JPH07240351A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH07240351A
JPH07240351A JP2957294A JP2957294A JPH07240351A JP H07240351 A JPH07240351 A JP H07240351A JP 2957294 A JP2957294 A JP 2957294A JP 2957294 A JP2957294 A JP 2957294A JP H07240351 A JPH07240351 A JP H07240351A
Authority
JP
Japan
Prior art keywords
foil
anode
cathode
terminal
foils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2957294A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
博司 島田
Yuichiro Tsubaki
雄一郎 椿
Noriki Ushio
憲樹 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2957294A priority Critical patent/JPH07240351A/en
Publication of JPH07240351A publication Critical patent/JPH07240351A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To provide an electrolytic capacitor, which can make problems concerned in a reduction in an inductance solve by a new laminated structure and production technique, which are superior in both characteristics and productivity, to a product which is requested a reduction in an impedance in its high- frequency region. CONSTITUTION:An electrolytic capacitor is one manufactured into a structure, wherein a capacitor element 24 is constituted by laminating anode foils 21 and cathode foils 22 in a plurality of steps making electrolyte layers 23 interpose between the foils 21 and 22 in such a way that terminal parts 21a of each anode foil 21 and terminal parts 22a of each cathode foil 22 respectively come to a position on the opposite side of each one and in such a way that the intervals between the parts 21a of each anode foil 21 and the intervals between the parts 22a of each cathode foil 22 are respectively shifted in order at an equal interval and one piece of an external terminal 25a and one piece of an external terminal 25b are respectively connected with the parts 21a of a plurality of pieces of the foils 21 of this element 24 and the parts 22a of a plurality of pieces of the foils 22 of the element 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種電子機器に用いられ
る電解コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic capacitor used in various electronic devices.

【0002】[0002]

【従来の技術】近年、電子機器の電源回路の高周波化に
ともない、すべての電子部品に対し優れた高周波特性
(インピーダンス特性)が求められている。電解コンデ
ンサについても例外ではなく、これを実現するために、
陽極の表面状態、酸化皮膜の形成方法、電解質層の改
善、陰極の表面状態、コンデンサ素子の構造などあらゆ
る角度から検討、改善がなされている。
2. Description of the Related Art In recent years, with the increase in frequency of power supply circuits of electronic equipment, excellent high frequency characteristics (impedance characteristics) are required for all electronic components. Electrolytic capacitors are no exception, and in order to achieve this,
The surface condition of the anode, the method of forming an oxide film, the improvement of the electrolyte layer, the surface condition of the cathode, the structure of the capacitor element, etc. have been studied and improved from all angles.

【0003】単位容積あたり大きな静電容量を有するア
ルミ電解コンデンサは、なかでもその代表的なものであ
るが、図10にも示すように、そのほとんどは製造工法
上、生産性の至便さなどの理由から、粗面化により実質
の表面積を大きくした陽極箔1と陰極箔2をセパレータ
3を介して捲回した構造を採用している。高周波領域で
のインピーダンス改善のために、セパレータ3に担持さ
れた電解質層4の改善(低レジスタンス化)には大きく
注力されているが、加えて電極箔が長尺の製品や静電容
量が大きい大形の製品では、素子の構造によってはイン
ダクタンスが比較的低周波領域から影響してくるので、
高周波領域で使用する用途によっては何らかの低インダ
クタンス化の改善が必要であった。
Aluminum electrolytic capacitors having a large electrostatic capacity per unit volume are typical of them, but as shown in FIG. 10, most of them are not suitable for productivity due to the manufacturing method. For the reason, a structure is adopted in which the anode foil 1 and the cathode foil 2 whose surface area is substantially increased by roughening are wound with the separator 3 in between. In order to improve the impedance in the high frequency region, great efforts are being made to improve the electrolyte layer 4 carried on the separator 3 (to lower the resistance), but in addition, the electrode foil is a long product and the capacitance is large. In large products, the inductance affects from a relatively low frequency range depending on the structure of the element.
Depending on the application to be used in the high frequency region, it was necessary to improve the inductance to some extent.

【0004】この改善の一つとして長尺の電極箔に複数
個の端子部を設ける方法が取られる場合があるが、この
方法は引き出した端子部同士の接続が複雑であるため、
少なからず生産性を損ねるものである。
As one of the improvements, there is a case where a method of providing a plurality of terminal portions on a long electrode foil is taken. However, since this method involves complicated connection between the drawn terminal portions,
Not a little loses productivity.

【0005】また電極箔の短尺化によってインダクタン
スを抑える方法として、例えば特開昭58−17082
6号公報にも開示されているような短尺箔の積層構造が
考えられるが、これも各層間の接続を信頼性良く確保す
るには、電極箔が弁金属であり、かつその表面に生成さ
れ易い酸化皮膜が強固な絶縁体であるため、非常に困難
な接続工法上の課題を抱えている。
Further, as a method of suppressing the inductance by shortening the length of the electrode foil, for example, Japanese Patent Laid-Open No. 58-17082.
Although a laminated structure of short foils as disclosed in Japanese Patent No. 6 is also conceivable, this is also because the electrode foil is a valve metal and is formed on its surface in order to reliably secure the connection between the layers. Since the easy oxide film is a strong insulator, it has a very difficult connection method problem.

【0006】一方、陽極材料としてアルミニウムやタン
タルを用い、電解質として無機の固体電解質である二酸
化マンガンや二酸化鉛を用いた固体電解コンデンサは、
図11(a)(b)にも示すように、そのほとんどは製
造工法上の制約から、内部端子部11aを備え、かつ粗
面化により実質の表面積を大きくした陽極箔あるいは陽
極板11、もしくは内部端子部12aを備え、かつ微粉
末を焼結した陽極体12に、固体電解質13を熱分解反
応を利用して焼き付けた後、カーボン、導電性接着剤な
どにより陰極層14を形成する構造を採用している。こ
れらはその電解質の特徴から、先に述べたアルミ電解コ
ンデンサに比べ温度依存性が小さく高周波領域でのレジ
スタンスが低いという利点を有するが、反面、耐電圧が
低く、かつ生産工法の制約から生産性でやや不利である
という面も抱えている。
On the other hand, a solid electrolytic capacitor using aluminum or tantalum as an anode material and manganese dioxide or lead dioxide which is an inorganic solid electrolyte as an electrolyte is
As shown in FIGS. 11 (a) and 11 (b), most of them are provided with the internal terminal portions 11a due to the restrictions on the manufacturing method, and the anode foil or the anode plate 11 having the substantial surface area increased by roughening, or A structure in which the cathode layer 14 is formed of carbon, a conductive adhesive or the like after baking the solid electrolyte 13 on the anode body 12 including the internal terminal portion 12a and sintering fine powder by utilizing a thermal decomposition reaction It is adopted. These electrolytes have the advantages of lower temperature dependence and lower resistance in the high frequency region than the aluminum electrolytic capacitors mentioned above, but on the other hand, they have low withstand voltage and are limited by the production method. It also has some disadvantages.

【0007】さらにこの固体電解質の低レジスタンス化
を追求したものとしては、電荷移動錯体であるTCNQ
塩を利用した通称有機半導体コンデンサ、複素環式化合
物であるピロール、チオフェン、フランなどを重合して
導電化した通称導電性高分子を利用した機能性高分子コ
ンデンサなどが実用化されている。
Further, in pursuit of lower resistance of the solid electrolyte, TCNQ which is a charge transfer complex is used.
Commonly used organic semiconductor capacitors that use salts, functional polymer capacitors that use commonly known conductive polymers obtained by polymerizing heterocyclic compounds such as pyrrole, thiophene, and furan have been put to practical use.

【0008】しかしながらこれらの電解コンデンサにつ
いても、構造に係わる低インダクタンス化の改善につい
ては、上述のアルミ電解コンデンサの改善範疇にとどま
っている。
However, with respect to these electrolytic capacitors, the improvement of the reduction in inductance related to the structure is only within the above-mentioned category of improvement of the aluminum electrolytic capacitors.

