JPH07210204A - Two-degree-of-freedom adjusting device - Google Patents

Two-degree-of-freedom adjusting device

Info

Publication number
JPH07210204A
JPH07210204A JP690094A JP690094A JPH07210204A JP H07210204 A JPH07210204 A JP H07210204A JP 690094 A JP690094 A JP 690094A JP 690094 A JP690094 A JP 690094A JP H07210204 A JPH07210204 A JP H07210204A
Authority
JP
Japan
Prior art keywords
target value
output
svn
adjustment
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP690094A
Other languages
Japanese (ja)
Other versions
JP3124169B2 (en
Inventor
Kazuo Hiroi
和男 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06006900A priority Critical patent/JP3124169B2/en
Publication of JPH07210204A publication Critical patent/JPH07210204A/en
Application granted granted Critical
Publication of JP3124169B2 publication Critical patent/JP3124169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To independently vary the strength of a differentiation component and to improve controllability with extremely simple configuration. CONSTITUTION:Concerning the adjusting device, PI adjusting operation is executed by an adjusting means 17 so that deviation E between a correction target value SVn' provided from a target value SVn and a controlled variable PVn from a controlled system 161 can be zero, and the controlled system is controlled by using a provided PI adjusting arithmetic signal. Then, this two-degree-of- freedom adjusting device is provided with a correction target value arithmetic means 1 for multiplying [1+{H(s)--1]N (H(s) is an advanced/delayed element) to the target value SVn, separating the result into a static characteristic component element SVn and a dynamic characteristic component element {H(s)-1} SVn and defining the synthesized output of both these component elements as the correction target value, parameter multiplying means 19 for multiplying a parameter to vary the strength of a differentiation item to the output of the dynamic characteristic component element, and synthesizing means 18 for providing a differentiating function by synthesizing the output of the PI adjusting means and the output of the parameter multiplying means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は外乱抑制特性と目標値追
従特性との双方を同時に最適化する2自由度調節装置の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a two-degree-of-freedom adjusting device for simultaneously optimizing both a disturbance suppression characteristic and a target value tracking characteristic.

【0002】[0002]

【従来の技術】この種のPIまたはPID(P:比例,
I:積分,D:微分)調節装置は、制御の有史以来あら
ゆる産業分野で多用されており、もはや各産業分野の制
御システムではPIまたはPID調節装置無しには成り
立たなくなってきている。
2. Description of the Related Art This type of PI or PID (P: proportional,
I: Integral, D: Derivative) regulators have been widely used in all industrial fields since the history of control, and control systems in each industrial field are no longer possible without PI or PID regulators.

【0003】従来の調節装置には、種々の調節演算方式
が採用されているが、時代の推移とともにアナログ調節
演算方式からディジタル調節演算方式に移行しており、
今後もその傾向は変りそうもなく、プラント運転制御シ
ステムの基盤をなしている。
Various adjusting calculation systems have been adopted for conventional adjusting devices, but as the times have changed, the analog adjusting calculation system has changed to the digital adjusting calculation system.
The trend will not change in the future, and it forms the basis of plant operation control systems.

【0004】このPI調節演算の基本式は下記式で表さ
れる。 MV(S) =Kp [1+(1/TI ・s)・E(s) ……(1) 但し、MV(s) :操作信号、E(s) :偏差信号、Kp :
比例ゲイン、TI :積分時間、s :ラプラス演算子であ
る。
The basic formula of this PI adjustment calculation is represented by the following formula. MV (S) = Kp [1+ (1 / T I · s) ・ E (s) (1) where MV (s): operation signal, E (s): deviation signal, Kp:
Proportional gain, T I : integration time, s: Laplace operator.

【0005】このPI調節演算の基本式は1自由度PI
調節方式と呼ばれ、PIパラメータが1組しか設定でき
ない。しかし、実際の制御系では、外乱抑制特性を最適
化するだけでなく、目標値追従特性も最適化する必要が
あるが、これらの最適化演算に使用するパラメータ,つ
まり外乱抑制最適PIパラメータと目標値追従最適PI
Dパラメータとの値が大きく異なっている。その結果、
外乱抑制特性を最適化するようにPIパラメータを調整
すると目標値追従特性が大きくオーバシュートして振動
的な特性となり、逆に目標値追従特性を最適化しようと
すると、外乱抑制特性が劣化してしまう。つまり、この
両者の特性は同時に最適化することが出来ず、二律背反
の関係にあり、制御システムの高度化の大きな障害とな
っている。
The basic formula of this PI adjustment calculation is one-degree-of-freedom PI
This is called an adjustment method, and only one set of PI parameters can be set. However, in an actual control system, it is necessary to optimize not only the disturbance suppression characteristics but also the target value tracking characteristics, but the parameters used for these optimization calculations, that is, the disturbance suppression optimum PI parameters and the target Value tracking optimum PI
The value is significantly different from the D parameter. as a result,
If the PI parameter is adjusted so as to optimize the disturbance suppression characteristic, the target value tracking characteristic largely overshoots and becomes an oscillatory characteristic. Conversely, if the target value tracking characteristic is optimized, the disturbance suppression characteristic deteriorates. I will end up. In other words, these two characteristics cannot be optimized at the same time, and there is a trade-off relationship, which is a major obstacle to the sophistication of the control system.

【0006】そこで、この種のPID調節装置では、外
乱抑制特性と目標値追従特性とを同時に最適化できる技
術の出現が望まれていた。ところが、1963年におい
てIssac M.HorowitsがPIDパラメー
タをそれぞれ独立して2組設定可能な2自由度PIDア
ルゴリズム(TwoDegrees of Freedom PID A
lgorithm:以下、2DOF PIDと略称する)の基本
概念を発表するに至った。
Therefore, in this type of PID adjusting device, the appearance of a technique capable of simultaneously optimizing the disturbance suppression characteristic and the target value tracking characteristic has been desired. However, in 1963, Issac M. Two Degrees of Freedom PID A is a two-degree-of-freedom PID algorithm in which Horowits can set two sets of PID parameters independently.
lgorithm: Hereafter, the basic concept of 2DOF PID) was announced.

【0007】その後、この2DOF PIDは実用化の
方向に歩み出し、最近ではプラント運転制御システムの
高度化に大きく貢献している。図5は、PIの2項を2
自由度化した従来の2DOF PI調節装置の中の基本
ブロック構成を示す図である。この調節装置は、1自由
度PI調節装置における目標値に進み/遅れ要素を挿入
することにより、PIの2項を2自由度化した構成であ
る。すなわち、この調節装置は、目標値SVn を進み/
遅れ要素51に導入して補正目標値SVn ′を取り出し
た後、この補正目標値SVn ′と制御量検出手段52に
よって検出される制御対象531 からの制御量PVn と
を偏差演算手段54に導入し、ここで補正目標値SVn
′から制御量PVn を減算し、偏差信号E=(SVn
′−PVn )を求める。そして、この偏差演算手段5
4で得られる偏差信号EをPI調節手段55に導入し、
ここでPIパラメータの下にPI調節演算を実行し、そ
の出力信号を比例ゲイン手段56に導く。
Thereafter, this 2DOF PID has begun to be put into practical use, and recently has greatly contributed to the sophistication of plant operation control systems. FIG. 5 shows that the second term of PI is 2
It is a figure which shows the basic block structure in the conventional 2DOF PI adjustment apparatus which was made into the degree of freedom. This adjusting device has a configuration in which the two terms of PI have two degrees of freedom by inserting a lead / lag element in the target value in the one-degree-of-freedom PI adjusting device. That is, this adjusting device advances the target value SVn /
After introducing the correction target value SVn 'by introducing it into the delay element 51, the correction target value SVn' and the control amount PVn from the controlled object 53 1 detected by the control amount detecting means 52 are introduced into the deviation calculating means 54. Then, the correction target value SVn
The control signal PVn is subtracted from ′, and the deviation signal E = (SVn
'-PVn) is calculated. And this deviation calculation means 5
The deviation signal E obtained in 4 is introduced into the PI adjusting means 55,
Here, PI adjustment calculation is executed under the PI parameter, and the output signal thereof is led to the proportional gain means 56.

