JPH0727805Y2 - Sealed lead acid battery charger - Google Patents

Sealed lead acid battery charger

Info

Publication number
JPH0727805Y2
JPH0727805Y2 JP1988125956U JP12595688U JPH0727805Y2 JP H0727805 Y2 JPH0727805 Y2 JP H0727805Y2 JP 1988125956 U JP1988125956 U JP 1988125956U JP 12595688 U JP12595688 U JP 12595688U JP H0727805 Y2 JPH0727805 Y2 JP H0727805Y2
Authority
JP
Japan
Prior art keywords
voltage
charging
charging current
current value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988125956U
Other languages
Japanese (ja)
Other versions
JPH0249339U (en
Inventor
浩司 山口
彰彦 工藤
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP1988125956U priority Critical patent/JPH0727805Y2/en
Publication of JPH0249339U publication Critical patent/JPH0249339U/ja
Application granted granted Critical
Publication of JPH0727805Y2 publication Critical patent/JPH0727805Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、密閉形鉛蓄電池の充電装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a charging device for a sealed lead acid battery.

[従来の技術] 従来、密閉形鉛蓄電池を充電する装置として、充電電圧
が充電末期電圧に達するまでは、通常の充電電流を流
し、充電電圧が充電末期電圧に達すると充電電流を微小
充電電流に切換える充電方法(トリクル充電方法)を実
施する装置が知られている。この充電装置で過放電放置
後の密閉形鉛蓄電池(以下、過放電放置蓄電池とい
う。)を充電しようとする場合、過放電放置蓄電池の内
部抵抗が高くなると、十分に充電できないという問題が
ある。これは上記の充電方法を行う従来の充電装置で内
部抵抗が高い過放電放置蓄電池の充電を行うと、充電開
始直後に高い内部抵抗で充電電圧が充電末期電圧より高
くなってしまい、充電末期電圧検出器が動作して充電電
流が微小充電電流に切換ってしまうからである。
[Prior Art] Conventionally, as a device for charging a sealed lead-acid battery, a normal charging current is supplied until the charging voltage reaches the terminal voltage at the end of charging, and when the charging voltage reaches the terminal voltage at the end of charging, the charging current is changed to a minute charging current. There is known a device that implements a charging method (trickle charging method) for switching to. When attempting to charge a sealed lead-acid storage battery (hereinafter referred to as an over-discharge storage battery) that has been left over-discharged by this charging device, if the internal resistance of the over-discharge storage battery increases, there is a problem that the battery cannot be sufficiently charged. This is because when a conventional charging device that performs the above charging method charges an over-discharged storage battery with a high internal resistance, the charging voltage becomes higher than the end-of-charge voltage due to the high internal resistance immediately after the start of charging, and thus the end-of-charge voltage. This is because the detector operates and the charging current is switched to the minute charging current.

そこでこのような問題を解決するために、出願人は先
に、過放電放置蓄電池に対して充電開放直後に所定の期
間通常の充電とは逆方向の電流を電池電圧が負の状態に
なるまで流し(以下、逆充電という。)、過放電放置蓄
電池の内部抵抗を低くした上で充電を行う方法を提案し
た(特願昭61−16196号)。
Therefore, in order to solve such a problem, the applicant first applied a current in the opposite direction to the normal charge for a predetermined period immediately after opening the charge to the over-discharged storage battery until the battery voltage became a negative state. We proposed a method of charging the battery after lowering the internal resistance of the over-discharged storage battery (hereinafter referred to as reverse charging) (Japanese Patent Application No. 61-16196).

[考案が解決しようとする課題] 上記の充電方法を実際の充電装置に適用する場合、逆充
電を実施する条件を如何にするかが問題になる。出願人
が先に提案した充電方法を実施する従来の充電装置で
は、逆充電の電流は通常の充電電流と同程度の大きさで
あり、逆充電時間は比較的長い一定時間(例えば1時
間)にしている。しかしながら従来の装置では、電池に
発熱の防止と充電時間の短縮化のために逆充電時間を短
くすると電池性能を十分に回復することができないとい
う問題があった。
[Problems to be Solved by the Invention] When the above charging method is applied to an actual charging device, a problem is how to set conditions for performing reverse charging. In the conventional charging device that implements the charging method previously proposed by the applicant, the reverse charging current is as large as the normal charging current, and the reverse charging time is a relatively long fixed time (for example, 1 hour). I have to. However, the conventional device has a problem that the battery performance cannot be sufficiently restored if the reverse charging time is shortened in order to prevent heat generation and shorten the charging time of the battery.

第4図には従来の充電装置を用いて逆充電時間を通常の
半分にした場合の結果を示してある。使用した電池は4V
−4Ahの密閉形鉛蓄電池の過放電放置蓄電池で内部抵抗
が300Ωとなった周囲温度25℃のもので、逆充電電流を
通常充電電流と同程度の0.5Aとし、逆充電時間を30分間
とした。結果は、30分間の逆充電後に通常の充電に移行
するとただちにトリクル充電に入ってしまい、満足な充
電が行われなかった。
FIG. 4 shows the result when the reverse charging time is reduced to half the normal time by using the conventional charging device. The battery used is 4V
A −4 Ah sealed lead-acid battery over-discharged storage battery with an internal resistance of 300 Ω and an ambient temperature of 25 ° C. The reverse charging current is 0.5 A, which is about the same as the normal charging current, and the reverse charging time is 30 minutes. did. As a result, after 30 minutes of reverse charging, when normal charging was started, trickle charging was started immediately, and satisfactory charging was not performed.

本考案の目的は、従来よりも逆充電時間を短くして確実
に充電を行うことができる充電装置を提供することにあ
る。
An object of the present invention is to provide a charging device capable of reliably performing charging by shortening the reverse charging time as compared with the related art.