【0009】[0009]

【発明が解決しようとする課題】最も一般的な電極箔を
用いた捲回式電解コンデンサは、図10に示すように、
かしめなどの手法を用いて取り付けられた内部端子部5
を有する陽極箔1と陰極箔2をセパレータ3を挟んで対
向させ、これらを巻芯の周りに捲回した後、巻芯を拭き
取り、その後、セパレータ3に駆動用電解液あるいは電
解質層4を担持させることによりコンデンサ素子6を構
成している。
A winding type electrolytic capacitor using the most general electrode foil is, as shown in FIG.
Internal terminal portion 5 attached using a method such as caulking
The anode foil 1 and the cathode foil 2 having the above are opposed to each other with the separator 3 interposed therebetween, and these are wound around the core, and then the core is wiped off, and then the separator 3 is loaded with the driving electrolytic solution or the electrolyte layer 4. By doing so, the capacitor element 6 is configured.

【0010】この方法においては比較的低コストできわ
めて量産性に優れた設備が既に開発されて実用化されて
おり、現在の弁金属箔を電極として利用する電解コンデ
ンサの標準的な生産形態であるといえる。
In this method, equipment having relatively low cost and extremely excellent mass productivity has already been developed and put into practical use, and it is a standard production form of an electrolytic capacitor using the current valve metal foil as an electrode. Can be said.

【0011】しかしながら、この優れた構造、工法によ
り製造される製品においても、近年の電子機器における
電源の高周波化に伴う急速な高周波領域特性の改善要望
に追従するには、かなり厳しい課題をいくつか克服する
ことが必要である。加えて電子機器の小形化、軽量化、
薄型化、面実装化などの要望を加味するとき、この多様
な要望に応えるには幾多の材料、工法、構造などの面で
大なり小なりの改変が必要である。したがってある用途
で要望される項目の中でも特に重要視される項目につい
ては、その重要項目に極力応えうる改良品、対策品で対
応するという状態であり、このため少量多品種生産の指
向やむなしの分野もでてきており、前述の優れた生産性
が少なからず阻害される事態となっている。
However, even in the products manufactured by this excellent structure and construction method, there are some serious problems to meet the rapid demand for improvement of the high frequency region characteristics accompanying the high frequency of the power source in electronic devices in recent years. It is necessary to overcome. In addition, downsizing and weight saving of electronic devices
Considering the demands for thinning and surface mounting, various changes in materials, construction methods, structures, etc. are necessary to meet these diverse demands. Therefore, regarding the items that are particularly important among the items required for a certain application, it is in a state of responding with improved products and countermeasures that can respond to those important items as much as possible. As a result, the above-mentioned excellent productivity is hampered to some extent.

【0012】高周波領域で低インピーダンスの製品につ
いても、機器の薄型化指向から、面実装品で低背かつ低
インピーダンスのものというような複数の課題が課せら
れることが多い。このような要望に応えるには、コンデ
ンサ素子の電極箔を積層する構造を採用すれば原理的に
は可能であることは周知のことである。しかしながら実
際の構造、工法については弁金属である電極箔の物性、
製品としての実用に耐えうる構造、生産性などを考慮す
る時、優れた製造方法を容易に確立することは難しい。
このような状況下で量産に耐えうる構造、工法、製造方
法の出現は、製造者、機器の設計担当者の双方にとって
重要な関心事のひとつである。
Even for products having low impedance in a high frequency region, a plurality of problems such as surface mount products having low profile and low impedance are often imposed because of the trend toward thinning of equipment. It is well known that, in principle, it is possible to meet such a demand by adopting a structure in which electrode foils of capacitor elements are laminated. However, regarding the actual structure and construction method, the physical properties of the electrode foil, which is a valve metal,
It is difficult to easily establish an excellent manufacturing method when considering the structure and productivity that can be practically used as a product.
Under such circumstances, the advent of structures, construction methods, and manufacturing methods that can withstand mass production is one of the important concerns for both manufacturers and equipment designers.

【0013】本発明は高周波領域で低インピーダンスを
要望される製品について、特性、生産性ともに優れた新
しい構造と生産工法により、低インダクタンス化に係わ
る課題を解決することができる電解コンデンサを提供す
ることを目的とするものである。
The present invention provides an electrolytic capacitor which can solve the problems relating to the reduction of the inductance of a product which is required to have a low impedance in a high frequency region, by a new structure and a production method having excellent characteristics and productivity. The purpose is.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明の電解コンデンサは、端面より外方へ突出する
端子部を有する陽極箔および陰極箔と、前記陽極箔と陰
極箔の間に介在される電解質層とを有し、前記陽極箔の
端子部と陰極箔の端子部がそれぞれ反対側の位置にくる
ように、かつ陽極箔の端子部間および陰極箔の端子部間
がそれぞれ等間隔で順次ずれるように、陽極箔と陰極箔
をその間に電解質層を介在させて複数段積層することに
よりコンデンサ素子を構成し、かつこのコンデンサ素子
における複数個の陽極箔の端子部および複数個の陰極箔
の端子部にそれぞれ1個の外部端子を接続した構成とし
たものである。
In order to achieve the above object, an electrolytic capacitor of the present invention is provided with an anode foil and a cathode foil having a terminal portion protruding outward from an end face, and between the anode foil and the cathode foil. With an intervening electrolyte layer, so that the terminal portion of the anode foil and the terminal portion of the cathode foil are located at opposite sides, and between the terminal portions of the anode foil and between the terminal portions of the cathode foil, etc. A capacitor element is formed by stacking a plurality of layers of an anode foil and a cathode foil with an electrolyte layer interposed between them so that they are sequentially displaced at intervals, and a plurality of anode foil terminal portions and a plurality of anode foils in this capacitor element are formed. In this structure, one external terminal is connected to each terminal portion of the cathode foil.

【0015】[0015]

【作用】上記電解コンデンサによれば、端面より外方へ
突出する端子部を有する陽極箔および陰極箔と、前記陽
極箔と陰極箔の間に介在される電解質層とを有し、前記
陽極箔の端子部と陰極箔の端子部がそれぞれ反対側の位
置にくるように、かつ陽極箔の端子部間および陰極箔の
端子部間がそれぞれ等間隔で順次ずれるように、陽極箔
と陰極箔をその間に電解質層を介在させて複数段積層す
ることによりコンデンサ素子を構成するようにしている
ため、積層を終えたコンデンサ素子は陽極側および陰極
側とも、陽極箔および陰極箔の端面より外方へ突出する
端子部は斜め方向に整然と一直線上に並ぶことになり、
これにより、それぞれ分断されている複数個の陽極箔同
士および陰極箔同士の接続、複数個の陽極箔の端子部お
よび複数個の陰極箔の端子部と外部端子との接続も確実
に行わせることができるため、信頼性の高い接続が可能
になるとともに、工法の簡便化が図れるものである。ま
たこの電解コンデンサは積層形であるため、高周波領域
においても低いインピーダンスを有し、かつ低背で面実
装が可能な積層構造の電解コンデンサを高い生産性のも
とに得ることができるものである。
According to the above electrolytic capacitor, the anode foil has the anode foil and the cathode foil having the terminal portion protruding outward from the end face, and the electrolyte layer interposed between the anode foil and the cathode foil. Of the anode foil and the cathode foil so that the terminals of the cathode foil and the terminals of the cathode foil are on opposite sides, and the terminals of the anode foil and the terminals of the cathode foil are sequentially displaced at equal intervals. Since the capacitor element is configured by stacking multiple layers with an electrolyte layer interposed between them, the capacitor element that has been stacked is positioned outward from the end faces of the anode foil and cathode foil on both the anode and cathode sides. The protruding terminal parts will be lined up in a straight line in an oblique direction,
As a result, it is possible to securely connect a plurality of anode foils and cathode foils, which are separated from each other, and a plurality of anode foil terminals, and a plurality of cathode foil terminals and external terminals. Therefore, highly reliable connection is possible and the construction method can be simplified. Further, since this electrolytic capacitor is a laminated type, it has a low impedance even in a high frequency region, and it is possible to obtain an electrolytic capacitor having a laminated structure which is low in height and can be surface-mounted with high productivity. .