【0008】この比例ゲイン手段56は、PI調節演算
の出力に比例ゲインKp を乗算し、得られた乗算信号を
操作信号MVn としてプロセス53に印加し、偏差E=
0,つまり補正目標値信号SVn ′=制御量PVn とな
るように制御する構成である。
The proportional gain means 56 multiplies the output of the PI adjustment calculation by the proportional gain Kp, applies the obtained multiplication signal to the process 53 as the operation signal MVn, and the deviation E =
0, that is, the correction target value signal SVn '= control amount PVn.

【0009】従って、目標値SVn =制御量PVn とな
るようにするためには、SVn ′=SVn ・H(s) の関
係から、最終値の定理を用いて(2)式が成立するよう
に進み/遅れ要素51のH(s) を選定すればよいことに
なる。
Therefore, in order to make the target value SVn = the control amount PVn, the formula (2) is established by using the theorem of the final value from the relationship of SVn '= SVn.H (s). It suffices to select H (s) of the lead / lag element 51.

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【発明が解決しようとする課題】ところで、以上述べた
ような従来の調節装置では、果たして適切に2自由度化
されているか否かについて実際に応答式を用いて検討し
てみる。そこで、図5に示す構成の応答式を求めてみる
と、次のような(3)式によって表すことができる。 PVn ={[H(s) ・Kp ・C(s) ・G(s) ]/[1+Kp ・C(s) ・G(s) ] }・SVn +{G(s) /[1+Kp ・C(s) ・G(s) ]}・D(s) ……(3) この(3)式の応答式において、前段項は目標値SVの
変化に対する成分であり、後段項は外乱Dの変化に対す
る成分である。この(3)式から明らかなことは、進み
/遅れ要素51を構成する伝達関数H(s) のパラメータ
を調整したとき、目標値SVn の変化に対する追従特性
のみに影響を与え、外乱Dn (s) の変化に対する抑制特
性には全く影響を与えないことが分かる。
By the way, in the conventional adjusting apparatus as described above, whether or not the two degrees of freedom are properly realized will be actually examined by using the response formula. Then, when the response equation of the configuration shown in FIG. 5 is obtained, it can be expressed by the following equation (3). PVn = {[H (s) .Kp.C (s) .G (s)] / [1 + Kp.C (s) .G (s)]} SVn + {G (s) / [1 + Kp.C ( s) · G (s)]} · D (s) (3) In the response equation of this equation (3), the former term is the component for the change of the target value SV, and the latter term is for the change of the disturbance D. It is an ingredient. It is clear from the equation (3) that when the parameters of the transfer function H (s) forming the lead / lag element 51 are adjusted, only the tracking characteristic with respect to the change of the target value SVn is affected, and the disturbance Dn (s It can be seen that there is no effect on the suppression characteristics for changes in).

【0012】従って、以上の式およびその説明から、P
I調節手段55のPIパラメータを外乱抑制特性に最適
となるように調整しておき、一方、進み/遅れ要素51
の伝達関数H(s) のパラメータを目標値追従特性に最適
となるように調整すれば、2自由度化を実現できる。
Therefore, from the above equation and its explanation, P
The PI parameter of the I adjusting means 55 is adjusted to be optimum for the disturbance suppression characteristic, while the lead / lag element 51 is adjusted.
By adjusting the parameters of the transfer function H (s) of 1 to be optimum for the target value tracking characteristic, it is possible to realize two degrees of freedom.

【0013】しかし、進み/遅れ要素51の伝達関数H
(s) の場合には次のような問題が生ずる。今、進み/遅
れ要素51の伝達関数H(s) を用いた従来の先進的例と
して、例えば(4)式のような進み/遅れ要素を用いた
例について考えてみる。
However, the transfer function H of the lead / lag element 51 is
In case of (s), the following problems occur. Now, let us consider, as a conventional advanced example using the transfer function H (s) of the lead / lag element 51, an example using a lead / lag element such as the equation (4).

【0014】 H(s) =(1+αβTI ・s)/(1+βTI ・s) ……(4) 上式においてβはパラメータ、TI は積分時間、sはラ
プラス演算子である。ここで、前記(4)式を用いて、
(3)式のうち調整に関係する分子の伝達関数部分H
(s) ・Kp ・C(s) を変形してみると、次のような
(5)式で表すことができる。
H (s) = (1 + αβT I · s) / (1 + βT I · s) (4) In the above equation, β is a parameter, T I is an integration time, and s is a Laplace operator. Here, using the equation (4),
In the formula (3), the transfer function part H of the molecule related to the adjustment
By transforming (s) · Kp · C (s), it can be expressed by the following equation (5).

【0015】[0015]

【数2】 [Equation 2]

【0016】従って、この(5)式においては、パラメ
ータα,βを調整すれば、2自由度化をすることができ
る。一般的には、0≦α≦1、1≦β≦2程度で、最適
値はα=0.4、β=1.35である。
Therefore, in the equation (5), two degrees of freedom can be obtained by adjusting the parameters α and β. Generally, 0 ≦ α ≦ 1, 1 ≦ β ≦ 2, and the optimum values are α = 0.4 and β = 1.35.

【0017】しかし、この(5)式から明らかなよう
に、比例項,積分項の他に進み/遅れ要素H(s) を付加
したことにより、進み/遅れ要素H(s) の(4)式から
調整できるパラメータは、α,βの2個しかなく、αは
比例項のために用いられ、βは積分項のために用いら
れ、α,βのパラメータを微分成分のために用いて調整
することができない。このことは、α,βの2個のパラ
メータでは、比例項,積分項および微分成分の3つを最
適に調節演算できない。
However, as is apparent from the equation (5), by adding the lead / lag element H (s) in addition to the proportional term and the integral term, (4) of the lead / lag element H (s) is added. There are only two parameters that can be adjusted from the formula, α and β, α is used for the proportional term, β is used for the integral term, and the parameters of α and β are used for the differential component to adjust. Can not do it. This means that three parameters of the proportional term, the integral term, and the differential component cannot be optimally adjusted and calculated with the two parameters α and β.