[課題を解決するための手段] 上記の課題を解決するため、蓄電池が過放電放置蓄電池
であるか否かを検出するために、充電電圧から過放電放
置状態を検出する放置状態検出器5を用いる。この放置
状態検出器としては、例えば電源として交流電源ACの出
力を整流して交流電圧成分を含んだ直流電圧を出力する
直流電源1を用いた場合には、充電電圧から交流電圧成
分を検出し該交流電圧成分が基準値より大きいときに過
放電放置状態と判断して交流電圧成分検出信号S3を出力
する交流電圧成分検出器5を用いることができる。また
充電電圧の直流電圧成分から過放電放置状態を判断する
検出器を用いることもできる。
[Means for Solving the Problem] In order to solve the above problems, in order to detect whether or not the storage battery is an over-discharged storage battery, a storage state detector 5 for detecting an over-discharged storage state from the charging voltage is provided. To use. As this left state detector, for example, when a DC power supply 1 that rectifies the output of an AC power supply AC and outputs a DC voltage containing an AC voltage component is used as a power supply, the AC voltage component is detected from the charging voltage. When the AC voltage component is larger than the reference value, it is possible to use the AC voltage component detector 5 which judges that the battery is left in an overdischarge state and outputs the AC voltage component detection signal S3. It is also possible to use a detector that determines the state of over-discharge leaving from the DC voltage component of the charging voltage.

そして放置状態検出器5から検出信号(交流電圧成分検
出信号)S3が出力されると所定時間だけ電圧極性切換信
号S5及び逆電圧印加通電指令信号S4を出力する電圧極性
切換回路6と、充電末期電圧が検出されると充電電流値
切換信号S1を出力する充電電流値切換制御回路3を設け
る。また、入力信号に応じて充電電流値を切換える充電
電流値切換回路2と、該充電電流値切換回路2と蓄電池
Bとの間にに設けられて電圧極性切換信号S5が出力され
ている期間だけ前記充電電圧を逆極性で前記蓄電池Bに
印加する極性切換スイッチ回路(L,SW1,SW2)とを設け
る。
When the detection signal (AC voltage component detection signal) S3 is output from the neglected state detector 5, the voltage polarity switching circuit 6 that outputs the voltage polarity switching signal S5 and the reverse voltage application energization command signal S4 for a predetermined time, and the end of charging period A charging current value switching control circuit 3 that outputs a charging current value switching signal S1 when a voltage is detected is provided. Further, the charging current value switching circuit 2 that switches the charging current value according to the input signal, and only during the period in which the voltage polarity switching signal S5 is provided between the charging current value switching circuit 2 and the storage battery B are output. A polarity changeover switch circuit (L, SW1, SW2) for applying the charging voltage to the storage battery B in reverse polarity is provided.

そして本考案においては、充電電流値切換回路2を、充
電電流値切換信号S1が入力されると通常の充電電流を微
小充電電流に切換え、逆電圧印加通電指令信号S4が入力
されている期間通常の充電電流よりも電流値の大きい逆
充電電流を出力するように構成した。例えば、充電電流
値切換回路2は充電回路に挿入される回路インピーダン
スを変えることにより電流値を切換えることができる。
In the present invention, the charging current value switching circuit 2 switches the normal charging current to the minute charging current when the charging current value switching signal S1 is input, and normally when the reverse voltage application energization command signal S4 is input. The reverse charging current having a larger current value than the charging current is output. For example, the charging current value switching circuit 2 can switch the current value by changing the circuit impedance inserted in the charging circuit.

[作用] 考案者の研究の結果、過放電放置蓄電池は逆充電電流の
大きさに応じて逆充電の効果に差が生じ、電池性能の回
復性が異なってくることが判った。具体的には、逆充電
電流を大きくすると逆充電時間を短縮することができ、
逆充電電流を小さくすると逆充電時間が長くなることが
判った。これは、電池の内部抵抗が同じであるとすれ
と、逆充電電流が小さい場合には、該電流が大きい場合
に比べて、同じ時間逆充電を行った時の内部抵抗の低下
率が低いためである。したがって、逆充電電流を変えず
に逆充電時間を短縮すると、内部抵抗を十分に小さくす
ることができず、過放電放置蓄電池を満足に充電できな
い。本考案においては、逆充電電流を大きくすることに
より、逆充電時間の短縮化を図ることにした。
[Function] As a result of the inventor's research, it was found that the overcharge storage battery has different reverse charging effects depending on the magnitude of the reverse charging current, and the recovery performance of the battery is different. Specifically, increasing the reverse charging current can shorten the reverse charging time,
It was found that the reverse charging time becomes longer when the reverse charging current is reduced. This is because if the battery has the same internal resistance and if the reverse charging current is small, the rate of decrease in the internal resistance when performing reverse charging for the same time is lower than when the current is large. Is. Therefore, if the reverse charging time is shortened without changing the reverse charging current, the internal resistance cannot be sufficiently reduced, and the over-discharged storage battery cannot be sufficiently charged. In the present invention, the reverse charging time is shortened by increasing the reverse charging current.

そこで本考案の充電装置では、放置状態検出器(交流電
圧成分検出器)5により電池の内部抵抗を検知して過放
電放置状態を検出する。放置状態検出器5から検出信号
S3が出力されると、電圧極性切換回路6から所定時間だ
け電圧極性切換信号S5と逆電圧印加通電指令信号S4とが
出力される。電圧極性切換信号S5が出力されると、該信
号の出力期間だけ極性切換スイッチ回路(L,SW1,SW2)
が充電電圧を逆極性で蓄電池Bに印加する。そして充電
電流値切換回路2は、逆電圧印加通電指令信号S4が入力
されている期間通常の充電電流よりも電流値の大きい逆
充電電流を出力する。これにより、過放電放置状態の蓄
電池Bの内部抵抗を効果的に低下させることができて、
逆充電の電流値が小さい場合に比し逆充電の時間を短縮
できる。従って、蓄電池Bの充電時間の短縮化を図るこ
とができ、また充電時の発熱増大が生ずるのを防止し得
る。
Therefore, in the charging device of the present invention, the over-discharge left-over state is detected by detecting the internal resistance of the battery by the left-side state detector (AC voltage component detector) 5. Detection signal from the neglected state detector 5
When S3 is output, the voltage polarity switching circuit 6 outputs the voltage polarity switching signal S5 and the reverse voltage application energization command signal S4 for a predetermined time. When the voltage polarity switching signal S5 is output, the polarity switching switch circuit (L, SW1, SW2) only during the output period of the signal.
Applies the charging voltage to the storage battery B in reverse polarity. Then, the charging current value switching circuit 2 outputs a reverse charging current having a larger current value than the normal charging current while the reverse voltage application energization command signal S4 is input. As a result, it is possible to effectively reduce the internal resistance of the storage battery B in the state of being left over-discharged,
The reverse charging time can be shortened as compared with the case where the reverse charging current value is small. Therefore, the charging time of the storage battery B can be shortened, and heat generation during charging can be prevented from increasing.

