JP18243493A JPH0739014A JP H0739014 A JPH0739014 A JP H0739014A JP 5182434 A JP5182434 A JP 5182434A JP 18243493 A JP18243493 A JP 18243493A JP H0739014 A JPH0739014 A JP H0739014A
Authority
JP
Japan
Prior art keywords
battery
inverter
voltage
contactor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5182434A
Other languages
Japanese (ja)
Inventor
Shigeru Kuriyama
茂 栗山
Nobuo Inoue
信男 井上
Tetsuya Yokoyama
哲也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5182434A priority Critical patent/JPH0739014A/en
Publication of JPH0739014A publication Critical patent/JPH0739014A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To make a charging current definite by a method wherein, when a battery is charged by an inverter generating a three-phase alternating current, the secondary side of a transformer for a single-phase alternating current is connected to two arms for the inverter and remaining arms are connected to the battery via a DC inductance. CONSTITUTION:When a battery 1 is discharged, individual switching elements T1 to T6 for a three-phase inverter 7 are turned sequentially on and off by a signal from a gate circuit 13 via a contactor 4, the signal is converted into 3 three-phase VVVF, a contactor 11 is connected as shown in the figure, and an induction motor 12 is turned. When the battery 1 is charged, an AC single- phase power supply 14 is transformed by a transformer 16, a voltage which is lower than the voltage of the battery 1 is generated, the contactor 11 is changed over, the voltage is applied to two out of the arms T3 to T6 for the inverter 7 via two contacts, the voltage is rectified, and a capacitor 6 and the battery 1 are charged. The remaining arms T1, T2 are connected to the battery 1 via the contactor 11 and a DC inductance 20. Thereby, the battery is charged by a definite current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】3相交流電動機とインバータとバ
ッテリを有する電気車における充電に関し、特に入力電
流は入力電圧に比例させ、かつバッテリへの充電電流を
一定にする充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to charging in an electric vehicle having a three-phase AC motor, an inverter and a battery, and more particularly to a charging device which makes an input current proportional to an input voltage and makes a charging current to a battery constant.

【0002】[0002]

【従来の技術】従来の技術として特開昭59−61402 号公
報がある。これは、3相交流電動機とインバータとバッ
テリを有する電気車に3相交流電源を入力とする方法が
取られていた。
2. Description of the Related Art As a conventional technique, there is JP-A-59-61402. In this method, a three-phase AC power source is used as an input to an electric vehicle having a three-phase AC motor, an inverter, and a battery.

【0003】3相交流電源を入力とすれば 充電電流を
ほぼ一定にする充電が可能である。しかし単相交流電源
を入力とすると充電電流は、かなり変動する。
If a three-phase AC power supply is used as input, charging can be performed with the charging current kept substantially constant. However, when a single-phase AC power supply is used as input, the charging current fluctuates considerably.

【0004】このためバッテリに大電流がながれるとい
う問題がある。
Therefore, there is a problem that a large current can flow to the battery.

【0005】そして単相交流電源は一般家庭用電源に使
用されており電源差し込みコンセットさえあれば充電を
可能にして、バッテリ放電のため走行ができないという
事態を防止することができる。
The single-phase AC power supply is used as a general household power supply, and it can be charged with a power supply plug-in set to prevent a situation where the vehicle cannot run due to battery discharge.

【0006】[0006]

【発明が解決しようとする課題】単相交流電源を用いた
充電装置に、入力電流は入力電圧に比例するつまり力率
1に近くし、バッテリ充電電流は一定になる性能を有す
ることにある。
SUMMARY OF THE INVENTION In a charging device using a single-phase AC power source, the input current is proportional to the input voltage, that is, close to a power factor of 1, and the battery charging current is constant.