【0018】ゆえに、微分成分を最適な状態で調節演算
できないことから、制御性の高度化にも限界がある。本
発明は上記実情に鑑みてなされたもので、制御性の向上
を図る2自由度調節装置を提供することを目的とする。
また、本発明の目的は、比例項,積分項のみならず、微
分項の強さも調整可能とする2自由度調節装置を提供す
ることを目的とする。
Therefore, since the differential component cannot be adjusted and calculated in an optimum state, there is a limit to the advancement of controllability. The present invention has been made in view of the above circumstances, and an object thereof is to provide a two-degree-of-freedom adjusting device that improves controllability.
Another object of the present invention is to provide a two-degree-of-freedom adjusting device capable of adjusting not only the proportional term and the integral term but also the strength of the derivative term.

【0019】[0019]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、目標値から得られる補
正目標値と制御対象からの制御量との偏差が零となるよ
うに調節手段によってPI調節演算を実行し、得られた
PI調節演算信号を用いて制御対象を制御する調節装置
において、前記目標値SVn に[1+{H(s) −1}]
を乗算して静特性成分要素SVn と動特性成分要素{H
(s) −1}・SVn とに分離するとともに、これら両成
分要素の合成出力を前記補正目標値とする補正目標値演
算手段と、前記動特性成分要素の出力に微分項の強さを
可変するための調整パラメータを乗算するパラメータ乗
算手段と、前記PI調節手段の出力とパラメータ乗算手
段の出力とを合成し微分機能をもたせる合成手段とを設
けた2自由度調節装置である。但し、上式においてH
(s) は進み/遅れ要素である。
In order to solve the above-mentioned problems, the invention according to claim 1 is such that the deviation between the corrected target value obtained from the target value and the controlled variable from the controlled object becomes zero. In the adjusting device for executing the PI adjustment calculation by the adjusting means and controlling the controlled object using the obtained PI adjustment calculation signal, the target value SVn is [1+ {H (s) -1}].
And the static characteristic component element SVn and the dynamic characteristic component element {H
(s) −1} · SVn, and the correction target value computing means for using the combined output of these two component elements as the correction target value, and the strength of the differential term for the output of the dynamic characteristic component element are varied. The two-degree-of-freedom adjusting device is provided with a parameter multiplying unit that multiplies the adjustment parameter for performing the adjustment, and a combining unit that combines the output of the PI adjusting unit and the output of the parameter multiplying unit and has a differentiating function. However, in the above equation, H
(s) is a lead / lag element.

【0020】次に、請求項2に対応する発明は、目標値
から得られる補正目標値と制御対象からの制御量との偏
差が零となるように調節手段によってPI調節演算を実
行し、得られたPI調節演算信号を用いて制御対象を制
御する調節装置において、前記目標値SVn に{1+
[(1+αβTI ・s)/(1+βTI ・s)]−1}
を乗算して静特性成分要素SVn と動特性成分要素
{[(1+αβTI ・s)/(1+βTI ・s)]−
1}・SVn とに分離するとともに、これら両成分要素
の合成出力を前記補正目標値とする補正目標値演算手段
と、前記動特性成分要素の出力に微分項の強さを可変す
るための調整パラメータを乗算するパラメータ乗算手段
と、前記PI調節手段の出力とパラメータ乗算手段の出
力とを合成し微分機能をもたせる合成手段とを設けた2
自由度調節装置である。但し、上式においてα,βは調
整パラメータ、TI は積分時間、sはラプラス演算子で
ある。
Next, in the invention according to claim 2, the PI adjustment calculation is executed by the adjusting means so that the deviation between the corrected target value obtained from the target value and the controlled variable from the controlled object becomes zero, and the obtained value is obtained. In the adjusting device for controlling the controlled object by using the obtained PI adjustment calculation signal, the target value SVn is {1+
[(1 + αβT I · s) / (1 + βT I · s)] − 1}
And the static characteristic component element SVn and the dynamic characteristic component element {[(1 + αβT I · s) / (1 + βT I · s)] −
1} .SVn and correction target value calculating means for making the combined output of these two component elements the correction target value, and adjustment for varying the strength of the differential term in the output of the dynamic characteristic component element. A parameter multiplying means for multiplying the parameter and a synthesizing means for synthesizing the output of the PI adjusting means and the output of the parameter multiplying means to have a differentiating function are provided.
It is a degree of freedom adjusting device. However, in the above equation, α and β are adjustment parameters, T I is an integration time, and s is a Laplace operator.

【0021】さらに、請求項3に対応する発明は、目標
値から得られる補正目標値と制御対象からの制御量との
偏差が零となるように調節手段によってPI調節演算を
実行し、得られたPI調節演算信号を用いて制御対象を
制御する調節装置において、前記目標値SVn に{1+
[(α−1)αβTI ・s]/(1+βTI ・s)}を
乗算して静特性成分要素SVn と動特性成分要素
{[(α−1)αβTI ・s]/(1+βTI ・s)}
・SVn とに分離するとともに、これら両成分要素の合
成出力を前記補正目標値とする補正目標値演算手段と、
前記動特性成分要素の出力に微分項の強さを可変するた
めの調整パラメータを乗算するパラメータ乗算手段と、
前記PI調節手段の出力とパラメータ乗算手段の出力と
を合成し微分機能をもたせる合成手段とを設けた2自由
度調節装置である。但し、上式においてα,βは調整パ
ラメータ、TI は積分時間、sはラプラス演算子であ
る。
Further, the invention according to claim 3 is obtained by executing the PI adjustment calculation by the adjusting means so that the deviation between the corrected target value obtained from the target value and the controlled variable from the controlled object becomes zero. In the adjusting device for controlling the controlled object by using the PI adjustment calculation signal, the target value SVn is {1+
[(Α-1) αβT I · s] / (1 + βT I · s)} are multiplied to calculate the static characteristic component element SVn and the dynamic characteristic component element {[(α-1) αβT I · s] / (1 + βT I · s). s)}
Correction target value calculating means for separating the SVn and the combined output of these two component elements as the correction target value;
Parameter multiplication means for multiplying the output of the dynamic characteristic component element by an adjustment parameter for varying the strength of the differential term,
The two-degree-of-freedom adjusting device is provided with a combining unit that combines the output of the PI adjusting unit and the output of the parameter multiplying unit and has a differentiating function. However, in the above equation, α and β are adjustment parameters, T I is an integration time, and s is a Laplace operator.

【0022】さらに、請求項4に対応する発明は、目標
値から得られる補正目標値と制御対象からの制御量との
偏差が零となるように調節手段によってPI調節演算を
実行し、得られたPI調節演算信号を用いて制御対象を
制御する調節装置において、前記目標値SVn に{1+
(α−1)[1−(1/(1+βTI ・s))]}乗算
して静特性成分要素SVn と動特性成分要素{(α−
1)[1−(1/(1+βTI ・s))]}・SVn と
に分離するとともに、これら両成分要素の合成出力を前
記補正目標値とする補正目標値演算手段と、前記動特性
成分要素の出力に微分項の強さを可変するための調整パ
ラメータを乗算するパラメータ乗算手段と、前記PI調
節手段の出力とパラメータ乗算手段の出力とを合成し微
分機能をもたせる合成手段とを設けた2自由度調節装置
である。
Further, the invention according to claim 4 is obtained by executing the PI adjustment calculation by the adjusting means so that the deviation between the corrected target value obtained from the target value and the controlled variable from the controlled object becomes zero. In the adjusting device for controlling the controlled object by using the PI adjustment calculation signal, the target value SVn is {1+
(Α-1) [1- (1 / (1 + βT I · s))]} and multiply by static characteristic component element SVn and dynamic characteristic component element {(α-
1) [1- (1 / (1 + βT I · s))]} · SVn, and a correction target value calculating means for setting the combined output of these two component elements as the correction target value, and the dynamic characteristic component. A parameter multiplication means for multiplying the output of the element by an adjustment parameter for varying the strength of the differential term, and a synthesis means for synthesizing the output of the PI adjustment means and the output of the parameter multiplication means to have a differentiation function are provided. It is a two-degree-of-freedom adjusting device.