なお、逆充電が不必要な内部抵抗の低い過放電電池は、
逆充電を行うことなく充電電流値切換回路2を通して通
常の充電方法で迅速に充電される。
In addition, the overdischarge battery with low internal resistance that does not require reverse charging,
It is quickly charged by the normal charging method through the charging current value switching circuit 2 without performing reverse charging.

[実施例] 以下図面を参照して、本考案の充電装置の実施例を詳細
に説明する。
Embodiment An embodiment of the charging device of the present invention will be described in detail below with reference to the drawings.

第1図は、本考案の一実施例の概略回路図を示してい
る。同図において、1は交流電源ACの出力を変圧器Tに
よって所定の電圧に変圧してダイオードDa,Dbによって
全波整流する直流電源である。直流電源1の正の出力端
には、充電電流値切換信号S1が入力されると充電電流を
微小充電電流に切換え、後述する逆電圧印加通電指令信
号S4が入力されている期間通常の充電電流よりも電流値
の大きい逆充電電流を出力する充電電流値切換回路2が
接続さている。この充電電流値切換回路2は、上記信号
S1が入力されるまでは通常の充電電流を供給できるイン
ピーダンスを通電回路に挿入し、信号S1が入力されると
充電電流を微小充電(トリクル充電)電流に切換えるこ
とができるインピーダンスを通電回路に挿入する通常充
電時通電回路7を備えている。また切換回路2は、逆電
圧印加通電指令信号S4の入力により通常の充電電流より
も電流値の大きな逆充電電流を出力することができるイ
ンピーダンスを充電回路に挿入する逆電圧印加時通電回
路8を備えている。
FIG. 1 shows a schematic circuit diagram of an embodiment of the present invention. In the figure, reference numeral 1 is a DC power supply which transforms the output of the AC power supply AC into a predetermined voltage by a transformer T and performs full-wave rectification by the diodes Da and Db. When the charging current value switching signal S1 is input to the positive output terminal of the DC power supply 1, the charging current is switched to a minute charging current, and the normal charging current is supplied while the reverse voltage application energization command signal S4 described later is input. A charging current value switching circuit 2 that outputs a reverse charging current having a larger current value than that is connected. This charging current value switching circuit 2 uses the above signal
Insert an impedance that can supply normal charging current into the energizing circuit until S1 is input, and insert an impedance that can switch the charging current to a minute charging (trickle charging) current when the signal S1 is input into the energizing circuit. A normal charging energizing circuit 7 is provided. In addition, the switching circuit 2 includes a reverse voltage application energization circuit 8 that inserts an impedance into the charging circuit that can output a reverse charging current having a larger current value than the normal charging current when the reverse voltage application energization command signal S4 is input. I have it.

スイッチSW1及びSW2は、充電電流値切換回路2と密閉形
鉛蓄電池Bとの間に設けられて電圧極性切換信号S5が出
力されている期間だけ充電電圧を逆極性で蓄電池Bに印
加する極性切換スイッチ回路を構成する。これらのスイ
ッチSW1及びSW2は、電磁スイッチであり、後述する電圧
極性切換回路6の電磁リレーのコイルLに電流が流れる
と、蓄電池Bに逆電圧を印加するように接点aから接点
bに切換わる。
The switches SW1 and SW2 are provided between the charging current value switching circuit 2 and the sealed lead storage battery B, and switch the polarity to apply the charging voltage to the storage battery B with the reverse polarity only during the period when the voltage polarity switching signal S5 is output. Configure a switch circuit. These switches SW1 and SW2 are electromagnetic switches, and when a current flows through a coil L of an electromagnetic relay of a voltage polarity switching circuit 6 which will be described later, they switch from contact a to contact b so as to apply a reverse voltage to the storage battery B. .

充電末期電圧検出器4は、蓄電池Bの充電電圧を検出し
て、該電圧が充電末期電圧に達すると充電末期電圧検出
信号S2を出力する。交流電圧成分検出器(放置状態検出
器)5は、充電電圧の交流電圧成分を検出し、該電圧成
分が基準値以上あるときに交流電圧成分検出信号S3を出
力する。この検出器5は、蓄電池Bの内部抵抗を検出す
る目的で充電電圧から交流電圧成分、すなわち脈動電圧
を検出する。そして、検出した交流電圧成分と対比され
る上記の基準値は、予め電池内部抵抗と交流電圧成分の
関係を調べておき、逆充電が必要な内部抵抗に相応する
交流電圧成分に担当する電圧値を基準値としている。
The end-of-charge voltage detector 4 detects the charge voltage of the storage battery B, and outputs the end-of-charge voltage detection signal S2 when the voltage reaches the end-of-charge voltage. The AC voltage component detector (leaved state detector) 5 detects the AC voltage component of the charging voltage, and outputs the AC voltage component detection signal S3 when the voltage component has a reference value or more. The detector 5 detects an AC voltage component, that is, a pulsating voltage from the charging voltage for the purpose of detecting the internal resistance of the storage battery B. Then, the above-mentioned reference value to be compared with the detected AC voltage component is the voltage value in charge of the AC voltage component corresponding to the internal resistance that needs to be reverse-charged in advance by examining the relationship between the battery internal resistance and the AC voltage component. Is the standard value.