【0016】[0016]

【実施例】以下、本発明の実施例を添付図面にもとづい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】図1(a)(b)(c)は本発明の一実施
例における電解コンデンサを示したものである。図1
(a)(b)(c)において、21,22は端面より外
方へ突出する端子部21a,22aを有する陽極箔およ
び陰極箔で、この陽極箔21と陰極箔22をその間に電
解質層23を介在させて複数段積層することによりコン
デンサ素子24を構成している。そして前記陽極箔21
と陰極箔22を電解質層23を介在させて複数段積層す
る場合、陽極箔21の端子部21aと陰極箔22の端子
部22aは図1(b)(c)に示すようにそれぞれ反対
側の位置にくるように、かつ陽極箔21の端子部21a
間Aおよび陰極箔22の端子部22a間Bがそれぞれ等
間隔で順次ずれるように陽極箔21と陰極箔22を電解
質層23を介在させて複数段積層しているものである。
1 (a), 1 (b) and 1 (c) show an electrolytic capacitor according to an embodiment of the present invention. Figure 1
In (a), (b), and (c), reference numerals 21 and 22 denote an anode foil and a cathode foil having terminal portions 21a and 22a protruding outwardly from the end face, and the anode foil 21 and the cathode foil 22 having the electrolyte layer 23 therebetween. The capacitor element 24 is formed by stacking a plurality of layers with the interposing. And the anode foil 21
When a plurality of layers of the cathode foil 22 and the cathode foil 22 are laminated with the electrolyte layer 23 interposed therebetween, the terminal portion 21a of the anode foil 21 and the terminal portion 22a of the cathode foil 22 are on opposite sides as shown in FIGS. The terminal portion 21a of the anode foil 21 so that it is positioned
The anode foil 21 and the cathode foil 22 are laminated in multiple stages with the electrolyte layer 23 interposed so that the gap A and the gap B between the terminal portions 22a of the cathode foil 22 are sequentially displaced at equal intervals.

【0018】また前記コンデンサ素子24における複数
個の陽極箔21の端子部21aおよび複数個の陰極箔2
2の端子部22aには図1(a)(b)に示すように外
部端子25a,25bが接続されるもので、この外部端
子25a,25bは図1(b)のCの部分で切断するこ
とにより、陽極側の外部端子25aと陰極側の外部端子
25bに分離されるものである。26はコンデンサ素子
24の封止を行う封止部材である。
The terminal portions 21a of the plurality of anode foils 21 and the plurality of cathode foils 2 in the capacitor element 24 are also provided.
External terminals 25a and 25b are connected to the second terminal portion 22a as shown in FIGS. 1 (a) and 1 (b), and the external terminals 25a and 25b are cut at a portion C in FIG. 1 (b). As a result, the external terminal 25a on the anode side and the external terminal 25b on the cathode side are separated. A sealing member 26 seals the capacitor element 24.

【0019】次に本発明の具体的な実施例について説明
する。 (実施例1)図2(a)(b)に示すように、幅30mm
のアルミニウムからなる陽極箔21(耐圧600V)を
E−E′,F−F′,G−G′の形状で長さ40mmに切
断するとともに、幅30mmのアルミニウムからなる陰極
箔22をA−A′,B−B′,C−C′,D−D′の形
状で長さ40mmに切断し、そしてこの陽極箔21と陰極
箔22には端面より外方へ突出する錫鍍金銅被覆鋼線と
アルミニウム部分からなる端子部21a,22aのアル
ミニウム部分をかしめ加工により接続し、その後、図2
(c)に示すように、陽極箔21と陰極箔22をその間
に厚さ50μmのセパレータからなる電解質層23を介
在させて複数段交互に積層することによりコンデンサ素
子24を構成した。
Next, specific examples of the present invention will be described. (Example 1) As shown in FIGS. 2A and 2B, a width of 30 mm
Anode foil 21 made of aluminum (withstand voltage of 600 V) is cut into a length of 40 mm in the shape of EE ', FF', and GG ', and a cathode foil 22 made of aluminum having a width of 30 mm is cut at AA. A tin-plated copper-coated steel wire having a shape of ', B-B', C-C ', D-D', cut to a length of 40 mm and protruding outwardly from the end faces of the anode foil 21 and the cathode foil 22. And the aluminum portions of the terminal portions 21a and 22a made of the aluminum portion are connected by caulking, and then,
As shown in (c), a capacitor element 24 was constructed by alternately stacking anode foil 21 and cathode foil 22 in multiple stages with an electrolyte layer 23 made of a separator having a thickness of 50 μm interposed therebetween.

【0020】この場合、陽極箔21と陰極箔22は、3
枚の陽極箔21と4枚の陰極箔22を陽極箔21の端子
部21aと陰極箔22の端子部22aがそれぞれ反対側
の位置にくるように交互に積層した。また陽極箔21の
端子部21a間Aおよび陰極箔22の端子部22a間B
は、陽極箔21をE−E′,F−F′,G−G′の形状
で長さ40mmに切断するとともに、陰極箔22をA−
A′,B−B′,C−C′,D−D′の形状で長さ40
mmに切断しているため、これらを図2(c)に示すよう
に端部を合わせて交互に積層することにより、それぞれ
等間隔で順次ずれるものである。
In this case, the anode foil 21 and the cathode foil 22 are 3
A sheet of anode foil 21 and four sheets of cathode foil 22 were alternately laminated so that the terminal portion 21a of the anode foil 21 and the terminal portion 22a of the cathode foil 22 were located on opposite sides, respectively. A between the terminal portions 21a of the anode foil 21 and B between the terminal portions 22a of the cathode foil 22.
Cut the anode foil 21 into a shape of EE ', FF', GG 'to a length of 40 mm, and cut the cathode foil 22 with A-.
A ', B-B', C-C ', D-D' shape and length 40
Since they are cut into mm, they are sequentially shifted at equal intervals by alternately stacking them with their ends aligned as shown in FIG. 2 (c).

【0021】そしてこの後、これらの周囲をポリエチレ
ンテレフタレートからなる粘着テープ29で固定し、そ
して定量の電導度1.2mS/cm(30℃)の駆動用電
解液をセパレータからなる電解質層23に含浸させた。
そして前記コンデンサ素子24における複数個の陽極箔
21の端子部21aおよび複数個の陰極箔22の端子部
22aには、図1(a)(b)に示す厚さ約200μm
の錫鍍金ニッケルのリードフレームからなる外部端子2
5a,25bを抵抗溶接機によって接続するとともに、
この外部端子25a,25bは図1(b)のCの部分で
切断することにより、陽極側の外部端子25aと陰極側
の外部端子25bに分離した。そして最後に図1(b)
(c)に示すラミネートフィルムからなる封止部材26
によって外部端子25a,25bの一部を含めてコンデ
ンサ素子24の封止を行うことにより、図1(a)に示
すようなアルミ電解コンデンサを構成した。
After that, the periphery of these is fixed with an adhesive tape 29 made of polyethylene terephthalate, and the electrolyte layer 23 made of a separator is impregnated with a driving electrolytic solution having a constant electric conductivity of 1.2 mS / cm (30 ° C.). Let
The terminal portions 21a of the plurality of anode foils 21 and the terminal portions 22a of the plurality of cathode foils 22 in the capacitor element 24 have a thickness of about 200 μm shown in FIGS.
External terminal 2 made of tin plated nickel lead frame
5a and 25b are connected by a resistance welding machine,
The external terminals 25a and 25b were separated at a portion C in FIG. 1B to be separated into an anode-side external terminal 25a and a cathode-side external terminal 25b. And finally Figure 1 (b)
Sealing member 26 made of the laminated film shown in (c)
By sealing the capacitor element 24 including part of the external terminals 25a and 25b, an aluminum electrolytic capacitor as shown in FIG. 1A was constructed.