【0007】[0007]

【課題を解決するための手段】変圧器の2次電圧のピー
ク値をバッテリの公称電圧より低くした巻線比にしてお
く。また変圧器の2次巻線のインピーダンスは0.1m
H から数mHのインダクタンスを有しているものとす
る。そして変圧器の2次巻線を短絡させるインバータの
動作周波数を数十Khzとする。
The peak value of the secondary voltage of the transformer is set to a winding ratio which is lower than the nominal voltage of the battery. The impedance of the secondary winding of the transformer is 0.1m
It is assumed that the inductor has an inductance of H 2 to several mH. The operating frequency of the inverter that short-circuits the secondary winding of the transformer is set to several tens Khz.

【0008】変圧器の2次巻線に流れる電流を検出する
電流センサの出力信号が変圧器の1次巻線の正弦波と同
じになるようインバータのオン時間(つまり通流率)を
制御する。
The on-time (that is, the conduction ratio) of the inverter is controlled so that the output signal of the current sensor for detecting the current flowing through the secondary winding of the transformer becomes the same as the sine wave of the primary winding of the transformer. .

【0009】インバータのオフ時間に変圧器の2次巻線
を短絡させインダクタンスに蓄えられたエネルギと変圧
器の2次巻線の電圧が加わり、コンデンサ(一般的に電
解コンデンサ数千マイクロF)に蓄える。
During the off-time of the inverter, the secondary winding of the transformer is short-circuited, the energy stored in the inductance and the voltage of the secondary winding of the transformer are added, and a capacitor (generally an electrolytic capacitor of several thousand micro F) is added. store.

【0010】このコンデンサに蓄えられた電荷を直流リ
アクトルDCLインバータの1アームの(+)側に接続
したIGBTをスイッチングとして(−)側に接続した
IGBTをダイオードとして降圧スイッチングレギュレータ
を構成する。
An IGBT in which the charge stored in this capacitor is connected to the (+) side of one arm of a DC reactor DCL inverter is connected to the (-) side for switching.
A step-down switching regulator is constructed using the IGBT as a diode.

【0011】[0011]

【作用】変圧器の2次電圧のピーク値をバッテリの公称
電圧より低くしておくため交流(AC)単相電源を接続
してもIGBTから構成されるインバータのダイオード
による整流電流は流れない。(−)側に接続したIGB
Tをオンすると短絡電流が流れるがオン時間を短くする
ことにより(2次巻線のインピーダンスの値と、動作周
波数を適正な値にしておく)急峻な電流の立上りを防止
する。
Since the peak value of the secondary voltage of the transformer is kept lower than the nominal voltage of the battery, the rectified current by the diode of the inverter composed of the IGBT does not flow even if the alternating current (AC) single-phase power supply is connected. IGB connected to the (-) side
When T is turned on, a short-circuit current flows, but the on-time is shortened (the impedance value of the secondary winding and the operating frequency are set to appropriate values) to prevent a steep rise of the current.

【0012】インバータをオフにするとインダクタンス
には電流を流し続けようとする電圧が生じ、これと変圧
器の2次巻線の電圧が加わりコンデンサを充電する。
When the inverter is turned off, a voltage is generated in the inductance, which tends to keep the current flowing, and this voltage is added to the voltage of the secondary winding of the transformer to charge the capacitor.

【0013】コンデンサに充電された電荷は、降圧スイ
ッチングレギュレータにより一定電流を流す。
The electric charge charged in the capacitor causes a constant current to flow through the step-down switching regulator.

【0014】つまり入力電力をコンデンサに蓄えたり
(充電電流にバッテリの電圧を掛けた電力値よりも入力
電力が大きい時)放出したりして(充電電流にバッテリ
の電圧を掛けた電力値よりも入力電力が小さい時)、一
定充電電流を流す。
That is, the input power is stored in the capacitor (when the input power is larger than the power value obtained by multiplying the charging current by the voltage of the battery) and released (at a higher value than the power value obtained by multiplying the charging current by the voltage of the battery). When the input power is small), a constant charging current is passed.

【0015】[0015]

【実施例】以下本発明について図に従って説明する。The present invention will be described below with reference to the drawings.