【0023】[0023]

【作用】従って、請求項1ないし4に対応する発明は、
それぞれ以上のような手段を講じたことにより、目標値
に挿入する進み/遅れ要素を静特性成分要素と動特性成
分要素とに分離する一方、この動特性成分要素の出力に
微分項の強さを可変する調整パラメータを乗算し、PI
調節手段の出力に合成するようにしたので、従来装置の
調整パラメータに1つパラメータを多く付加するだけ
で、微分成分の強さを調整でき、比例項,積分項および
微分成分の3つを最適に調節演算することができる。
Therefore, the inventions corresponding to claims 1 to 4 are:
By taking the above measures, the lead / lag elements to be inserted into the target value are separated into the static characteristic component element and the dynamic characteristic component element, while the strength of the differential term is added to the output of this dynamic characteristic component element. Is multiplied by the adjustment parameter that changes
Since the output of the adjusting means is combined, the strength of the differential component can be adjusted by adding one more parameter to the adjustment parameter of the conventional device, and the proportional term, the integral term, and the differential term can be optimized. Can be adjusted and calculated.

【0024】[0024]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。本発明の基本的な考え方は、動特性成分が
微分成分であることに着目し、進み/遅れ要素から動特
性成分を取り出すために、進み/遅れ要素を静特性成分
と動特性成分とに分離し、この動特性成分,つまり微分
成分に作用する1つパラメータを追加し、最適に微分成
分を調節演算することにある。
Embodiments of the present invention will be described below with reference to the drawings. The basic idea of the present invention is to focus on the fact that the dynamic characteristic component is a differential component and separate the lead / lag element into a static characteristic component and a dynamic characteristic component in order to extract the dynamic characteristic component from the lead / lag element. Then, one parameter that acts on this dynamic characteristic component, that is, the differential component is added, and the differential component is optimally adjusted and calculated.

【0025】図1は請求項1に係わる発明の基本構成を
示す図である。同図において1は目標値SVn の出力端
に2自由度化のために挿入される補正目標値演算手段で
あって、これは目標値SVn を所定時間進みまたは遅ら
せる進み/遅れ要素11とこの進み/遅れ要素11の出
力から目標値SVn を減算する減算手段12とを有する
動特性成分要素と、目標値SVn をそのまま出力する静
特性成分要素と、これら2つの成分要素の出力を加算す
る加算手段13とで構成されている。
FIG. 1 is a diagram showing a basic configuration of the invention according to claim 1. In the figure, reference numeral 1 denotes a correction target value calculating means inserted at the output end of the target value SVn for the purpose of providing two degrees of freedom, which is a lead / lag element 11 for advancing or delaying the target value SVn for a predetermined time and this advance. / Dynamic characteristic component element having subtraction means 12 for subtracting the target value SVn from the output of the delay element 11, static characteristic component element for directly outputting the target value SVn, and addition means for adding the outputs of these two component elements. 13 and 13.

【0026】従って、この補正目標値演算手段1は、補
正目標値をSVn ′とすると、 SVn ′={1+[H(s) −1]}・SVn ……(6) となり、a=SVn の静特性成分とb=[H(s) −1]
・SVn の動特性成分とに分離することができる。
Therefore, when the correction target value is SVn ', the correction target value computing means 1 is SVn' = {1+ [H (s) -1]} SVn ... (6), and a = SVn Static characteristic component and b = [H (s) -1]
It can be separated into the dynamic characteristic component of SVn.

【0027】この加算手段13の出力側には偏差演算手
段14が接続され、ここで補正目標値SVn ′と制御量
検出手段15によって検出される制御対象161 からの
制御量PVn とを偏差演算手段14に導入し、ここで補
正目標値SVn ′から制御量PVn を減算し、偏差信号
E=(SVn ′−PVn )を求める。そして、この偏差
演算手段14で得られる偏差信号EをPI調節手段17
に導入し、ここでPIパラメータの下にPI調節演算を
実行し、その出力信号を減算手段18に導く。
A deviation calculating means 14 is connected to the output side of the adding means 13, and the deviation calculating means 14 calculates the deviation between the correction target value SVn 'and the controlled variable PVn from the controlled object 16 1 detected by the controlled variable detecting means 15. Introduced in the means 14, the control amount PVn is subtracted from the correction target value SVn 'to obtain the deviation signal E = (SVn'-PVn). Then, the deviation signal E obtained by the deviation calculating means 14 is used as the PI adjusting means 17
Where the PI adjustment operation is performed under the PI parameter and the output signal thereof is led to the subtracting means 18.

【0028】一方、動特性成分要素の出力は係数乗算手
段19に導入され、ここで動特性成分要素出力に微分成
分の強さを調整するための係数δを乗算し、減算手段1
8に導入する。この減算手段18は、PI調節演算出力
から動特性成分要素出力に係数δを乗じた信号を減算
し、得られた減算出力を比例ゲイン手段20に導入す
る。そして、ここで、減算出力に比例ゲインKp を乗算
し、得られた乗算信号を操作信号MVn としてプロセス
16に印加し、偏差E=0,つまり補正目標値信号SV
n ′=制御量PVn となるように制御する構成である。
On the other hand, the output of the dynamic characteristic component element is introduced into the coefficient multiplication means 19, where the dynamic characteristic component element output is multiplied by the coefficient δ for adjusting the strength of the differential component, and the subtraction means 1
Introduce to 8. The subtracting means 18 subtracts the signal obtained by multiplying the dynamic characteristic component element output by the coefficient δ from the PI adjustment calculation output, and introduces the obtained subtraction output to the proportional gain means 20. Then, here, the subtraction output is multiplied by the proportional gain Kp, the obtained multiplication signal is applied to the process 16 as the operation signal MVn, and the deviation E = 0, that is, the correction target value signal SV.
The control is performed so that n ′ = the control amount PVn.

【0029】従って、以上のような構成によれば、補正
目標値演算手段1は静特性成分要素と動特性成分要素と
に分離し、動特性成分要素出力に対して調整パラメータ
となる係数δを乗算した後、この乗算出力を前記PI調
節手段17の出力を減算合成することにより、微分機能
をもたせるようにしている。その結果、図1に示す制御
量PVn の応答式を求めてみると、次のように結果が得
られる。
Therefore, according to the above configuration, the correction target value computing means 1 separates the static characteristic component element and the dynamic characteristic component element, and the coefficient δ which becomes the adjustment parameter for the dynamic characteristic component element output. After the multiplication, the output of the PI adjusting means 17 is subtracted and combined with this multiplication output so as to have a differentiating function. As a result, when the response equation of the controlled variable PVn shown in FIG. 1 is obtained, the following result is obtained.