6は、交流電圧成分検出信号S3が入力されると、内装さ
れたタイマ回路により設定された所定の期間だけ極性切
換スイッチ回路(コイルL,スイッチSW1及びSW2)に電圧
極性切換信号S5を出力するとともに逆電圧印加時通電回
路8に逆電圧印加通電指令信号S4を出力する電圧極性切
換回路である。この電圧極性切換回路6は、上記信号S4
及び信号S5を出力する電圧極性切換指令回路6aと、この
電圧極性切換指令回路6aの出力を所定期間(実施例では
約20分間)経過後に停止させて、蓄電池Bへの逆電圧印
加を停止させる逆電圧印加停止タイマ回路6bとから構成
される。逆電圧印加停止タイマ回路6bからタイマ信号S6
の出力が停止された以後は、電圧極性切換指令回路6aか
らの信号の出力は停止される。
When the AC voltage component detection signal S3 is input, the reference numeral 6 outputs the voltage polarity switching signal S5 to the polarity switching switch circuit (coil L, switches SW1 and SW2) for a predetermined period set by the timer circuit incorporated therein. In addition, it is a voltage polarity switching circuit that outputs a reverse voltage application energization command signal S4 to the energization circuit 8 when a reverse voltage is applied. This voltage polarity switching circuit 6 is connected to the signal S4
And the voltage polarity switching command circuit 6a for outputting the signal S5 and the output of the voltage polarity switching command circuit 6a are stopped after a predetermined period (about 20 minutes in the embodiment) to stop the reverse voltage application to the storage battery B. It is composed of a reverse voltage application stop timer circuit 6b. Reverse voltage application stop Timer circuit 6b sends timer signal S6
After the output of is stopped, the output of the signal from the voltage polarity switching command circuit 6a is stopped.

充電電流値切換制御回路3は、充電末期電圧検出器4か
ら検出信号S2が出力されると充電電流値切換信号S1を出
力する。
The charging current value switching control circuit 3 outputs the charging current value switching signal S1 when the detection signal S2 is output from the terminal charging voltage detector 4.

次に、第1図の装置の動作について説明する。第2図
は、定格が4V−4Ahの電池で内部抵抗が300Ωになった周
囲温度25℃の過放電放置蓄電池を本実施例の装置によっ
て充電した時の充電特性を示したものである。スイッチ
SWが閉じられると、蓄電池Bに充電電圧が印加される
が、蓄電池Bの内部抵抗が高い場合には、充電電流Iが
殆ど流れず、充電電圧Vは充電末期電圧Vsよりもかなり
大きな状態にある。したがって充電末期電圧検出器4は
直ちに検出信号S2を充電電流値切換制御回路3に出力す
る。このときの充電電圧Vの交流電圧成分は、基準値よ
りもかなり大きな値になっている。従って、交流電圧成
分検出器5から交流電圧成分検出信号S3が出力され、該
信号が電圧極性切換回路6に入力される。
Next, the operation of the apparatus shown in FIG. 1 will be described. FIG. 2 shows the charging characteristics when a battery having a rating of 4V-4Ah and an internal discharge of 300Ω and an overdischarge storage battery at an ambient temperature of 25 ° C. was charged by the device of this embodiment. switch
When the SW is closed, the charging voltage is applied to the storage battery B, but when the internal resistance of the storage battery B is high, the charging current I hardly flows and the charging voltage V becomes considerably larger than the end-of-charge voltage Vs. is there. Therefore, the end-of-charge voltage detector 4 immediately outputs the detection signal S2 to the charging current value switching control circuit 3. The AC voltage component of the charging voltage V at this time has a value considerably larger than the reference value. Therefore, the AC voltage component detector 5 outputs the AC voltage component detection signal S3, which is input to the voltage polarity switching circuit 6.

電圧極性切換回路6は、タイマ回路6bにより設定された
所定の時間、即ち本例の場合は20分間だけ、逆電圧印加
通電指令信号S4と電圧極性切換信号S5とを出力する。
The voltage polarity switching circuit 6 outputs the reverse voltage application energization command signal S4 and the voltage polarity switching signal S5 only for a predetermined time set by the timer circuit 6b, that is, 20 minutes in this example.

充電電流値切換制御回路3は、充電末期電圧検出器4か
ら検出信号S2が出力されると、充電電流値切換信号S1を
出力する。これにより、通常充電時通電回路7は、微小
充電電流を流すインピーダンスを通電回路に挿入する。
When the detection signal S2 is output from the end-of-charge voltage detector 4, the charging current value switching control circuit 3 outputs the charging current value switching signal S1. As a result, the normal charging current-carrying circuit 7 inserts an impedance through which a minute charging current flows into the current-carrying circuit.

電圧極性切換回路6から電圧極性切換信号S5がコイルL
に加えられると、スイッチSW1、SW2が接点b側に切換わ
り、蓄電池Bに逆極性の電圧が印加される。上記のスイ
ッチが切換った場合でも、電圧極性切換回路6はタイマ
回路6bにより設定さた前記20分間は、信号S5,S4を出力
し続けるように構成されている。
The voltage polarity switching circuit 6 sends the voltage polarity switching signal S5 to the coil L.
Then, the switches SW1 and SW2 are switched to the contact b side, and a voltage of reverse polarity is applied to the storage battery B. Even when the switch is switched, the voltage polarity switching circuit 6 is configured to continue to output the signals S5 and S4 for the 20 minutes set by the timer circuit 6b.

また、電圧極性切換回路6から上記の信号S4が逆電圧印
加通電回路8に入力されると、該通電回路は通常の充電
電流路よりも小さいインピーダンスを有する逆充電電流
路を形成して、通常の充電電流(本例では0.5A)よりも
大きい電流値(本例では2A)の逆充電電流を蓄電池Bに
流す。
When the signal S4 is input from the voltage polarity switching circuit 6 to the reverse voltage applying energizing circuit 8, the energizing circuit forms a reverse charging current path having an impedance smaller than the normal charging current path, The reverse charging current having a current value (2 A in this example) larger than the charging current (0.5 A in this example) is supplied to the storage battery B.

そして、20分後に電圧極性切換回路6からの信号S5,S4
の出力が停止され、スイッチSW1,SW2が接点a側に切換
わり、逆電圧印加時通電回路8が遮断されて逆充電が終
り、蓄電池Bに正規極性の充電電圧が印加されるように
なって、通常充電時通電回路7を通し通常の充電が約8
時間行われる。そして、充電電圧Vが充電末期電圧Vsに
達すると、充電末期電圧検出器4が検出信号S2を出力
し、この信号を受けて充電電流値切換制御回路3が充電
電流値切換信号S1を通常充電時通電回路7に出力する。
これにより、充電電流Iが微小充電電流に切換わり、ト
リクル充電に入る。
Then, after 20 minutes, the signals S5 and S4 from the voltage polarity switching circuit 6 are
Output is stopped, the switches SW1 and SW2 are switched to the contact a side, the energizing circuit 8 is cut off when reverse voltage is applied, the reverse charging is completed, and the charging voltage of the regular polarity is applied to the storage battery B. , Normal charging is about 8 through the energizing circuit 7 during normal charging
Done on time. When the charging voltage V reaches the terminal charging voltage Vs, the terminal charging voltage detector 4 outputs the detection signal S2, and the charging current value switching control circuit 3 receives the signal and normally charges the charging current value switching signal S1. It outputs to the time energizing circuit 7.
As a result, the charging current I is switched to the minute charging current, and trickle charging is started.