【0016】バッテリBAT1の(+)電源線2からコ
ンタクタCONTA4を介し(+)電線5とし(電解)
コンデンサCO6を、またIGBT,T1からT6で構
成された3相インバータ7を接続し、他の端子を(−)
電源線3に接続する。
From the (+) power supply line 2 of the battery BAT1 to the (+) electric wire 5 via the contactor CONTA4 (electrolysis)
The capacitor CO6 is connected to a three-phase inverter 7 composed of IGBTs, T1 to T6, and the other terminal is (-).
Connect to power line 3.

【0017】3相インバータ7の出力から電流検出用電
流センサ(A)8,電流センサ(B)9,電流センサ
(C)10を介し充電切替用のコンタクタCONTB11 を経
て交流電動機12に接続する。
The output of the three-phase inverter 7 is connected to the AC motor 12 via the current detecting current sensor (A) 8, the current sensor (B) 9, and the current sensor (C) 10 and the contactor CONTB11 for switching charging.

【0018】3相インバータ7のIGBT,T1からT
6のゲートに導通信号を印加し交流電動機12の回転を
加減するのがゲート回路13である。
IGBT of the three-phase inverter 7, T1 to T
The gate circuit 13 applies a conduction signal to the gate of 6 to control the rotation of the AC motor 12.

【0019】つぎに充電回路について説明する。Next, the charging circuit will be described.

【0020】交流(AC)単相電源14からヒューズF
U15,変圧器16の1次巻線17を接続する。
From the alternating current (AC) single-phase power supply 14 to the fuse F
U15 and the primary winding 17 of the transformer 16 are connected.

【0021】2次巻線18からコンタクタCONTC19を介
しコンタクタCONTB11に接続する。また3相インバータ
7からコンタクタCONTB11 の残りの接点から直流インダ
クタンスDCL20とコンタクタCONTD21 を直列にして
(+)電源線2に接続する。
The secondary winding 18 is connected to the contactor CONTB11 via the contactor CONTC19. In addition, the DC inductance DCL20 and the contactor CONTD21 are connected in series from the remaining contact of the contactor CONTB11 from the three-phase inverter 7 to the (+) power supply line 2.

【0022】図1を充電時主体に書き直したのが図2で
ある。図1に示した記号は同じものとする。またIGB
Tをダイオードとしてのみ使用するものはダイオードの
記号にしている。ゲート回路13は、1次電圧値・位相
検出回路22,電流制御回路23,ゲートトリガ回路2
4,電圧検出回路25,トリガと定電流制御回路26よ
りなる。
FIG. 2 is a rewrite of FIG. 1 mainly for charging. The symbols shown in FIG. 1 are the same. Also IGB
A diode is used when T is used only as a diode. The gate circuit 13 includes a primary voltage value / phase detection circuit 22, a current control circuit 23, and a gate trigger circuit 2.
4, a voltage detection circuit 25, a trigger and a constant current control circuit 26.

【0023】1次電圧値・位相検出回路22は、交流
(AC)単相電源14のピーク電圧を検出しバッテリ電
圧VBより低いことを判定し、コンタクタCONTC14 を投
入する。もしバッテリ電圧VBより高いことを判定した
らコンタクタCONTC14 を投入せず、抵抗R0を介してコ
ンデンサCOの充電を行う。位相の検出は制御電流を正
弦波にする時の立上りを決めるためである。
The primary voltage value / phase detection circuit 22 detects the peak voltage of the alternating current (AC) single-phase power supply 14 and determines that it is lower than the battery voltage VB, and turns on the contactor CONTC14. If it is determined that the voltage is higher than the battery voltage VB, the contactor CONTC14 is not turned on and the capacitor CO is charged via the resistor R0. The phase detection is to determine the rising edge when the control current is made a sine wave.

【0024】電流制御回路23は電流センサの信号をフ
ィードバックしながら電流を正弦波にするようにIGB
Tのオン時間を加減するものである。
The current control circuit 23 feeds back the signal of the current sensor to make the current sine wave.
The ON time of T is adjusted.