【0030】[0030]

【数3】 [Equation 3]

【0031】従って、この応答式から明らかなことは、
分子のパラメータδにより、微分成分の強さを調整で
き、さらに制御特性を改善することができる。特に、本
装置においては、調整パラメータδを1個増やすだけの
シンプルな構成を採用し、α,β,δの3個のパラメー
タを調整して、比例項,積分項,微分成分の3つの調節
演算を最適に実行することができる。
Therefore, it is clear from this response formula that
The strength of the differential component can be adjusted by the parameter δ of the molecule, and the control characteristics can be further improved. In particular, this apparatus adopts a simple configuration in which the adjustment parameter δ is increased by one, and adjusts the three parameters α, β, and δ to adjust the three parameters of the proportional term, integral term, and derivative component. The operation can be optimally executed.

【0032】次に、請求項2に係わる発明の一実施例に
ついて図2を参照して説明する。この実施例の装置は、
補正目標値演算手段1を改良したものであって、具体的
には前述した(4)式に示す伝達関数H(s) を有する進
み/遅れ要素21と当該進み/遅れ要素21の出力から
目標値SVn を減算する減算手段22とをもつ動特性成
分要素と、目標値SVn をそのまま出力する静特性成分
要素と、これら2つの成分要素の出力を加算する加算手
段23とを有し、補正目標値SVn ′を得る構成であ
る。
Next, an embodiment of the invention according to claim 2 will be described with reference to FIG. The device of this embodiment is
This is a modification of the correction target value calculation means 1, and more specifically, the target is calculated from the lead / lag element 21 having the transfer function H (s) shown in the equation (4) and the output of the lead / lag element 21. The correction target has a dynamic characteristic component element having a subtracting means 22 for subtracting the value SVn, a static characteristic component element for directly outputting the target value SVn, and an adding means 23 for adding outputs of these two component elements. This is a configuration for obtaining the value SVn '.

【0033】従って、この補正目標値演算手段1は、補
正目標値をSVn ′とすると、 SVn ′={(1+αβTI ・s)/(1+βTI ・s)}・SVn ={1+[(1+αβTI ・s)/(1+βTI ・s)]−1} ・SVn ……(8) となり、a=SVn の静特性成分とb={[(1+αβ
I ・s)/(1+βTI ・s)]−1}・SVn の動
特性成分とに分離する構成である。
Therefore, when the correction target value is SVn ', the correction target value calculating means 1 has SVn' = {(1 + αβT I · s) / (1 + βT I · s)} · SVn = {1 + [(1 + αβT I · s) / (1 + βT I · s)] - 1} · SVn ...... (8) , and the static characteristic component of a = SVn and b = {[(1 + αβ
T I · s) / (1 + βT I · s)] − 1} · SVn dynamic characteristic component.

【0034】この加算手段23の出力側には偏差演算手
段14が接続され、ここで補正目標値SVn ′と制御量
検出手段15によって検出される制御対象161 からの
制御量PVn とを偏差演算手段14に導入し、ここで補
正目標値SVn ′から制御量PVn を減算し、偏差信号
E=(SVn ′−PVn )を求める。そして、この偏差
演算手段14で得られる偏差信号EをPI調節手段17
に導入し、ここでPIパラメータの下にPI調節演算を
実行し、その出力信号を減算手段18に導入する。
The deviation calculating means 14 is connected to the output side of the adding means 23, and the deviation calculating means 14 calculates the deviation between the correction target value SVn 'and the controlled variable PVn from the controlled object 16 1 detected by the controlled variable detecting means 15. Introduced in the means 14, the control amount PVn is subtracted from the correction target value SVn 'to obtain the deviation signal E = (SVn'-PVn). Then, the deviation signal E obtained by the deviation calculating means 14 is used as the PI adjusting means 17
Where the PI adjustment operation is performed under the PI parameter and the output signal thereof is introduced into the subtracting means 18.

【0035】一方、動特性成分の出力は、係数乗算手段
19によって係数δを乗算し、減算手段18に導入す
る。この減算手段18は、PI調節演算出力から動特性
成分要素出力に係数δを乗じた信号を減算し、得られた
減算出力を比例ゲイン手段20に導入する。そして、こ
こで、減算出力に比例ゲインKp を乗算し、得られた乗
算信号を操作信号MVn としてプロセス16に印加し、
偏差E=0,つまり補正目標値信号SVn ′=制御量P
Vn となるように制御する構成である。
On the other hand, the output of the dynamic characteristic component is multiplied by the coefficient δ by the coefficient multiplication means 19 and introduced into the subtraction means 18. The subtracting means 18 subtracts the signal obtained by multiplying the dynamic characteristic component element output by the coefficient δ from the PI adjustment calculation output, and introduces the obtained subtraction output to the proportional gain means 20. Then, here, the subtraction output is multiplied by the proportional gain Kp, and the obtained multiplication signal is applied to the process 16 as the operation signal MVn,
Deviation E = 0, that is, correction target value signal SVn '= control amount P
The configuration is such that control is performed so as to attain Vn.

【0036】従って、以上のような構成によれば、補正
目標値演算手段1を静特性成分と動特性成分とに分離
し、動特性成分出力に対して調整パラメータとなる係数
δを乗算した後、この乗算出力を前記PI調節手段17
の出力を減算合成することにより、微分機能をもたせる
ようにしている。そこで、前記(7)式の分子の調節機
能部分を具体的に求めると、(9)式をのようになる。
Therefore, according to the above configuration, the correction target value calculating means 1 is separated into the static characteristic component and the dynamic characteristic component, and after the dynamic characteristic component output is multiplied by the coefficient δ serving as the adjustment parameter. , The PI output means 17
A differential function is provided by subtracting and synthesizing the output of. Then, when the regulatory function part of the molecule of the formula (7) is specifically obtained, the formula (9) is obtained.

【0037】[0037]

【数4】 [Equation 4]

【0038】従って、この(9)式から明らかなこと
は、分子のパラメータδの調整により微分成分の強さを
独立的に可変でき、さらに制御特性を改善することがで
きる。特に、本装置においては、調整パラメータδを1
個増やすだけのシンプルな構成を採用し、α,β,δの
3個のパラメータを調整でき、比例項,積分項,微分成
分の3つを最適な調節演算することができる。
Therefore, what is apparent from the expression (9) is that the strength of the differential component can be independently changed by adjusting the parameter δ of the molecule, and the control characteristic can be further improved. Particularly, in this device, the adjustment parameter δ is set to 1
By adopting a simple configuration in which the number is increased, the three parameters α, β, δ can be adjusted, and the optimum adjustment calculation can be performed for the proportional term, the integral term, and the differential component.