【0022】(実施例2)図2(a)(b)に示すよう
に、幅30mmのアルミニウムからなる陽極箔21(耐圧
600V)をE−E′,F−F′,G−G′の形状で長
さ40mmに切断するとともに、幅30mmのアルミニウム
からなる陰極箔22をA−A′,B−B′,C−C′,
D−D′の形状で長さ40mmに切断し、そしてこの陽極
箔21と陰極箔22には端面より外方へ突出する錫鍍金
銅被覆鋼線とアルミニウム部分からなる端子部21a,
22aのアルミニウム部分をかしめ加工により接続し、
そしてこの陽極箔21と陰極箔22の上に厚さ50μm
のポリオキシエチレンを主とする電導度0.6mS/cm
(25℃)のイオン伝導性高分子の固体電解質からなる
電解質層23a(セパレータの機能をも兼ねる)を塗布
して硬化させた後、陽極箔21と陰極箔22を交互に積
層することによりコンデンサ素子24を構成した。
(Embodiment 2) As shown in FIGS. 2 (a) and 2 (b), an anode foil 21 (withstand voltage of 600 V) made of aluminum having a width of 30 mm was formed into EE ', FF', and GG '. The shape is cut into a length of 40 mm, and the cathode foil 22 made of aluminum having a width of 30 mm is cut along AA ', BB', CC ',
The anode foil 21 and the cathode foil 22 are cut to a length of 40 mm in the shape of D-D ', and a terminal portion 21a composed of a tin-plated copper-coated steel wire and an aluminum portion protruding outward from the end surface,
Connect the aluminum part of 22a by caulking,
And the thickness of 50 μm on the anode foil 21 and the cathode foil 22.
Conductivity of 0.6 mS / cm, mainly of polyoxyethylene
After coating and curing an electrolyte layer 23a (also functioning as a separator) made of a solid electrolyte of ion conductive polymer (at 25 ° C.), a capacitor is obtained by alternately stacking anode foil 21 and cathode foil 22. Element 24 was constructed.

【0023】この場合、陽極箔21と陰極箔22は3枚
の陽極箔21と4枚の陰極箔22を陽極箔21の端子部
21aと陰極箔22の端子部22aがそれぞれ反対側の
位置にくるように交互に積層した。また陽極箔21の端
子部21a間Aおよび陰極箔22の端子部22a間B
は、陽極箔21をE−E′,F−F′,G−G′の形状
で長さ40mmに切断するとともに、陰極箔22をA−
A′,B−B′,C−C′,D−D′の形状で長さ40
mmに切断しているため、これらを図2(c)に示すよう
に端部を合わせて交互に積層することにより、それぞれ
等間隔で順次ずれるものである。
In this case, the anode foil 21 and the cathode foil 22 have three pieces of the anode foil 21 and four pieces of the cathode foil 22, respectively, and the terminal portion 21a of the anode foil 21 and the terminal portion 22a of the cathode foil 22 are located on opposite sides. The layers were stacked alternately so that they could be wound. A between the terminal portions 21a of the anode foil 21 and B between the terminal portions 22a of the cathode foil 22.
Cut the anode foil 21 into a shape of EE ', FF', GG 'to a length of 40 mm, and cut the cathode foil 22 with A-.
A ', B-B', C-C ', D-D' shape and length 40
Since they are cut into mm, they are sequentially shifted at equal intervals by alternately stacking them with their ends aligned as shown in FIG. 2 (c).

【0024】そしてこのように構成したコンデンサ素子
24における複数個の陽極箔21の端子部21aおよび
複数個の陰極箔22の端子部22aには、図1(a)
(b)に示す厚さ約200μmの錫鍍金ニッケルのリー
ドフレームからなる外部端子25a,25bを半田ペー
ストを用いた半田付けにより接続するとともに、この外
部端子25a,25bは図1(b)のCの部分で切断す
ることにより、陽極側の外部端子25aと陰極側の外部
端子25bに分離した。そして最後に図1(b)(c)
に示すポリフェニレンサルファイドの肉薄ケース内に液
状のエポキシ樹脂を充填してキャスティング封止を行う
封止部材26によって外部端子25a,25bの一部を
含めてコンデンサ素子24の封止を行うことにより、図
1(a)に示すようなアルミ電解コンデンサを構成し
た。
In the capacitor element 24 thus constructed, the terminal portions 21a of the plurality of anode foils 21 and the terminal portions 22a of the plurality of cathode foils 22 are provided in FIG.
External terminals 25a and 25b made of a tin-plated nickel lead frame having a thickness of about 200 μm shown in FIG. 2B are connected by soldering using a solder paste, and the external terminals 25a and 25b are C in FIG. 1B. By disconnecting at the portion, the external terminal 25a on the anode side and the external terminal 25b on the cathode side were separated. And finally, Fig. 1 (b) (c)
By encapsulating the capacitor element 24 including a part of the external terminals 25a and 25b by the encapsulating member 26 for encapsulating the liquid epoxy resin in the thin case of polyphenylene sulfide shown in FIG. An aluminum electrolytic capacitor as shown in 1 (a) was constructed.

【0025】(実施例3)図2(b)に示すように幅3
0mmのアルミニウムからなる陽極箔21(耐圧49V)
をそれぞれE−E′,F−F′,G−G′の形状で長さ
40mmに切断し、そしてこれらの切断面部を再酸化した
後、これらの表面に、図3に示すように、厚さ約10μ
mの電導度約8S/cm(25℃)の電子伝導性高分子の
固体電解質であるポリピロールからなる電解質層23b
(セパレータの機能をも兼ねる)を電解重合により形成
し、さらにこの上にカーボン、導電性銀塗料により陰極
層27を形成することによりコンデンサ素子24を構成
し、そしてこのコンデンサ素子24を複数個積層した。
(Embodiment 3) As shown in FIG.
Anode foil 21 made of 0 mm aluminum (withstand voltage 49 V)
Were cut into a length of 40 mm in the form of EE ', FF', and GG ', respectively, and these cut surfaces were reoxidized. About 10μ
An electrolyte layer 23b made of polypyrrole, which is a solid electrolyte of an electron-conducting polymer having a conductivity of about 8 S / cm (25 ° C.).
A capacitor element 24 is formed by forming (also functioning as a separator) by electrolytic polymerization, and further forming a cathode layer 27 of carbon and conductive silver paint on the capacitor element 24, and laminating a plurality of capacitor elements 24. did.

【0026】この場合の積層は、陽極箔21にかしめ加
工により接続された端子部21aが同一方向の位置にく
るように、かつ端子部21a間Dが等間隔で順次ずれる
ように、3個のコンデンサ素子24を積層した。そして
このように構成した複数個のコンデンサ素子24の陽極
箔21の端子部21aおよび陰極層27には、図4
(a)(b)(c)に示す厚さ約200μmの錫鍍金ニ
ッケルのリードフレームからなる外部端子25a,25
bを接続するとともに、この外部端子25a,25bは
図4(b)のEの部分で切断することにより、陽極側の
外部端子25aと陰極側の外部端子25bに分離した。
そして最後に図4(b)(c)に示すエポキシ樹脂によ
るトランスファーモールドにより封止を行う封止部材2
6bによって外部端子25a,25bの一部を含めてコ
ンデンサ素子24の封止を行うことにより、図4(a)
に示すようなアルミ固体電解コンデンサを構成した。
In this case, the three layers are laminated so that the terminal portions 21a connected to the anode foil 21 by caulking are located in the same direction and the distances D between the terminal portions 21a are sequentially displaced at equal intervals. The capacitor element 24 was laminated. The terminal portion 21a of the anode foil 21 and the cathode layer 27 of the plurality of capacitor elements 24 configured as described above have a structure shown in FIG.
External terminals 25a, 25 made of tin-plated nickel lead frame with a thickness of about 200 μm shown in FIGS.
The external terminal 25a and the external terminal 25b were separated from the external terminal 25a on the side of the anode and the external terminal 25b on the side of the cathode by disconnecting the external terminal 25a and 25b at the portion E of FIG. 4B.
Finally, a sealing member 2 for sealing by transfer molding with an epoxy resin shown in FIGS. 4B and 4C.
By sealing the capacitor element 24 including a part of the external terminals 25a and 25b by 6b, as shown in FIG.
An aluminum solid electrolytic capacitor as shown in was constructed.