第2図の充電特性を第4図のものと比較してわかるよう
に、本考案の装置によれば、通常の充電電流よりは電流
値の大きい電流により比較的短時間の逆充電を行なっ
て、逆充電後に通常の充電が満足に行われている。
As can be seen by comparing the charging characteristics of FIG. 2 with those of FIG. 4, according to the device of the present invention, the reverse charging is performed for a relatively short time by a current having a larger current value than the normal charging current. , After the reverse charging, normal charging is performed satisfactorily.

本実施例において、充電開始時に通常充電時通電回路7
が、充電末期電圧検出信号S2の出力により微小充電電流
を流すように設定されても、所要の大きさの逆充電電流
は逆電圧印加時通電回路8を通して流されるので、何ら
差支えない。
In the present embodiment, the energizing circuit 7 for normal charging at the start of charging
However, even if the minute charging current is set to flow by the output of the end-of-charge voltage detection signal S2, the reverse charging current of a required magnitude will flow through the energizing circuit 8 when the reverse voltage is applied, so there is no problem.

以上は内部抵抗が高い過放電放置蓄電池の場合を述べた
が、内部抵抗が低い過放電放置蓄電池の場合は、充電電
圧が充電末期電圧以下になっており、また充電電圧の交
流電圧成分も小さくなっているので、充電末期電圧検出
器4及び交流電圧成分検出器5から検出信号が出力され
ることはなく、逆充電なしで通常の充電が行われる。
The above describes the case of an over-discharged storage battery with a high internal resistance, but in the case of an over-discharged storage battery with a low internal resistance, the charging voltage is below the end-of-charge voltage and the AC voltage component of the charging voltage is also small. Therefore, detection signals are not output from the end-of-charge voltage detector 4 and the AC voltage component detector 5, and normal charging is performed without reverse charging.

(具体例実施例) 第3図は、第1図の実施例の直流電源部分を除いた具体
的な回路構成を示している。同図において、第1図の構
成と同じ部分には、第1図に示した符号と同じ符号が付
してある。通常充電時通電回路7は、抵抗R1及びR2とト
ランジスタTr1及びTr2とから構成される。なお抵抗値
は、R1>R2の関係にある。トランジスタTr1が導通して
いるときには抵抗R2と抵抗R1とが並列に充電回路に挿入
されて大きな充電電流が流れ、トランジスタTr1が遮断
されると抵抗R1を通して微小充電電流が流れる。トラン
ジスタTr1が導通すると、次に述べる発光ダイードLEDが
発光して充電状態を表示する。
(Specific Embodiment) FIG. 3 shows a specific circuit configuration of the embodiment of FIG. In the figure, the same parts as those in the configuration of FIG. 1 are designated by the same reference numerals as those shown in FIG. The normal charging energization circuit 7 is composed of resistors R1 and R2 and transistors Tr1 and Tr2. The resistance values are in the relationship of R1> R2. When the transistor Tr1 is conducting, the resistor R2 and the resistor R1 are inserted in parallel into the charging circuit to allow a large charging current to flow, and when the transistor Tr1 is cut off, a minute charging current flows through the resistor R1. When the transistor Tr1 becomes conductive, the light emitting diode LED described below emits light to indicate the charging state.

充電電流値切換制御回路3はトランジスタTr3と抵抗R3,
R4及び発光ダイオードLED等で構成され、充電末期電圧
検出信号S2が入力されないとき、抵抗R6を通してトラン
ジスタTr3にベース電流が流されて、トランジスタTr3が
導通することにより、通常充電時通電回路7のトランジ
スタTr1に導通信号が与えられる。
The charging current value switching control circuit 3 includes a transistor Tr3 and a resistor R3,
It is composed of R4 and light emitting diode LED, and when the end-of-charge voltage detection signal S2 is not input, the base current is made to flow through the transistor Tr3 through the resistor R6 and the transistor Tr3 becomes conductive. A conduction signal is applied to Tr1.

充電末期電圧検出器4は、ツェナーダイオードZD1,サイ
リスタSCR1,トランジスタTR4、抵抗R5〜R8及びコンデン
サC2等で構成されていて、スイッチSW1及びSW2が接点a
に接触している間ツェナーダイオードZD1に充電電圧が
印加される。充電電圧が充電末期電圧以上あって、充電
電圧がツエナーダイオードZD1のツエナー電圧を越える
と、ツエナーダイオードZD1が導通して、サイリスタSCR
1のゲートに点弧信号が供給される。その結果、サイリ
スタSCR1が導通して、トランジスタTr3を遮断する。こ
のトランジスタTr3の遮断によって通常充電時通電回路
7のトランジスタTr1が遮断状態となって微小充電電流
の充電に切換わる。
The end-of-charge voltage detector 4 is composed of a Zener diode ZD1, a thyristor SCR1, a transistor TR4, resistors R5 to R8, a capacitor C2, etc., and switches SW1 and SW2 are contacts a.
The charging voltage is applied to the Zener diode ZD1 while it is in contact with. When the charging voltage is equal to or higher than the end-of-charging voltage and the charging voltage exceeds the Zener voltage of Zener diode ZD1, the Zener diode ZD1 becomes conductive and the thyristor SCR
An ignition signal is supplied to the gate of 1. As a result, the thyristor SCR1 becomes conductive and the transistor Tr3 is cut off. By shutting off the transistor Tr3, the transistor Tr1 of the energizing circuit 7 during normal charging is shut off, and the charging is switched to the charging of the minute charging current.

交流電圧成分検出器5は、オペアンプOP2,OP3,ダイオー
ドD4,コンデンサC5〜C7、及び抵抗R23〜R30等で構成さ
れている。
The AC voltage component detector 5 is composed of operational amplifiers OP2, OP3, a diode D4, capacitors C5 to C7, resistors R23 to R30, and the like.