【0039】次に、図3は請求項3に係わる発明の一実
施例を示す図である。この実施例の補正目標値演算手段
1は、目標値SVn を微分する{(α−1)βTI
s}/(1+βTI ・s)なる伝達関数をもつ不完全微
分手段31と、目標値SVn をそのまま出力する静特性
成分要素と、これら不完全微分手段31の出力と静特性
成分要素とを加算する加算手段32とで構成されてい
る。その結果、補正目標値演算手段1は、補正目標値を
SVn ′とすると、 SVn ′={(1+αβTI ・s)/(1+βTI ・s)}・SVn ={1+[(α−1)αβTI ・s]/(1+βTI ・s)} ・SVn ……(10) となり、a=SVn の静特性成分とb={[(α−1)
αβTI ・s]/(1+βTI ・s)}・SVn の動特
性成分とに分離する構成となる。
Next, FIG. 3 is a diagram showing an embodiment of the invention according to claim 3. The correction target value calculation means 1 of this embodiment differentiates the target value SVn {(α-1) βT I ·
s} / (1 + βT I · s) incomplete differentiating means 31, a static characteristic component element that outputs the target value SVn as it is, and the output of these incomplete differentiating means 31 and the static characteristic component element are added. And adding means 32 for As a result, when the correction target value is SVn ', the correction target value calculation means 1 has SVn' = {(1 + αβT I · s) / (1 + βT I · s)} · SVn = {1 + [(α-1) αβT I · s] / (1 + βT I · s)} · SVn (10), where a = the static characteristic component of SVn and b = {[(α−1)
αβT I · s] / (1 + βT I · s)} · SVn dynamic characteristic component.

【0040】この加算手段23の出力側には偏差演算手
段14が接続され、ここで補正目標値SVn ′と制御量
検出手段15によって検出される制御対象161 からの
制御量PVn とを偏差演算手段14に導入し、ここで補
正目標値SVn ′から制御量PVn を減算し、偏差信号
E=(SVn ′−PVn )を求める。そして、この偏差
演算手段14で得られる偏差信号EをPI調節手段17
に導入し、ここでPIパラメータの下にPI調節演算を
実行し、その出力信号を減算手段18に導入する。
The deviation calculating means 14 is connected to the output side of the adding means 23, and the deviation calculating means 14 calculates the deviation between the correction target value SVn 'and the controlled variable PVn from the controlled object 16 1 detected by the controlled variable detecting means 15. Introduced in the means 14, the control amount PVn is subtracted from the correction target value SVn 'to obtain the deviation signal E = (SVn'-PVn). Then, the deviation signal E obtained by the deviation calculating means 14 is used as the PI adjusting means 17
Where the PI adjustment operation is performed under the PI parameter and the output signal thereof is introduced into the subtracting means 18.

【0041】また、動特性成分の出力は、係数乗算手段
19によって係数δを乗算し、減算手段18に導入す
る。この減算手段18は、PI調節演算出力から動特性
成分に係数δを乗じた信号を減算し、得られた減算出力
を比例ゲイン手段20に導入する。そして、ここで、減
算出力に比例ゲインKp を乗算し、得られた乗算信号を
操作信号MVn としてプロセス15に印加し、偏差E=
0,つまり補正目標値信号SVn ′=制御量PVn とな
るように制御する構成である。
The output of the dynamic characteristic component is multiplied by the coefficient δ by the coefficient multiplication means 19 and introduced into the subtraction means 18. The subtracting means 18 subtracts the signal obtained by multiplying the dynamic characteristic component by the coefficient δ from the PI adjustment calculation output, and introduces the obtained subtraction output to the proportional gain means 20. Then, here, the subtraction output is multiplied by the proportional gain Kp, the obtained multiplication signal is applied to the process 15 as the operation signal MVn, and the deviation E =
0, that is, the correction target value signal SVn '= control amount PVn.

【0042】従って、以上のような構成によれば、補正
目標値演算手段1を静特性成分と動特性成分とに分離
し、動特性成分出力に対して調整パラメータとなる係数
δを乗算した後、この乗算出力を前記PI調節手段17
の出力を減算合成することにより、微分機能をもたせる
ようにしている。
Therefore, according to the above configuration, the correction target value calculating means 1 is separated into the static characteristic component and the dynamic characteristic component, and after the dynamic characteristic component output is multiplied by the coefficient δ serving as the adjustment parameter. , The PI output means 17
A differential function is provided by subtracting and synthesizing the output of.

【0043】その結果、前記(10)式の動特性成分b
以降の構成は、図2の構成と同じになる。また、PVn
の応答式における分子の調節機能部分は、前記(9)式
と同一となり、パラメータδを調整することにより、微
分項の強さを独立して可変できる。
As a result, the dynamic characteristic component b of the above equation (10)
The subsequent configuration is the same as that of FIG. Also, PVn
The molecular control function of the response equation (1) is the same as the equation (9), and the strength of the differential term can be independently changed by adjusting the parameter δ.

【0044】さらに、図4は請求項4に係わる発明の一
実施例を示す構成図である。この実施例の補正目標値演
算手段1は、目標値SVn に1次遅れをもたせる{1/
(1+βTI ・s)}なる1次遅れ手段41と、目標値
SVn から1次遅れ手段41の出力を減算する減算手段
42と、この減算出力の係数αを乗算する係数乗算手段
43と、この係数乗算手段43の出力から前記減算手段
42の減算出力を減算する減算手段44とを有する動特
性成分要素と、目標値SVn をそのまま出力する静特性
成分要素と、前記減算手段44の出力と静特性成分要素
とを加算する加算手段45とによって構成されている。
Further, FIG. 4 is a block diagram showing an embodiment of the invention according to claim 4. The correction target value computing means 1 of this embodiment adds a first-order delay to the target value SVn {1 /
(1 + βT I · s)} first-order delay means 41, subtraction means 42 for subtracting the output of the first-order delay means 41 from the target value SVn, coefficient multiplication means 43 for multiplying the coefficient α of the subtraction output, A dynamic characteristic component element having subtraction means 44 for subtracting the subtracted output of the subtraction means 42 from the output of the coefficient multiplication means 43, a static characteristic component element for directly outputting the target value SVn, and an output and a static value of the subtraction means 44. And a characteristic component element.

【0045】その結果、補正目標値演算手段1は、補正
目標値をSVn ′とすると、 SVn ′={(1+αβTI ・s)/(1+βTI ・s)}・SVn ={1+(α−1)[1−(1/(1+βTI ・s))]/ (1+βTI ・s)}・SVn ……(11) となり、a=SVn の静特性成分とb=(α−1)[1
−(1/(1+βTI ・s))]/(1+βTI
s)}・SVn の動特性成分とに分離する構成となって
いる。
As a result, when the correction target value is SVn ', the correction target value computing means 1 has SVn' = {(1 + αβT I · s) / (1 + βT I · s)} · SVn = {1+ (α-1) ) [1- (1 / (1 + βT I · s))] / (1 + βT I · s)} · SVn (11), where a = SVn static characteristic component and b = (α−1) [1
-(1 / (1 + βT I · s))] / (1 + βT I · s
s)}. SVn dynamic characteristic component.