【0027】(実施例4)図5(a)(b)に示すよう
にタンタル線よりなる端子部28aを埋め込み位置をそ
れぞれ変えて埋め込んだ、幅3.4mm、長さ4.0mm、
厚み0.5mmのタンタルよりなる陽極体28(耐圧48
V)を用意し、そしてこの陽極体28の上に硝酸マンガ
ンの熱分解反応により固体電解質である二酸化マンガン
からなる固体電解質層23c(セパレータの機能をも兼
ねる)を形成し、さらにこの上にカーボン、導電性銀塗
料により陰極層27を形成することによりコンデンサ素
子24を構成し、そしてコンデンサ素子24を図3に示
すように複数個積層した。
(Embodiment 4) As shown in FIGS. 5A and 5B, the terminal portion 28a made of a tantalum wire was embedded by changing the embedding position, and the width was 3.4 mm and the length was 4.0 mm.
The anode body 28 made of tantalum having a thickness of 0.5 mm (withstand voltage of 48
V) is prepared, and a solid electrolyte layer 23c (also functioning as a separator) made of manganese dioxide which is a solid electrolyte is formed on the anode body 28 by a thermal decomposition reaction of manganese nitrate, and carbon is further formed thereon. The capacitor element 24 was formed by forming the cathode layer 27 of conductive silver paint, and a plurality of capacitor elements 24 were laminated as shown in FIG.

【0028】この場合の積層は陽極体28に埋め込んだ
タンタル線よりなる端子部28aが同一方向の位置にく
るように、かつ端子部28a間Dが等間隔で順次ずれる
ように、3個のコンデンサ素子24を積層した。そして
このように構成した複数個のコンデンサ素子24の陽極
体28の端子部28aおよび陰極層27には、図4
(a)(b)(c)に示す厚さ約200μmの錫鍍金ニ
ッケルのリードフレームからなる外部端子25a,25
bを接続するとともに、この外部端子25a,25bは
図4(b)のEの部分で切断することにより、陽極側の
外部端子25aと陰極側の外部端子25bに分離した。
そして最後に図4(b)(c)に示すエポキシ樹脂によ
るトランスファーモールドにより封止を行う封止部材2
6bによって外部端子25a,25bの一部を含めてコ
ンデンサ素子24の封止を行うことにより、図4(a)
に示すようなタンタル固体電解コンデンサを構成した。
In this case, the three capacitors are laminated so that the terminal portions 28a made of tantalum wire embedded in the anode body 28 are located in the same direction and the distances D between the terminal portions 28a are sequentially displaced at equal intervals. The element 24 was laminated. The terminal portion 28a of the anode body 28 and the cathode layer 27 of the plurality of capacitor elements 24 configured as described above are provided with the structure shown in FIG.
External terminals 25a, 25 made of tin-plated nickel lead frame with a thickness of about 200 μm shown in FIGS.
The external terminal 25a and the external terminal 25b were separated from the external terminal 25a on the side of the anode and the external terminal 25b on the side of the cathode by disconnecting the external terminal 25a and 25b at the portion E of FIG. 4B.
Finally, a sealing member 2 for sealing by transfer molding with an epoxy resin shown in FIGS. 4B and 4C.
By sealing the capacitor element 24 including a part of the external terminals 25a and 25b by 6b, as shown in FIG.
A tantalum solid electrolytic capacitor as shown in was constructed.

【0029】次に本発明の具体的な実施例1,2,4と
の比較のための従来例について説明する。
Next, a conventional example for comparison with the concrete examples 1, 2, 4 of the present invention will be described.

【0030】(従来例1)本発明の実施例1,2との比
較のため、図10に示すように、幅30mm×長さ120
mmのアルミニウムからなる陽極箔1(耐圧600V)お
よび陰極箔2に、錫鍍金銅被覆鋼線の突出部5aを有す
るアルミニウム製の内部端子5をかしめ加工により接続
し、そして前記陽極箔1と陰極箔2を厚さ50μmのセ
パレータ3を介して同一方向に捲回し、その周囲をポリ
エチレンテレフタレートからなる巻き止めテープ7で固
定した後、定量の電導度1.2mS/cm(30℃)の駆
動用電解液をセパレータ3に含浸させてコンデンサ素子
6を構成し、そしてこのコンデンサ素子6をアルミニウ
ムからなる有底円筒状の金属ケース8内に収納し、かつ
この金属ケース8の開口部にはゴムからなる封口端子部
9を配設し、そして封口端子部9の側面および上面に絞
り加工による封止を施してアルミ電解コンデンサを構成
した。
(Prior Art Example 1) For comparison with Examples 1 and 2 of the present invention, as shown in FIG. 10, width 30 mm × length 120
An aluminum internal terminal 5 having a protruding portion 5a of a tin-plated copper-coated steel wire is connected to an anode foil 1 (withstand voltage of 600 V) and a cathode foil 2 made of aluminum of mm by caulking, and the anode foil 1 and the cathode are connected. The foil 2 is wound in the same direction through a separator 3 having a thickness of 50 μm, and the periphery thereof is fixed with a winding tape 7 made of polyethylene terephthalate, and then a constant electric conductivity of 1.2 mS / cm (30 ° C.) for driving The separator 3 is impregnated with the electrolytic solution to form the capacitor element 6, and the capacitor element 6 is housed in the bottomed cylindrical metal case 8 made of aluminum, and the opening of the metal case 8 is made of rubber. The sealing terminal portion 9 is formed, and the side surface and the upper surface of the sealing terminal portion 9 are sealed by drawing to form an aluminum electrolytic capacitor.

【0031】(従来例2)本発明の実施例4との比較の
ため、図12(a)に示すように、タンタル線よりなる
内部端子部15aを埋め込んだ幅3.4mm、長さ4.0
mm、厚み1.5mmのタンタルよりなる陽極体15(耐圧
48V)の上に硝酸マンガンの熱分解反応により固体電
解質である二酸化マンガンからなる固体電解質層16
(セパレータの機能をも兼ねる)を形成し、さらにこの
上にカーボン、導電性銀塗料により陰極層17を形成す
ることによりコンデンサ素子18を構成し、そしてこの
コンデンサ素子18の陽極体15の内部端子部15aお
よび陰極層17には、図12(b)に示す厚さ約200
μmの錫鍍金ニッケルのリードフレームからなる外部端
子19a,19bを接続するとともに、この外部端子1
9a,19bは図12(b)のFの部分で切断すること
により、陽極側の外部端子19aと陰極側の外部端子1
9bに分離した。そして最後に図12(b)に示すエポ
キシ樹脂によるトランスファーモールドにより封止を行
う封止部材20によって外部端子19a,19bの一部
を含めてコンデンサ素子18の封止を行うことにより、
図12(b)に示すようなタンタル固体電解コンデンサ
を構成した。
(Conventional Example 2) For comparison with Example 4 of the present invention, as shown in FIG. 12 (a), a width of 3.4 mm in which an internal terminal portion 15a made of a tantalum wire was embedded and a length of 4. 0
solid electrolyte layer 16 made of manganese dioxide, which is a solid electrolyte, due to a thermal decomposition reaction of manganese nitrate on an anode body 15 (withstand voltage of 48 V) made of tantalum and having a thickness of 1.5 mm and a thickness of 1.5 mm.
(Also functioning as a separator) is formed, and the cathode layer 17 is further formed on the cathode layer 17 by carbon or conductive silver paint to form the capacitor element 18, and the internal terminal of the anode body 15 of the capacitor element 18 is formed. The portion 15a and the cathode layer 17 have a thickness of about 200 shown in FIG.
The external terminals 19a and 19b made of a lead frame made of tin-plated nickel having a thickness of μm are connected and the external terminal 1
9a and 19b are cut at the portion F in FIG. 12B, whereby the external terminal 19a on the anode side and the external terminal 1 on the cathode side are cut.
It was separated into 9b. Finally, by sealing the capacitor element 18 including a part of the external terminals 19a and 19b by the sealing member 20 for sealing by transfer molding with epoxy resin shown in FIG. 12 (b),
A tantalum solid electrolytic capacitor as shown in FIG. 12 (b) was constructed.