そして、コンデンサC5と抵抗R23とにより充電電圧から
直流分を引いて、交流電圧成分だけを入力する。オペア
ンプOP2を通して所定の値に増幅された交流電圧成分
は、コンデンサC6を充電し、コンデンサC6NO端子電圧が
比較器を構成するオペアンプOP3の+入力端子に入力さ
え、抵抗R10及び可変抵抗器VR1によって構成される第1
の基準電圧設定器から出力される基準電圧と比較され
る。この基準電圧は、予め蓄電池の内部抵抗と交流電圧
成分との関係を調べておき、逆充電が必要な内部抵抗に
相応する交流電圧成分に相当する電圧値である。したが
って、電池の内部抵抗が逆充電を必要とする程度に高い
場合には、オペアンプOP3から検出信号S3が出力され
る。
Then, the DC component is subtracted from the charging voltage by the capacitor C5 and the resistor R23, and only the AC voltage component is input. The AC voltage component amplified to a predetermined value through the operational amplifier OP2 charges the capacitor C6, and the capacitor C6 NO terminal voltage is even input to the + input terminal of the operational amplifier OP3 that constitutes the comparator, and is configured by the resistor R10 and the variable resistor VR1. First done
Is compared with the reference voltage output from the reference voltage setting device. This reference voltage is a voltage value corresponding to an AC voltage component corresponding to the internal resistance that needs to be reverse-charged by previously examining the relationship between the internal resistance of the storage battery and the AC voltage component. Therefore, when the internal resistance of the battery is high enough to require reverse charging, the operational amplifier OP3 outputs the detection signal S3.

電圧極性切換回路6の電圧極性切換指令回路6aは、トラ
ンジスタTr5〜Tr7、サイリスタSCR2、ダイオードD2、抵
抗R15〜R22、コンデンサC4、及びリレーのコイルL等で
構成されている。そして、交流電圧成分検出信号S3が出
力されると、サイリスタSCR2が導通し、その結果トラン
ジスタTr6及びトランジスタTr5が導通して、トランジス
タTr7が導通するこによりコイルLに励磁電流が通電さ
れて、スイッチSW1及びSW2がa接点からb接点に切換わ
り、電池Bに逆電圧が印加される。
The voltage polarity switching command circuit 6a of the voltage polarity switching circuit 6 is composed of transistors Tr5 to Tr7, thyristor SCR2, diode D2, resistors R15 to R22, capacitor C4, and coil L of the relay. Then, when the AC voltage component detection signal S3 is output, the thyristor SCR2 becomes conductive, as a result, the transistors Tr6 and Tr5 become conductive, and the transistor Tr7 becomes conductive, so that an exciting current is supplied to the coil L and the switch is turned on. SW1 and SW2 are switched from the a contact to the b contact, and the reverse voltage is applied to the battery B.

逆電圧印加停止タイマ回路6bは、オペアンプOP1、コン
デンサC3、抵抗R11〜R14、及び可変抵抗器VR2等により
構成さている。抵抗R12及びコンデンサC3は時定数回路
を構成しており、抵抗R11及び可変抵抗器VR2からなる第
2の基準電圧設定器によって設定された基準電圧より、
コンデンサC3の端子電圧が大きくなるとオペアンプOP1
から出力(タイマ信号S6)が出なくなる。オペアンプOP
1が出力を停止した時点が逆充電の停止時である。それ
までは、オペアンプOP1から出力(信号S6)が出てお
り、トランジスタTr6が導通すれば直ちにトランジスタT
r5も導通する状態にある。交流電圧成分検出器5が信号
S3を出力してサイリスタSCR2が導通すると、トランジス
タTr6が導通してトランジスタTr5も導通し、その結果ト
ランジスタTR7が導通する。これにより、コイルLに電
流(電圧極性切換信号S5)が流れて、スイッチSW1及びS
W2が接点b側に切換わり、逆電圧印加回路が形成され
る。そして、オペアンプOP1からの出力が停止した時点
でトランジスタTR7は遮断してスイッチSW1及びSW2は接
点a側に切換わる。
The reverse voltage application stop timer circuit 6b includes an operational amplifier OP1, a capacitor C3, resistors R11 to R14, and a variable resistor VR2. The resistor R12 and the capacitor C3 form a time constant circuit, and from the reference voltage set by the second reference voltage setting device including the resistor R11 and the variable resistor VR2,
When the terminal voltage of the capacitor C3 increases, the operational amplifier OP1
Output (timer signal S6) stops. Operational amplifier OP
The point when 1 stops the output is when the reverse charging is stopped. Until then, the output (signal S6) is output from the operational amplifier OP1, and if the transistor Tr6 becomes conductive, the transistor T6 is immediately turned on.
r5 is also conducting. AC voltage component detector 5 is a signal
When S3 is output and the thyristor SCR2 becomes conductive, the transistor Tr6 becomes conductive, the transistor Tr5 becomes conductive, and as a result, the transistor TR7 becomes conductive. As a result, a current (voltage polarity switching signal S5) flows through the coil L and switches SW1 and S1
W2 is switched to the contact b side, and a reverse voltage application circuit is formed. Then, when the output from the operational amplifier OP1 is stopped, the transistor TR7 is cut off and the switches SW1 and SW2 are switched to the contact a side.

逆電圧印加時通電回路8は、トランジスタTr8と抵抗R31
により構成され、抵抗R31は通常充電時通電回路7の抵
抗R1,R2の並列抵抗値よりも適宜に小さい抵抗値に設定
されている。
The energizing circuit 8 when reverse voltage is applied consists of a transistor Tr8 and a resistor R31.
The resistance R31 is set to a resistance value that is appropriately smaller than the parallel resistance value of the resistances R1 and R2 of the normal-charge energizing circuit 7.

電圧極性切換指令回路6aのトランジスタTr6及びTr5が導
通すると、抵抗R22を通してトランジスタTr8に導通信号
(逆電圧印加通電指令信号S4)が与えられて、該トラン
ジスタが導通する。これにより、通常充電時通電回路7
を通る通常の充電電流(例えば0.5A)よりも大きい電流
値(例えば2A)の逆充電電流が流れる。
When the transistors Tr6 and Tr5 of the voltage polarity switching command circuit 6a become conductive, a conduction signal (reverse voltage application energization command signal S4) is given to the transistor Tr8 through the resistor R22 and the transistors become conductive. With this, the normal charging energization circuit 7
A reverse charging current having a current value (for example, 2 A) larger than the normal charging current (for example, 0.5 A) flowing through the device flows.