【0046】さらに、加算手段45の出力側には偏差演
算手段14が接続され、ここで補正目標値SVn ′と制
御量検出手段15によって検出される制御対象161
らの制御量PVn とを偏差演算手段14に導入し、ここ
で補正目標値SVn ′から制御量PVn を減算し、偏差
信号E=(SVn ′−PVn )を求める。そして、この
偏差演算手段14で得られる偏差信号EをPI調節手段
17に導入し、ここでPIパラメータの下にPI調節演
算を実行し、その出力信号を減算手段18に導入する。
Further, the deviation calculating means 14 is connected to the output side of the adding means 45, and the correction target value SVn 'and the controlled variable PVn from the controlled object 16 1 detected by the controlled variable detecting means 15 are deviated here. This is introduced into the calculating means 14, where the control amount PVn is subtracted from the correction target value SVn 'to obtain the deviation signal E = (SVn'-PVn). Then, the deviation signal E obtained by the deviation calculating means 14 is introduced into the PI adjusting means 17, the PI adjusting operation is executed under the PI parameter, and the output signal thereof is introduced into the subtracting means 18.

【0047】また、動特性成分の出力は、係数乗算手段
19によって係数δを乗算し、減算手段18に導入す
る。この減算手段18は、PI調節演算出力から動特性
成分に係数δを乗じた信号を減算し、得られた減算出力
を比例ゲイン手段20に導入する。そして、ここで、減
算出力に比例ゲインKp を乗算し、得られた乗算信号を
操作信号MVn としてプロセス15に印加し、偏差E=
0,つまり補正目標値信号SVn ′=制御量PVn とな
るように制御する構成である。
The output of the dynamic characteristic component is multiplied by the coefficient δ by the coefficient multiplication means 19 and introduced into the subtraction means 18. The subtracting means 18 subtracts the signal obtained by multiplying the dynamic characteristic component by the coefficient δ from the PI adjustment calculation output, and introduces the obtained subtraction output to the proportional gain means 20. Then, here, the subtraction output is multiplied by the proportional gain Kp, the obtained multiplication signal is applied to the process 15 as the operation signal MVn, and the deviation E =
0, that is, the correction target value signal SVn '= control amount PVn.

【0048】従って、以上のような構成によれば、補正
目標値演算手段1を静特性成分と動特性成分とに分離
し、動特性成分出力に対して調整パラメータとなる係数
δを乗算した後、この乗算出力を前記PI調節手段17
の出力を減算合成することにより、微分機能をもたせる
ようにしている。
Therefore, according to the above configuration, the correction target value calculating means 1 is separated into the static characteristic component and the dynamic characteristic component, and after the dynamic characteristic component output is multiplied by the coefficient δ serving as the adjustment parameter. , The PI output means 17
A differential function is provided by subtracting and synthesizing the output of.

【0049】その結果、前記(11)式の動特性成分b
以降の構成は、図2の構成と同じになる。また、PVn
の応答式における分子の調節機能部分は、前記(9)式
と同一となり、パラメータδを調整することにより、微
分項の強さを独立して可変できる。その他、本発明はそ
の要旨を逸脱しない範囲で種々変形して実施できる。
As a result, the dynamic characteristic component b of the above equation (11) is obtained.
The subsequent configuration is the same as that of FIG. Also, PVn
The molecular control function of the response equation (1) is the same as the equation (9), and the strength of the differential term can be independently changed by adjusting the parameter δ. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

【0050】[0050]

【発明の効果】以上説明したように本発明によれば、目
標値に2自由度化のために挿入する補正目標値演算手段
の進み/遅れ要素を静特性成分と動特性成分とに分離
し、この動特性成分に微分成分に寄与するパラメータを
乗じ、PI調節手段の出力に合成することにより、調節
手段に存在しない微分成分を発生させるとともに、その
微分成分の強さを独立して可変するようにしたので、非
常に簡単な構成により、従来の欠陥を解消でき、制御性
を向上できる2自由度PID調節装置を実現できる。そ
の結果、今後のプラント制御システムへの適用が拡大
し、プラント全体の制御性を確信でき、ひいては産業界
に大きく貢献をもたらすことになる。
As described above, according to the present invention, the lead / lag element of the correction target value calculating means inserted for the purpose of achieving two degrees of freedom is separated into the static characteristic component and the dynamic characteristic component. By multiplying the dynamic characteristic component by the parameter contributing to the differential component and synthesizing it with the output of the PI adjusting means, a differential component which does not exist in the adjusting means is generated, and the strength of the differential component is independently varied. With this configuration, it is possible to realize a two-degree-of-freedom PID adjustment device that can eliminate the conventional defects and improve controllability with a very simple configuration. As a result, the application to future plant control systems will be expanded, the controllability of the entire plant can be assured, and this will make a great contribution to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に係わる発明の一実施例を示す構成
図。
FIG. 1 is a configuration diagram showing an embodiment of the invention according to claim 1;

【図2】請求項2に係わる発明の一実施例を示す構成
図。
FIG. 2 is a configuration diagram showing an embodiment of the invention according to claim 2;

【図3】請求項3に係わる発明の一実施例を示す構成
図。
FIG. 3 is a configuration diagram showing an embodiment of the invention according to claim 3;

【図4】請求項4に係わる発明の一実施例を示す構成
図。
FIG. 4 is a configuration diagram showing an embodiment of the invention according to claim 4;

【図5】従来の2自由度化PI調節装置の構成図。FIG. 5 is a configuration diagram of a conventional PI controller having two degrees of freedom.

【符号の説明】[Explanation of symbols]