【0032】(表1)は本発明の実施例1,2と従来例
1により得られたアルミ電解コンデンサのそれぞれにつ
いて測定した基本的な電気性能(静電容量、損失角の正
接、漏れ電流)を示し、また図6はそれらのインピーダ
ンスの周波数特性を示したものである。
Table 1 shows basic electric performance (capacitance, loss tangent, leakage current) measured for each of the aluminum electrolytic capacitors obtained in Examples 1 and 2 of the present invention and Conventional Example 1. And FIG. 6 shows the frequency characteristics of these impedances.

【0033】[0033]

【表1】 [Table 1]

【0034】(表2)は本発明の実施例4と従来例2に
より得られたタンタル固体電解コンデンサについて測定
した基本的な電気性能(静電容量、損失角の正接、漏れ
電流)を示し、また図7はそれらのインピーダンスの周
波数特性を示したものである。
Table 2 shows the basic electrical performance (capacitance, tangent of loss angle, leakage current) measured for the tantalum solid electrolytic capacitors obtained in Example 4 of the present invention and Conventional Example 2. Further, FIG. 7 shows frequency characteristics of these impedances.

【0035】[0035]

【表2】 [Table 2]

【0036】(表1)(表2)から明らかなように、本
発明の実施例1,2,4は従来例1,2に比べて、基本
的な電気性能(測定周波数120Hz)については、損失
角の正接が幾分小さくなる程度であるが、高周波領域で
は積層構造を採用することにより低インダクタンス化さ
れるため、図6,図7から明らかなように顕著にインピ
ーダンスを低く抑えることができるものである。
As is apparent from (Table 1) and (Table 2), Examples 1, 2, and 4 of the present invention have a basic electric performance (measurement frequency 120 Hz) as compared with Conventional Examples 1 and 2. Although the tangent of the loss angle is somewhat small, the inductance can be significantly reduced by adopting the laminated structure in the high frequency region, so that the impedance can be remarkably suppressed as shown in FIGS. 6 and 7. It is a thing.

【0037】また本発明の実施例1,2においては、端
面より外方へ突出する端子部21a,21bを有する陽
極箔21および陰極箔22と、前記陽極箔21と陰極箔
22の間に介在される電解質層23,23aとを有し、
前記陽極箔21の端子部21aと陰極箔22の端子部2
2aがそれぞれ反対側の位置にくるように、かつ陽極箔
21の端子部間Aおよび陰極箔22の端子部間Bがそれ
ぞれ等間隔で順次ずれるように、陽極箔21と陰極箔2
2をその間に電解質層23,23aを介在させて複数段
積層することによりコンデンサ素子24を構成するよう
にしているため、積層を終えたコンデンサ素子24は陽
極側および陰極側とも、陽極箔21および陰極箔22の
端面より外方へ突出する端子部21a,22aは斜め方
向に整然と一直線上に並ぶことになり、これにより、そ
れぞれ分断されている複数個の陽極箔21同士および陰
極箔22同士の接続、複数個の陽極箔21の端子部21
aおよび複数個の陰極箔22の端子部22aと外部端子
25a,25bとの接続も確実に行わせることができる
ため、信頼性の高い接続が可能になるとともに、工法の
簡便化が図れるものである。
Further, in the first and second embodiments of the present invention, the anode foil 21 and the cathode foil 22 having the terminal portions 21a and 21b protruding outward from the end face, and the interposition between the anode foil 21 and the cathode foil 22. And electrolyte layers 23 and 23a
The terminal portion 21a of the anode foil 21 and the terminal portion 2 of the cathode foil 22
The anode foil 21 and the cathode foil 2 are arranged such that the terminals 2a are located on opposite sides and the terminal portions A of the anode foil 21 and the terminal portions B of the cathode foil 22 are sequentially displaced at equal intervals.
Since the capacitor element 24 is configured by laminating a plurality of layers of 2 with the electrolyte layers 23 and 23a interposed therebetween, the laminated capacitor element 24 has the anode foil 21 and the anode foil 21 and the cathode side. The terminal portions 21a, 22a projecting outward from the end face of the cathode foil 22 are arranged in a straight line in an oblique direction in order, so that a plurality of anode foils 21 and cathode foils 22 are separated from each other. Connection, terminal part 21 of a plurality of anode foils 21
Since the connection between the terminal portions 22a of the cathode foil 22a and the plurality of cathode foils 22 and the external terminals 25a and 25b can be surely performed, the connection can be made highly reliable and the construction method can be simplified. is there.

【0038】そしてまた本発明の実施例3,4において
は、端面より外方へ突出する端子部21aを有する陽極
箔21もしくは端面より外方へ突出する端子部28aを
有する陽極体28に電解質層23b,23cを介して陰
極層27を設けることによりコンデンサ素子24を構成
し、このコンデンサ素子24における陽極箔21の端子
部21a間Dもしくは陽極体28の端子部28a間Dが
等間隔で順次ずれるように、複数個のコンデンサ素子2
4を積層するようにしているため、積層を終えた複数個
のコンデンサ素子24における陽極箔21の端面より突
出する端子部21aおよび陽極体28の端面より突出す
る端子部28aは斜め方向に整然と一直線上に並ぶとと
もに、複数個のコンデンサ素子24における陰極層27
は積層によって順次接触することになり、これにより、
それぞれ分断されている複数個の陽極箔21同士の接
続、複数個の陽極体28同士の接続、複数個のコンデン
サ素子24における陰極層27同士の接続、複数個の陽
極箔21の端子部21aと外部端子25aとの接続、複
数個の陽極体28の端子部28aと外部端子25aとの
接続も確実に行わせることができるため、信頼性の高い
接続が可能になるとともに、工法の簡便化が図れるもの
である。
In Examples 3 and 4 of the present invention, the electrolyte layer is formed on the anode foil 21 having the terminal portion 21a protruding outward from the end surface or the anode body 28 having the terminal portion 28a protruding outward from the end surface. A capacitor element 24 is configured by providing a cathode layer 27 via 23b and 23c, and the terminal portions 21a of the anode foil 21 in the capacitor element 24 or the terminal portions 28a of the anode body 28 are sequentially displaced at equal intervals. So that a plurality of capacitor elements 2
4 are laminated, the terminal portion 21a protruding from the end surface of the anode foil 21 and the terminal portion 28a protruding from the end surface of the anode body 28 in the plurality of capacitor elements 24 that have been laminated are arranged in a straight line in an oblique direction. The cathode layers 27 in the plurality of capacitor elements 24 are arranged on the line.
Will be contacted one after another by stacking, which results in
Connection of a plurality of anode foils 21 separated from each other, connection of a plurality of anode bodies 28, connection of cathode layers 27 of a plurality of capacitor elements 24, and terminal portions 21a of a plurality of anode foils 21. Since the connection with the external terminals 25a and the connection between the terminal portions 28a of the plurality of anode bodies 28 and the external terminals 25a can be made surely, highly reliable connection is possible and the construction method is simplified. It can be achieved.

【0039】なお、上記発明の実施例1,2において
は、図1(a)(b)(c)に示すように陽極側の外部
端子25aと陰極側の端子部25bを同一方向からひき
だしたものについて説明したが、図8(a)(b)
(c)、図9(a)(b)(c)に示すように、陽極側
の外部端子25aと陰極側の外部端子25bをそれぞれ
逆方向へ引き出すようにしてもよいものである。またこ
の図8(a)(b)(c)、図9(a)(b)(c)に
おけるその他の構成は本発明の実施例1,2の構成と同
じである。
In the first and second embodiments of the present invention, the external terminal 25a on the anode side and the terminal portion 25b on the cathode side are drawn out from the same direction as shown in FIGS. As described above, FIG. 8 (a) (b)
As shown in (c) and FIGS. 9A, 9B, and 9C, the external terminal 25a on the anode side and the external terminal 25b on the cathode side may be pulled out in the opposite directions. The other configurations in FIGS. 8A, 8B and 9C and FIGS. 9A, 9B and 9C are the same as those of the first and second embodiments of the present invention.