【0025】ゲートトリガ回路24はIGBTをオン・
オフさせる。
The gate trigger circuit 24 turns on the IGBT.
Turn off.

【0026】電圧検出回路25は、バッテリ電圧より大
きくしかつ、回路構成部品の耐電圧を超えないようIG
BTのオン時間を加減するものである。
The voltage detecting circuit 25 has a voltage higher than the battery voltage, and the voltage detection circuit 25 does not exceed the withstand voltage of the circuit components.
This is to adjust the on-time of BT.

【0027】トリガと定電流制御回路26は、電流セン
サ(C)10の信号をフィードバックしながら、充電電
流を一定に制御する。
The trigger and constant current control circuit 26 controls the charging current to be constant while feeding back the signal of the current sensor (C) 10.

【0028】図3は図2の動作を示したものである。FIG. 3 shows the operation of FIG.

【0029】(a)は変圧器の2次電圧とバッテリ電圧
VBの関係を示す。
(A) shows the relationship between the secondary voltage of the transformer and the battery voltage VB.

【0030】バッテリ電圧VB1のときコンタクトCONT
C19 を投入、バッテリ電圧VB2のときコンタクトCONT
C19 を投入せず、充電してバッテリ電圧が上昇しVB3
になれば、コンデンサCOの電圧も上昇させる。
Contact at battery voltage VB1 CONT
Turn on C19, and contact when battery voltage is VB2 CONT
Charging without charging C19 causes the battery voltage to rise and VB3
Then, the voltage of the capacitor CO is also increased.

【0031】(b)はその時の、コンデンサCOの電圧
波形を示す。それで、充電電流を一定にすることができ
る。
(B) shows the voltage waveform of the capacitor CO at that time. Therefore, the charging current can be made constant.

【0032】図4に本発明から成る別の方式による充電
回路を示す。
FIG. 4 shows a charging circuit according to another method of the present invention.

【0033】交流単相電源14からダイオードからなる
全波整流回路(A)28,トランジスタTR1,直流イ
ンダクタンスDCL(A)29を直列にして、(電解)コ
ンデンサC0,6に接続する。
A full-wave rectifier circuit (A) 28 consisting of a diode, a transistor TR1, and a DC inductance DCL (A) 29 are connected in series from an AC single-phase power supply 14 to (electrolytic) capacitors C0, 6.

【0034】インバータ7の出力に高周波トランス30
の1次巻線30−1を接続し、2次巻線から全波整流回
路(B)31,直流インダクタンスDCL20を接続
し、バッテリ1に接続する。ダイオードD1は直流イン
ダクタンスDCL20に蓄えられた電流エネルギを循環
させるフリーホイルダイオードである。コンデンサC1
はノイズ吸収用である。
A high frequency transformer 30 is provided at the output of the inverter 7.
The primary winding 30-1 is connected, the full-wave rectifier circuit (B) 31 and the DC inductance DCL 20 are connected from the secondary winding, and the battery 1 is connected. The diode D1 is a freewheel diode that circulates the current energy stored in the DC inductance DCL20. Capacitor C1
Is for noise absorption.

【0035】全波整流回路(A)28から、トランジス
タTR2,直流インダクタンスDCL(B)32を直列に
して、コンデンサC2に接続し、DC−DCコンバータ
用トランス33の電源とする。またダイオードD2は循
環用フリーホイルダイオードである。
From the full-wave rectifier circuit (A) 28, the transistor TR2 and the DC inductance DCL (B) 32 are connected in series and connected to the capacitor C2 to be used as the power source of the DC-DC converter transformer 33. The diode D2 is a freewheeling diode for circulation.

【0036】ダイオードD3,D4は整流用で、補助バ
ッテリ(一般的に12V)34を充電するのに用いる。
The diodes D3 and D4 are for rectification and are used to charge the auxiliary battery (generally 12V) 34.