他に本具体的実施例では、充電末期電圧検出器4の抵抗
R5を通してトランジスタTr4にも導通信号(逆電圧印加
通電指令信号S4)が与えられて、該トランジスタが導通
する。トランジスタTr4は、逆充電期間中、サイリスタS
CR1のアノードカソード間を短絡してサイリスタSCR1を
遮断させる機能を果たしている。これは逆充電から正常
な充電に戻った際に、サイリスタSCR1が導通している
と、微小充電電流によるトリクル充電に入ってしまうた
め、これを防止するためである。
In addition, in this specific example, the resistance of the end-of-charge voltage detector 4 is
A conduction signal (reverse voltage application conduction command signal S4) is also given to the transistor Tr4 through R5, and the transistor is rendered conductive. Transistor Tr4 keeps thyristor S
It functions to short-circuit the anode and cathode of CR1 and shut off thyristor SCR1. This is because if the thyristor SCR1 is conducting when the reverse charge is returned to the normal charge, trickle charge due to a minute charge current is entered, and this is prevented.

なお、他の適当なサイリスタ・ターンオフ手段、又はサ
イリスタSCR1に代えて適当なトランジスタ回路を利用す
ると、充電末期電圧検出器4への前記信号S4の供給は必
ずしも必要でなくなる。
If another suitable thyristor turn-off means or a suitable transistor circuit is used instead of the thyristor SCR1, it is not always necessary to supply the signal S4 to the end-of-charge voltage detector 4.

タイマ回路6bの時定数回路(R12,C3)が時限の計数を完
了してオペアンプOP1の出力が無くなると、トランジス
タTr4,Tr7及びTr8は遮断して、通常の充電に戻る。
When the time constant circuit (R12, C3) of the timer circuit 6b completes the counting of the time limit and the output of the operational amplifier OP1 disappears, the transistors Tr4, Tr7 and Tr8 are shut off and the normal charging is resumed.

なお上記実施例においては、スイッチSW1,SW2を電磁ス
イッチで構成したが、これらのスイッチとして半導体ス
イッチ回路を用いてもよい。
Although the switches SW1 and SW2 are electromagnetic switches in the above embodiment, semiconductor switch circuits may be used as these switches.