【0040】[0040]

【発明の効果】以上のように本発明の電解コンデンサに
よれば、端面より外方へ突出する端子部を有する陽極箔
および陰極箔と、前記陽極箔と陰極箔の間に介在される
電解質層とを有し、前記陽極箔の端子部と陰極箔の端子
部がそれぞれ反対側の位置にくるように、かつ陽極箔の
端子部間および陰極箔の端子部間がそれぞれ等間隔で順
次ずれるように、陽極箔と陰極箔をその間に電解質層を
介在させて複数段積層することによりコンデンサ素子を
構成するようにしているため、積層を終えたコンデンサ
素子は陽極側および陰極側とも、陽極箔および陰極箔の
端面より外方へ突出する端子部は斜め方向に整然と一直
線上に並ぶことになり、これにより、それぞれ分断され
ている複数個の陽極箔同士および陰極箔同士の接続、複
数個の陽極箔の端子部および複数個の陰極箔の端子部と
外部端子との接続も確実に行わせることができるため、
信頼性の高い接続が可能になるとともに、工法の簡便化
が図れるものである。またこの電解コンデンサは積層形
であるため、高周波領域においても低いインピーダンス
を有し、かつ低背で面実装が可能な積層構造の電解コン
デンサを高い生産性のもとで得ることができるものであ
る。
As described above, according to the electrolytic capacitor of the present invention, the anode foil and the cathode foil having the terminal portion protruding outward from the end face, and the electrolyte layer interposed between the anode foil and the cathode foil. So that the terminal portion of the anode foil and the terminal portion of the cathode foil are located on opposite sides, and the terminal portions of the anode foil and the terminal portions of the cathode foil are sequentially displaced at equal intervals. In addition, since the capacitor element is configured by stacking the anode foil and the cathode foil in a plurality of stages with the electrolyte layer interposed therebetween, the capacitor element after the stacking is formed on both the anode side and the cathode side by the anode foil and The terminal portions projecting outward from the end face of the cathode foil will be aligned in a straight line in an oblique direction, whereby a plurality of anode foils and cathode foils that are separated from each other are connected, and a plurality of anode foils are connected. Edge of foil Since the parts and a plurality of connection between the terminal portions and the external terminals of the cathode foil can be reliably performed,
The connection can be made highly reliable and the construction method can be simplified. Further, since this electrolytic capacitor is a laminated type, it is possible to obtain an electrolytic capacitor having a laminated structure which has a low impedance even in a high frequency region and has a low profile and which can be surface-mounted with high productivity. .

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の一実施例のアルミ電解コンデン
サの斜視図 (b)同アルミ電解コンデンサの組立状態を示す平面図 (c)同アルミ電解コンデンサの組立状態を示す正面図
1A is a perspective view of an aluminum electrolytic capacitor according to an embodiment of the present invention, FIG. 1B is a plan view showing an assembled state of the aluminum electrolytic capacitor, and FIG. 1C is a front view showing an assembled state of the aluminum electrolytic capacitor.

【図2】(a)同アルミ電解コンデンサにおける陰極箔
の切断形状を示す平面図 (b)同アルミ電解コンデンサにおける陽極箔の切断形
状を示す平面図 (c)同アルミ電解コンデンサにおける陽極箔と陰極箔
を電解質層を介して積層した状態を示す正面図
2A is a plan view showing a cut shape of a cathode foil in the aluminum electrolytic capacitor, FIG. 2B is a plan view showing a cut shape of an anode foil in the aluminum electrolytic capacitor, and FIG. 2C is a plan view showing an anode foil and a cathode in the aluminum electrolytic capacitor. Front view showing a state in which foils are laminated via an electrolyte layer

【図3】本発明の一実施例の固体電解コンデンサの組立
状態を示す正面図
FIG. 3 is a front view showing an assembled state of the solid electrolytic capacitor of one embodiment of the present invention.

【図4】(a)本発明の一実施例の積層形電解コンデン
サの斜視図 (b)同積層形電解コンデンサの組立状態を示す平面図 (c)同積層形電解コンデンサの組立状態を示す正面図
FIG. 4A is a perspective view of a multilayer electrolytic capacitor according to an embodiment of the present invention. FIG. 4B is a plan view showing an assembled state of the multilayer electrolytic capacitor. FIG. 4C is a front view showing an assembled state of the multilayer electrolytic capacitor. Figure

【図5】(a)本発明の一実施例の固体電解コンデンサ
におけるコンデンサ素子の斜視図 (b)同コンデンサ素子の端子部の埋め込み位置を変え
た状態を示す斜視図
FIG. 5A is a perspective view of a capacitor element in a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 5B is a perspective view showing a state in which the embedding position of the terminal portion of the capacitor element is changed.

【図6】本発明の実施例1,2と従来例1によりそれぞ
れ得られたアルミ電解コンデンサのインピーダンスと測
定周波数との関係を示す特性図
FIG. 6 is a characteristic diagram showing the relationship between the impedance and the measurement frequency of the aluminum electrolytic capacitors obtained in Examples 1 and 2 of the present invention and Conventional Example 1, respectively.

【図7】本発明の実施例4と従来例2によりそれぞれ得
られたタンタル固体電解コンデンサのインピーダンスと
測定周波数との関係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the impedance and the measurement frequency of the tantalum solid electrolytic capacitors obtained in Example 4 of the present invention and Conventional Example 2 respectively.

【図8】(a)本発明の一実施例のアルミ電解コンデン
サの他の形態を示す斜視図 (b)同アルミ電解コンデンサの組立状態を示す平面図 (c)同アルミ電解コンデンサの組立状態を示す正面図
FIG. 8 (a) is a perspective view showing another embodiment of the aluminum electrolytic capacitor according to the embodiment of the present invention (b) is a plan view showing the assembled state of the aluminum electrolytic capacitor, and (c) shows the assembled state of the aluminum electrolytic capacitor. Front view showing

【図9】(a)本発明の一実施例のアルミ電解コンデン
サのさらに他の形態を示す斜視図 (b)同アルミ電解コンデンサの組立状態を示す平面図 (c)同アルミ電解コンデンサの組立状態を示す正面図
FIG. 9A is a perspective view showing still another form of the aluminum electrolytic capacitor according to the embodiment of the present invention. FIG. 9B is a plan view showing an assembled state of the aluminum electrolytic capacitor. FIG. 9C is a assembled state of the aluminum electrolytic capacitor. Front view showing

【図10】従来例1の陽極箔、陰極箔を用いたアルミ電
解コンデンサの破断斜視図
FIG. 10 is a cutaway perspective view of an aluminum electrolytic capacitor using an anode foil and a cathode foil of Conventional Example 1.

【図11】(a)従来例を示す陽極体を用いた固体電解
コンデンサの素子の斜視図 (b)従来例を示す陽極箔または陽極板を用いた固体電
解コンデンサの素子の斜視図
FIG. 11A is a perspective view of an element of a solid electrolytic capacitor using an anode body showing a conventional example. FIG. 11B is a perspective view of an element of a solid electrolytic capacitor using an anode foil or an anode plate showing a conventional example.