【0037】図5は、図4の動作説明図である。FIG. 5 is an explanatory diagram of the operation of FIG.

【0038】整流波形の電圧がV1までは、トランジス
タTR2をオン・オフさせ、V1以上では、トランジス
タTR1をオン・オフさせ高電圧のバッテリ1を充電す
るのに用いる。
When the voltage of the rectified waveform is up to V1, the transistor TR2 is turned on / off, and when it is V1 or higher, the transistor TR1 is turned on / off to charge the high-voltage battery 1.

【0039】この方式では、変圧器を小型にできるとい
う特徴がある。
This system is characterized in that the transformer can be downsized.

【0040】変圧器を小型にできるという3相交流電源
による充電回路を以下説明する。
A charging circuit using a three-phase AC power source, which can reduce the size of the transformer, will be described below.

【0041】図6は、3相交流電源の端子R,S,T、
インバータ7のU,V,W,Eは図7のEに接続する。
ここで用いられる記号や数字は、前に述べたものと同じ
ものとする。追加回路36は図7に示す。
FIG. 6 shows terminals R, S, T, of the three-phase AC power supply.
U, V, W and E of the inverter 7 are connected to E of FIG.
The symbols and numbers used here are the same as those described above. The additional circuit 36 is shown in FIG.

【0042】整流回路R1,37、整流回路S1,3
8、整流回路T1,39は、各線間の電圧を整流する。
1次巻線を2個有する絶縁トランスR,40、絶縁トラ
ンスS41,絶縁トランスT,42の、2次巻線から
は、各々整流回路R2,43、整流回路S2,44、整
流回路T2,45を接続する。
Rectifier circuits R1, 37, rectifier circuits S1, 3
8. Rectifier circuits T1, 39 rectify the voltage between the lines.
From the secondary windings of the insulating transformers R and 40 having two primary windings, the insulating transformer S41, and the insulating transformers T and 42, rectifying circuits R2 and 43, rectifying circuits S2 and 44, and rectifying circuits T2 and 45, respectively. Connect.

【0043】各整流回路の出力から、直流インダクタン
スDCL(R),DCL(S)DCL(T)と、ダイオード
D11,ダイオードD12,ダイオードD13を直列に
してコンタクタCONTDに接続する。
From the output of each rectifying circuit, the DC inductances DCL (R), DCL (S) DCL (T), the diode D11, the diode D12 and the diode D13 are connected in series and connected to the contactor CONTD.

【0044】トランジスタTR11,トランジスタTR
12,トランジスタTR13は、絶縁トランスの出力電
圧が小さいとき導通させ、つぎにオフさせて、充電電流
を流す。
Transistor TR11, transistor TR
12. The transistor TR13 is turned on when the output voltage of the isolation transformer is small, and then turned off to allow a charging current to flow.

【0045】この動作を図8に示す。This operation is shown in FIG.

【0046】[0046]

【発明の効果】入力電流は入力電圧に比例するつまり力
率1に近くし、バッテリ充電電流を一定にする性能を有
することができた。
The input current is proportional to the input voltage, that is, close to the power factor of 1, and the battery charging current can be kept constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明から成る車両用充電制御主回路図であ
る。
FIG. 1 is a main circuit diagram of a vehicle charging control according to the present invention.

【図2】図1の充電時における結線図である。FIG. 2 is a connection diagram during charging of FIG.

【図3】図2の動作説明図である。FIG. 3 is an operation explanatory diagram of FIG. 2;

【図4】本発明から成る別の車両用充電制御回路図であ
る。
FIG. 4 is another vehicle charging control circuit diagram according to the present invention.

【図5】図4の動作説明図である。5 is an operation explanatory diagram of FIG. 4;

【図6】本発明から成る3相電源の車両用充電制御回路
図である。
FIG. 6 is a vehicle charging control circuit diagram of a three-phase power supply according to the present invention.

【図7】図6の充電部回路図である。FIG. 7 is a circuit diagram of a charging unit in FIG.