[考案の効果] 本考案の充電装置によれば、逆充電時に通常の充電電流
よりも電流値の大きい逆充電電流を流すようにしたの
で、比較的短時間の逆充電により電池内部抵抗を効果的
に低下させ得て、逆充電後の通常の充電を満足に行わせ
ることができる。これにより、過放電放置蓄電池の充電
時間の短縮化を図ることができるとともに、充電時の発
熱増大が生ずるのを未然に防止することができる。
[Effect of the Invention] According to the charging device of the present invention, the reverse charging current having a larger current value than the normal charging current is caused to flow during the reverse charging. Therefore, the normal charging after the reverse charging can be satisfactorily performed. As a result, it is possible to shorten the charging time of the over-discharged storage battery and prevent the increase of heat generation during charging.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例の概略構成図、第2図は内部抵
抗の高い過放電放置蓄電池を第1図の実施例で充電した
場合の充電特性例を示す曲線図、第3図は第1図の実施
例の具体的な回路図、第4図は第2図におけると同様の
過放電放置蓄電池に対して通常の充電電流程度の電流で
30分間の逆充電を行なった場合の充電特性例を示す曲線
図である。 1…直流電源、2…充電電流値切換回路、3…充電電流
値切換制御回路、4…充電末期電圧検出器、5…交流電
圧成分検出器(放置状態検出器)、6…電圧極性切換回
路、6a…電圧極性切換指令回路、6b…逆電圧印加停止タ
イマ回路、7…通常充電時通電回路、8…逆電圧印加時
通電回路、L,SW1,SW2…極性切換スイッチ回路、B…密
閉形鉛蓄電池。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is a curve diagram showing an example of charging characteristics when an overdischarge storage battery having a high internal resistance is charged by the embodiment of FIG. 1, and FIG. FIG. 4 is a concrete circuit diagram of the embodiment of FIG. 1, and FIG. 4 shows a normal charging current for an over-discharged storage battery similar to that in FIG.
It is a curve figure which shows the charging characteristic example at the time of performing a reverse charge for 30 minutes. DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Charging current value switching circuit, 3 ... Charging current value switching control circuit, 4 ... End-of-charging voltage detector, 5 ... AC voltage component detector (leaving state detector), 6 ... Voltage polarity switching circuit , 6a ... Voltage polarity switching command circuit, 6b ... Reverse voltage application stop timer circuit, 7 ... Normal charging energizing circuit, 8 ... Reverse voltage applying energizing circuit, L, SW1, SW2 ... Polarity switching switch circuit, B ... Sealed type Lead acid battery.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】充電電圧が充電末期電圧に達したのを検出
すると通常の充電電流による充電から微小電流による充
電に切換える密閉形鉛蓄電池の充電装置において、 密閉形鉛蓄電池Bの充電電圧から該蓄電池Bが過放電放
置状態にあるか否かを検出する放置状態検出器5と、 前記放置状態検出器5から検出信号S3が出力されると所
定時間だけ電圧極性切換信号S5及び逆電圧印加通電指令
信号S4を出力する電圧極性切換回路6と、 前記充電末期電圧が検出されると充電電流値切換信号S1
を出力する充電電流値切換制御回路3と、 入力信号に応じて充電電流値を切換える充電電流値切換
回路2と、 前記充電電流値切換回路2と前記蓄電池Bとの間に設け
られて前記電圧極性切換信号S5が出力されている期間だ
け前記充電電圧を逆極性で前記蓄電池Bに印加する極性
切換スイッチ回路(L,SW1,SW2)とを具備し、 前記充電電流値切換回路2は、前記充電電流値切換信号
S1が入力されると通常の充電電流を微小充電電流に切換
え、前記逆電圧印加通電指令信号S4が入力されている期
間前記通常の充電電流よりも電流値の大きい逆充電電流
を出力することを特徴とする密閉形鉛蓄電池の充電装
置。
1. A sealed lead-acid battery charging device that switches from normal charging current charging to minute current charging when it detects that the charging voltage has reached the end-of-charge voltage. An abandoned state detector 5 for detecting whether or not the storage battery B is in an overdischarge abandoned state, and when a detection signal S3 is output from the abandoned state detector 5, a voltage polarity switching signal S5 and reverse voltage application energization are performed for a predetermined time. A voltage polarity switching circuit 6 that outputs a command signal S4, and a charging current value switching signal S1 when the end-of-charge voltage is detected.
A charging current value switching control circuit 3, a charging current value switching circuit 2 switching a charging current value according to an input signal, and a voltage provided between the charging current value switching circuit 2 and the storage battery B. A polarity switching switch circuit (L, SW1, SW2) for applying the charging voltage to the storage battery B in reverse polarity only while the polarity switching signal S5 is being output, and the charging current value switching circuit 2 is Charge current value switching signal
When S1 is input, the normal charging current is switched to a minute charging current, and a reverse charging current having a larger current value than the normal charging current is output while the reverse voltage application energization command signal S4 is being input. Characteristic Sealed lead-acid battery charging device.
【請求項2】交流電源ACの出力を整流して交流電圧成分
を含んだ直流電圧を出力する直流電源1と、 密閉形鉛蓄電池Bの充電電圧を検出して該充電電圧が充
電末期電圧を越えると充電末期電圧検出信号S2を出力す
る充電末期電圧検出器4と、 前記充電電圧から交流電圧成分を検出し該交流電圧成分
が基準値より大きいときに交流電圧成分検出信号S3を出
力する交流電圧成分検出器5と、 前記交流電圧成分検出信号S3が出力されると所定時間だ
け電圧極性切換信号S5及び逆電圧印加通電指令信号S4を
出力する電圧極性切換回路6と、 前記充電末期電圧検出信号S2が入力されると充電電流値
切換信号S1を出力する充電電流値切換制御回路3と、 入力信号に応じて充電電流値を切換える充電電流値切換
回路2と、 前記充電電流値切換回路2と前記蓄電池Bとの間に設け
られて前記電圧極性切換信号S5が出力されている期間だ
け前記充電電圧を逆極性で前記蓄電池Bに印加する極性
切換スイッチ回路(L,SW1,SW2)とを具備し、 前記充電電流値切換回路2は、前記充電電流値切換信号
S1が入力されると通常の充電電流を流す時よりも充電回
路に挿入されるインピーダンスを大きくし、前記逆電圧
印加通電指令信号S4が入力されている期間前記通常の充
電電流を流す時よりも充電回路に挿入されるインピーダ
ンスを小さくすることを特徴とする密閉形鉛蓄電池の充
電装置。
2. A DC power supply 1 for rectifying an output of an AC power supply AC to output a DC voltage containing an AC voltage component, and a charging voltage of a sealed lead-acid battery B is detected, and the charging voltage is an end-of-charge voltage. An end-of-charge voltage detector 4 which outputs an end-of-charge voltage detection signal S2 when exceeding, and an AC which detects an AC voltage component from the charging voltage and outputs an AC voltage component detection signal S3 when the AC voltage component is larger than a reference value. A voltage component detector 5, a voltage polarity switching circuit 6 that outputs a voltage polarity switching signal S5 and a reverse voltage application energization command signal S4 for a predetermined time when the AC voltage component detection signal S3 is output, the end-of-charge voltage detection A charging current value switching control circuit 3 that outputs a charging current value switching signal S1 when a signal S2 is input, a charging current value switching circuit 2 that switches a charging current value according to an input signal, and the charging current value switching circuit 2 And the storage A polarity changeover switch circuit (L, SW1, SW2) provided between the battery B and the charge voltage is applied to the storage battery B in reverse polarity only during a period when the voltage polarity changeover signal S5 is output. The charging current value switching circuit 2 outputs the charging current value switching signal.
When S1 is input, the impedance inserted into the charging circuit is made larger than when the normal charging current is passed, and when the normal charging current is passed during the period when the reverse voltage application energization command signal S4 is being input. A charging device for a sealed lead storage battery, which is characterized in that impedance inserted in a charging circuit is reduced.
JP1988125956U 1988-09-27 1988-09-27 Sealed lead acid battery charger Expired - Lifetime JPH0727805Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988125956U JPH0727805Y2 (en) 1988-09-27 1988-09-27 Sealed lead acid battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988125956U JPH0727805Y2 (en) 1988-09-27 1988-09-27 Sealed lead acid battery charger

Publications (2)

Publication Number Publication Date
JPH0249339U JPH0249339U (en) 1990-04-05
JPH0727805Y2 true JPH0727805Y2 (en) 1995-06-21

Family

ID=31377025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988125956U Expired - Lifetime JPH0727805Y2 (en) 1988-09-27 1988-09-27 Sealed lead acid battery charger

Country Status (1)

Country Link
JP (1) JPH0727805Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529489Y2 (en) * 1993-02-26 1997-03-19 孝助 栗山 Mounting structure for doors for fittings

Also Published As

Publication number Publication date
JPH0249339U (en) 1990-04-05

Similar Documents

Publication Publication Date Title
JP3767767B2 (en) Charge control method and charge control device
JPH0340059Y2 (en)
JP3298600B2 (en) Secondary battery protection device
JPH11242966A (en) Protecting method for battery pack and device therefor
JPS62155734A (en) Source circuit
JPH09266634A (en) Protection circuit of secondary battery
JPH0727805Y2 (en) Sealed lead acid battery charger
JPH07227045A (en) Charged type power unit
JP3278487B2 (en) Rechargeable power supply
JP3096319B2 (en) Quick charger
JPH0429876B2 (en)
JP3642105B2 (en) Battery pack
JPH0618471B2 (en) Sealing lead-acid battery charging method and charging device
JPH0773062B2 (en) Sealing lead-acid battery charging method and charging device
JPH0453161Y2 (en)
JP3003210B2 (en) How to charge lead storage batteries
JP3285160B2 (en) Secondary battery protection circuit
JP3665652B2 (en) Charger
JPH069552Y2 (en) Sealed lead acid battery charger
JP2823167B2 (en) Charging device
JPH09215209A (en) Power unit using secondary battery pack
JPS63140631A (en) Charger with overcharging-proof function
JPH0618470B2 (en) Sealing lead-acid battery charging method and charging device
JP2686659B2 (en) Battery charger
JPS6349460B2 (en)