【図12】(a)従来例2の陽極体を用いた固体電解コ
ンデンサの素子の斜視図 (b)同固体電解コンデンサの組立状態を示す斜視図
FIG. 12 (a) is a perspective view of an element of a solid electrolytic capacitor using an anode body of Conventional Example 2; and (b) is a perspective view showing an assembled state of the solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

21 陽極箔 21a 端子部 22 陰極箔 22a 端子部 23,23a,23b,23c 電解質層 24 コンデンサ素子 25a,25b 外部端子 27 陰極層 28 陽極体 28a 端子部 21 Anode foil 21a Terminal part 22 Cathode foil 22a Terminal part 23, 23a, 23b, 23c Electrolyte layer 24 Capacitor element 25a, 25b External terminal 27 Cathode layer 28 Anode body 28a Terminal part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 端面より外方へ突出する端子部を有する
陽極箔および陰極箔と、前記陽極箔と陰極箔の間に介在
される電解質層とを有し、前記陽極箔の端子部と陰極箔
の端子部がそれぞれ反対側の位置にくるようにかつ陽極
箔の端子部間および陰極箔の端子部間がそれぞれ等間隔
で順次ずれるように、陽極箔と陰極箔をその間に電解質
層を介在させて複数段積層することによりコンデンサ素
子を構成し、かつこのコンデンサ素子における複数個の
陽極箔の端子部および複数個の陰極箔の端子部にそれぞ
れ1個の外部端子を接続した電解コンデンサ。
1. An anode foil and a cathode foil each having a terminal portion protruding outwardly from an end face, and an electrolyte layer interposed between the anode foil and the cathode foil, wherein the terminal portion of the anode foil and the cathode are formed. Intercalate the anode and cathode foils so that the foil terminals are on opposite sides and that the anode foil terminals and the cathode foil terminals are sequentially displaced at equal intervals. An electrolytic capacitor in which a capacitor element is formed by laminating a plurality of layers, and one external terminal is connected to each of the terminal portions of a plurality of anode foils and the terminal portions of a plurality of cathode foils of the capacitor element.
【請求項2】 端面より外方へ突出する端子部を有する
陽極体に電解質層を介して陰極層を設けることによりコ
ンデンサ素子を構成し、このコンデンサ素子における陽
極体の端子部間が等間隔で順次ずれるように複数個のコ
ンデンサ素子を積層し、かつ前記複数個のコンデンサ素
子における陽極体の端子部に1個の外部端子を接続する
とともに、前記複数個のコンデンサ素子における陰極層
に1個の外部端子を接続した電解コンデンサ。
2. A capacitor element is constructed by providing a cathode layer through an electrolyte layer on an anode body having a terminal portion projecting outward from an end face, and the terminal portions of the anode body in this capacitor element are evenly spaced. A plurality of capacitor elements are laminated so as to be sequentially displaced, and one external terminal is connected to the terminal portion of the anode body of the plurality of capacitor elements, and one is connected to the cathode layer of the plurality of capacitor elements. Electrolytic capacitor with external terminal connected.
【請求項3】 電解質層は駆動用電解液、無機あるいは
有機の固体電解質を含浸または保持させたセパレータか
らなる請求項1記載の電解コンデンサ。
3. The electrolytic capacitor according to claim 1, wherein the electrolyte layer is composed of a driving electrolytic solution and a separator impregnated with or holding an inorganic or organic solid electrolyte.
【請求項4】 電解質層は無機あるいは有機の固体電解
質層からなる請求項1または2記載の電解コンデンサ。
4. The electrolytic capacitor according to claim 1, wherein the electrolyte layer comprises an inorganic or organic solid electrolyte layer.
JP2957294A 1994-02-28 1994-02-28 Electrolytic capacitor Pending JPH07240351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2957294A JPH07240351A (en) 1994-02-28 1994-02-28 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2957294A JPH07240351A (en) 1994-02-28 1994-02-28 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH07240351A true JPH07240351A (en) 1995-09-12

Family

ID=12279836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2957294A Pending JPH07240351A (en) 1994-02-28 1994-02-28 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH07240351A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816358B2 (en) 2003-04-10 2004-11-09 Nec Tokin Corporation Chip-type solid electrolytic capacitor having a terminal of a unique shape and method of producing the same
US7038905B2 (en) * 2003-12-26 2006-05-02 Tdk Corporation Capacitor
US7190571B2 (en) 2002-05-21 2007-03-13 Kemet Electronics Corporation Chip capacitor and method for the production thereof
CN102142324A (en) * 2010-02-03 2011-08-03 钰邦电子(无锡)有限公司 Sheet stack type solid electrolytic capacitor
WO2014145384A1 (en) * 2013-03-15 2014-09-18 The Paper Battery Company, Inc. Supercapacitor structures
US9583277B2 (en) 2013-09-30 2017-02-28 The Paper Battery Company, Inc. Ultra-capacitor structures and electronic systems with ultra-capacitor structures
US9831533B2 (en) 2013-03-15 2017-11-28 The Paper Battery Co. Energy storage structures and fabrication methods thereof
US11170939B2 (en) * 2019-08-05 2021-11-09 Samsung Electro-Mechanics Co., Ltd. Tantalum capacitor including body and lead frame having bent portion forming inclination angle toward the body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190571B2 (en) 2002-05-21 2007-03-13 Kemet Electronics Corporation Chip capacitor and method for the production thereof
US6816358B2 (en) 2003-04-10 2004-11-09 Nec Tokin Corporation Chip-type solid electrolytic capacitor having a terminal of a unique shape and method of producing the same
US7038905B2 (en) * 2003-12-26 2006-05-02 Tdk Corporation Capacitor
CN102142324A (en) * 2010-02-03 2011-08-03 钰邦电子(无锡)有限公司 Sheet stack type solid electrolytic capacitor
US9564275B2 (en) 2012-03-09 2017-02-07 The Paper Battery Co. Supercapacitor structures
US10153094B2 (en) 2012-03-09 2018-12-11 The Paper Battery Co. Supercapacitor structures
WO2014145384A1 (en) * 2013-03-15 2014-09-18 The Paper Battery Company, Inc. Supercapacitor structures
CN105247641A (en) * 2013-03-15 2016-01-13 纸电池公司 Supercapacitor structures
US9831533B2 (en) 2013-03-15 2017-11-28 The Paper Battery Co. Energy storage structures and fabrication methods thereof
US9583277B2 (en) 2013-09-30 2017-02-28 The Paper Battery Company, Inc. Ultra-capacitor structures and electronic systems with ultra-capacitor structures
US11170939B2 (en) * 2019-08-05 2021-11-09 Samsung Electro-Mechanics Co., Ltd. Tantalum capacitor including body and lead frame having bent portion forming inclination angle toward the body

Similar Documents

Publication Publication Date Title
KR100356194B1 (en) Solid electrolytic capacitor and method for maunfacturing the same
US6310765B1 (en) Electrolytic capacitor and method for manufacturing the same
US6396682B1 (en) Electric energy storage device and method for manufacturing the same
US7916457B2 (en) Multi-layered solid electrolytic capacitor and method of manufacturing same
US20090116173A1 (en) Solid electrolytic capacitor
JP2003133183A (en) Solid electrolytic capacitor and method of manufacturing the same
KR100623804B1 (en) Solid electrolytic capacitor and manufacturing method for the same
JP3416053B2 (en) Electrolytic capacitor and method of manufacturing the same
JPH07240351A (en) Electrolytic capacitor
JP4899758B2 (en) Lead frame member for solid electrolytic capacitors
JP4899759B2 (en) Lead frame member for solid electrolytic capacitors
JP2003178933A (en) Capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
KR100334240B1 (en) Electric energy storage device and method for manufacturing the same
JP4671347B2 (en) Solid electrolytic capacitor
JPH05234823A (en) Manufacture of solid electrolytic capacitor
CN115360021B (en) High-reliability laminated solid aluminum electrolytic capacitor and preparation method thereof
JPH09312240A (en) Layered solid-state chip capacitor
JP5051851B2 (en) Multilayer solid electrolytic capacitor
JP3098244B2 (en) Solid electrolytic capacitor and method of manufacturing the same
WO2010137190A1 (en) Laminated solid electrolytic capacitor and method for manufacturing same
JP5371865B2 (en) 3-terminal capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JP2001284190A (en) Solid electrolytic capacitor
JP2008091390A (en) Lead frame member for solid electrolytic capacitor