【図8】図7の動作説明図である。FIG. 8 is an operation explanatory diagram of FIG. 7;

【符号の説明】[Explanation of symbols]

1…バッテリBAT、2…(+)電源線、3…(−)電
源線、4…コンタクタCONTA、5…(+)電線、6
…コンデンサCO、7…3相インバータ、8…電流セン
サ(A)、9…電流センサ(B)、10…電流センサ
(C)、11…コンタクタCONTB、12…交流電動
機、13…ゲート回路、14…交流(AC)単相電源、1
5…ヒューズFU、16…変圧器、17…1次巻線、1
8…2次巻線、19…コンタクタCONTC、20…直
流インダクタンスDCL、21…コンタクタCONT
D、22…1次電圧値・位相検出回路、23…電流制御
回路、24…ゲートトリガ回路、25…電圧検出回路、
26…トリガと定電流制御回路、28…全波整流回路
(A)、29…直流インダクタンスDCL(A)、30…高
周波トランス、31…全波整流回路(B)、32…直流イ
ンダクタンスDCL(B)、33…トランス、34…補助
バッテリ、36…追加回路。
1 ... Battery BAT, 2 ... (+) power supply line, 3 ... (-) power supply line, 4 ... Contactor CONTA, 5 ... (+) electric wire, 6
... Capacitor CO, 7 ... Three-phase inverter, 8 ... Current sensor (A), 9 ... Current sensor (B), 10 ... Current sensor (C), 11 ... Contactor CONTB, 12 ... AC electric motor, 13 ... Gate circuit, 14 … AC (AC) single-phase power supply, 1
5 ... Fuse FU, 16 ... Transformer, 17 ... Primary winding, 1
8 ... Secondary winding, 19 ... Contactor CONTC, 20 ... DC inductance DCL, 21 ... Contactor CONT
D, 22 ... Primary voltage value / phase detection circuit, 23 ... Current control circuit, 24 ... Gate trigger circuit, 25 ... Voltage detection circuit,
26 ... Trigger and constant current control circuit, 28 ... Full wave rectification circuit
(A), 29 ... DC inductance DCL (A), 30 ... High frequency transformer, 31 ... Full wave rectification circuit (B), 32 ... DC inductance DCL (B), 33 ... Transformer, 34 ... Auxiliary battery, 36 ... Additional circuit .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】バッテリ,3相モータ,IGBTから構成
されるインバータ,バッテリからインバータの(+)
(−)電極に接続した(電解)コンデンサ,インバータ
の出力を(3相)交流電動機に接続するコンタクタ,充
電用電源を入力したり遮断したりするコンタクタ,イン
バータを駆動するゲート回路より構成される電気車にお
いて、単相変圧器の2次巻線を、上記充電用電源を入力
したり遮断したりするコンタクタに接続し、上記IGB
Tから構成されるインバータの2アームに接続し、イン
バータの(−)電極側のIGBTをオン・オフし、上記
インバータの(+)(−)電極に接続した(電解)コン
デンサを充電し、インバータの2アーム以外の第3のア
ームから直流インダクタンスDCLとコンタクタを直列
にしてバッテリに接続し第3のアームの(+)電極側の
IGBTをオン・オフしバッテリの充電電流を一定にし
たことを特徴とする車両用充電装置。
1. A battery, a three-phase motor, an inverter composed of an IGBT, and a battery to an inverter (+).
Consists of a (electrolytic) capacitor connected to the (-) electrode, a contactor that connects the output of the inverter to the (three-phase) AC motor, a contactor that inputs and shuts off the charging power supply, and a gate circuit that drives the inverter. In the electric vehicle, the secondary winding of the single-phase transformer is connected to the contactor for inputting or cutting off the charging power source, and the above-mentioned IGBT is connected.
Connected to two arms of an inverter composed of T, turning on / off the IGBT on the (-) electrode side of the inverter, charging the (electrolytic) capacitor connected to the (+) (-) electrode of the inverter, and charging the inverter. The DC inductance DCL and the contactor are connected in series to the battery from the third arm other than the two arms, and the IGBT on the (+) electrode side of the third arm is turned on / off to make the charging current of the battery constant. Characteristic vehicle charging device.
JP5182434A 1993-07-23 1993-07-23 Charging device for vehicle Pending JPH0739014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5182434A JPH0739014A (en) 1993-07-23 1993-07-23 Charging device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5182434A JPH0739014A (en) 1993-07-23 1993-07-23 Charging device for vehicle

Publications (1)

Publication Number Publication Date
JPH0739014A true JPH0739014A (en) 1995-02-07

Family

ID=16118205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5182434A Pending JPH0739014A (en) 1993-07-23 1993-07-23 Charging device for vehicle

Country Status (1)

Country Link
JP (1) JPH0739014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009397A1 (en) * 2002-07-19 2004-01-29 Ballard Power Systems Corporation Apparatus and method employing bi-directional converter for charging and/or supplying power
US7733039B2 (en) 2006-10-19 2010-06-08 Ut-Battelle, Llc Electric vehicle system for charging and supplying electrical power
US20140062183A1 (en) * 2011-05-19 2014-03-06 Toyota Jidosha Kabushiki Kaisha Power supply device for vehicle
CN109301912A (en) * 2018-10-12 2019-02-01 苏州唯控汽车科技有限公司 Electric vehicle plugs in the single-phase three-phase matrix form that turns of voltage matches and switches switch
CN111038300A (en) * 2018-10-15 2020-04-21 乐金电子研发中心(上海)有限公司 Vehicle-mounted power electronic integrated device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009397A1 (en) * 2002-07-19 2004-01-29 Ballard Power Systems Corporation Apparatus and method employing bi-directional converter for charging and/or supplying power
US7733039B2 (en) 2006-10-19 2010-06-08 Ut-Battelle, Llc Electric vehicle system for charging and supplying electrical power
US20140062183A1 (en) * 2011-05-19 2014-03-06 Toyota Jidosha Kabushiki Kaisha Power supply device for vehicle
CN109301912A (en) * 2018-10-12 2019-02-01 苏州唯控汽车科技有限公司 Electric vehicle plugs in the single-phase three-phase matrix form that turns of voltage matches and switches switch
CN109301912B (en) * 2018-10-12 2024-02-20 苏州唯控汽车科技有限公司 Single-phase to three-phase matrix type change-over switch for direct charging voltage matching of electric vehicle
CN111038300A (en) * 2018-10-15 2020-04-21 乐金电子研发中心(上海)有限公司 Vehicle-mounted power electronic integrated device

Similar Documents

Publication Publication Date Title
US6538909B2 (en) Universal high efficiency power converter
US10333398B2 (en) Charging apparatus
US20060171180A1 (en) Switching-mode power supply having a synchronous rectifier
JPH11178333A (en) Dc power device
US6256209B1 (en) AC to DC conversion arrangement
JP3624568B2 (en) Uninterruptible power system
JPH09233709A (en) Charger for electric car
JPH0739014A (en) Charging device for vehicle
JPH10150769A (en) Forward type dc-dc converter
JP3390688B2 (en) DC power supply
JPH05104247A (en) Arc welding machine
JPH0833341A (en) Power factor improving switching power supply circuit
JPH0888907A (en) Battery charger for electric railcar
JP3096211B2 (en) Switching regulator
JP3635515B2 (en) Power circuit
JPH0678535A (en) Dc power supply equipment
JP3096236B2 (en) Power supply
JP6817894B2 (en) Insulated switching power supply for three-phase AC
JP3409209B2 (en) Charging shared inverter control device
JPH10178781A (en) Power factor improvement circuit for three-phase rectifier
JP2628059B2 (en) DC power supply
JP2580108B2 (en) Power converter
JPH07115736A (en) Charging device for electric rolling stock
JPH0686539A (en) Converter circuit
JPH0665183B2 (en) X-ray equipment