1…補正目標値演算手段、11…進み/遅れ要素、1
2,22…減算手段、13,23…加算手段、14…偏
差演算手段、15…制御量検出手段、16…プロセス、
161 …制御対象、17…PI調節手段、19…係数乗
算手段、20…比例ゲイン手段、21…進み/遅れ手
段、31…不完全微分手段、41…1次遅れ手段。
1 ... Correction target value calculation means, 11 ... Advance / lag element, 1
2, 22 ... Subtraction means, 13, 23 ... Addition means, 14 ... Deviation calculation means, 15 ... Control amount detection means, 16 ... Process,
16 1 ... Control object, 17 ... PI adjusting means, 19 ... Coefficient multiplying means, 20 ... Proportional gain means, 21 ... Lead / lag means, 31 ... Incomplete differentiation means, 41 ... First-order lag means.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 目標値から得られる補正目標値と制御対
象からの制御量との偏差が零となるように調節手段によ
ってPI(P:比例,I:積分)調節演算を実行し、得
られたPI調節演算信号を用いて制御対象を制御する調
節装置において、 前記目標値SVn に[1+{H(s) −1}]を乗算して
静特性成分要素SVnと動特性成分要素{H(s) −1}
・SVn とに分離するとともに、これら両成分要素の合
成出力を前記補正目標値とする補正目標値演算手段と、
前記動特性成分要素の出力に微分項の強さを可変するた
めの調整パラメータを乗算するパラメータ乗算手段と、
前記PI調節手段の出力とパラメータ乗算手段の出力と
を合成し微分機能をもたせる合成手段とを備えたことを
特徴とする2自由度調節装置。但し、上式においてH
(s) は進み/遅れ要素である。
1. A PI (P: proportional, I: integral) adjustment calculation is executed by an adjusting means so that a deviation between a correction target value obtained from the target value and a controlled variable from a controlled object is zero, and is obtained. In the adjusting device for controlling the controlled object by using the PI adjustment calculation signal, the target value SVn is multiplied by [1+ {H (s) -1}] and the static characteristic component element SVn and the dynamic characteristic component element {H ( s) -1}
Correction target value calculating means for separating the SVn and the combined output of these two component elements as the correction target value;
Parameter multiplication means for multiplying the output of the dynamic characteristic component element by an adjustment parameter for varying the strength of the differential term,
A two-degree-of-freedom adjusting device comprising: a combining unit that combines the output of the PI adjusting unit and the output of the parameter multiplying unit and has a differentiating function. However, in the above equation, H
(s) is a lead / lag element.
【請求項2】 目標値から得られる補正目標値と制御対
象からの制御量との偏差が零となるように調節手段によ
ってPI調節演算を実行し、得られたPI調節演算信号
を用いて制御対象を制御する調節装置において、 前記目標値SVn に{1+[(1+αβTI ・s)/
(1+βTI ・s)]−1}を乗算して静特性成分要素
SVn と動特性成分要素{[(1+αβTI ・s)/
(1+βTI ・s)]−1}・SVn とに分離するとと
もに、これら両成分要素の合成出力を前記補正目標値と
する補正目標値演算手段と、前記動特性成分要素の出力
に微分項の強さを可変するための調整パラメータを乗算
するパラメータ乗算手段と、前記PI調節手段の出力と
パラメータ乗算手段の出力とを合成し微分機能をもたせ
る合成手段とを備えたことを特徴とする2自由度調節装
置。但し、上式においてα,βは調整パラメータ、TI
は積分時間、sはラプラス演算子である。
2. The PI adjustment calculation is executed by the adjusting means so that the deviation between the correction target value obtained from the target value and the control amount from the controlled object becomes zero, and the control is performed using the obtained PI adjustment calculation signal. In an adjusting device for controlling an object, the target value SVn is {1 + [(1 + αβT I · s) /
(1 + βT I · s)] − 1} and multiplied by the static characteristic component element SVn and the dynamic characteristic component element {[(1 + αβT I · s) /
(1 + βT I · s)] − 1} · SVn, and at the same time, a correction target value calculating means for setting the combined output of these two component elements as the correction target value, and a differential term for the output of the dynamic characteristic component element. Two degrees of freedom are provided, comprising a parameter multiplication means for multiplying an adjustment parameter for varying the strength, and a synthesis means for synthesizing the output of the PI adjustment means and the output of the parameter multiplication means to have a differentiating function. Degree adjustment device. However, in the above equation, α and β are adjustment parameters and T I
Is the integration time and s is the Laplace operator.
【請求項3】 目標値から得られる補正目標値と制御対
象からの制御量との偏差が零となるように調節手段によ
ってPI調節演算を実行し、得られたPI調節演算信号
を用いて制御対象を制御する調節装置において、 前記目標値SVn に{1+[(α−1)αβTI ・s]
/(1+βTI ・s)}を乗算して静特性成分要素SV
n と動特性成分要素{[(α−1)αβTI ・s]/
(1+βTI ・s)}・SVn とに分離するとともに、
これら両成分要素の合成出力を前記補正目標値とする補
正目標値演算手段と、前記動特性成分要素の出力に微分
項の強さを可変するための調整パラメータを乗算するパ
ラメータ乗算手段と、前記PI調節手段の出力とパラメ
ータ乗算手段の出力とを合成し微分機能をもたせる合成
手段とを備えたことを特徴とする2自由度調節装置。但
し、上式においてα,βは調整パラメータ、TI は積分
時間、sはラプラス演算子である。
3. The PI adjustment calculation is executed by the adjusting means so that the deviation between the correction target value obtained from the target value and the control amount from the controlled object is zero, and the PI adjustment calculation signal obtained is used for control. In an adjusting device for controlling an object, {1 + [(α-1) αβT I · s] is added to the target value SVn.
Static characteristic component element SV by multiplying / (1 + βT I · s)}
n and the dynamic characteristic component element {[(α-1) αβT I · s] /
(1 + βT I · s)} · SVn and
Correction target value calculation means for making the combined output of these two component elements the correction target value; parameter multiplication means for multiplying the output of the dynamic characteristic component element by an adjustment parameter for varying the strength of the differential term; A two-degree-of-freedom adjusting device comprising: a combining unit that combines the output of the PI adjusting unit and the output of the parameter multiplying unit and has a differentiating function. However, in the above equation, α and β are adjustment parameters, T I is an integration time, and s is a Laplace operator.
【請求項4】 目標値から得られる補正目標値と制御対
象からの制御量との偏差が零となるように調節手段によ
ってPI調節演算を実行し、得られたPI調節演算信号
を用いて制御対象を制御する調節装置において、 前記目標値SVn に{1+(α−1)[1−(1/(1
+βTI ・s))]}乗算して静特性成分要素SVn と
動特性成分要素{(α−1)[1−(1/(1+βTI
・s))]}・SVn とに分離するとともに、これら両
成分要素の合成出力を前記補正目標値とする補正目標値
演算手段と、前記動特性成分要素の出力に微分項の強さ
を可変するための調整パラメータを乗算するパラメータ
乗算手段と、前記PI調節手段の出力とパラメータ乗算
手段の出力とを合成し微分機能をもたせる合成手段とを
備えたことを特徴とする2自由度調節装置。但し、上式
においてα,βは調整パラメータ、TI は積分時間、s
はラプラス演算子である。
4. The PI adjustment calculation is executed by the adjusting means so that the deviation between the correction target value obtained from the target value and the control amount from the controlled object becomes zero, and control is performed using the obtained PI adjustment calculation signal. In an adjusting device for controlling an object, the target value SVn is {1+ (α-1) [1- (1 / (1
+ ΒT I · s))]} and multiply it by static characteristic component element SVn and dynamic characteristic component element {(α-1) [1- (1 / (1 + βT I
.S))]} .. SVn, and at the same time, the correction target value calculating means for making the combined output of these two component elements the correction target value, and the strength of the differential term for the output of the dynamic characteristic component element are varied. A two-degree-of-freedom adjusting device comprising: a parameter multiplying unit that multiplies an adjustment parameter for performing the adjustment; and a combining unit that combines the output of the PI adjusting unit and the output of the parameter multiplying unit and has a differentiating function. However, in the above equation, α and β are adjustment parameters, T I is integration time, and s
Is the Laplace operator.
JP06006900A 1994-01-26 1994-01-26 2-DOF adjustment device Expired - Lifetime JP3124169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06006900A JP3124169B2 (en) 1994-01-26 1994-01-26 2-DOF adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06006900A JP3124169B2 (en) 1994-01-26 1994-01-26 2-DOF adjustment device

Publications (2)

Publication Number Publication Date
JPH07210204A true JPH07210204A (en) 1995-08-11
JP3124169B2 JP3124169B2 (en) 2001-01-15

Family

ID=11651113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06006900A Expired - Lifetime JP3124169B2 (en) 1994-01-26 1994-01-26 2-DOF adjustment device

Country Status (1)

Country Link
JP (1) JP3124169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087790A (en) * 2011-10-13 2013-05-13 Fuji Electric Co Ltd Inductive load control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087790A (en) * 2011-10-13 2013-05-13 Fuji Electric Co Ltd Inductive load control device

Also Published As

Publication number Publication date
JP3124169B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
KR920004079B1 (en) Process controller and method
JPH096404A (en) Digital pid controller
JP2772106B2 (en) 2-DOF adjustment device
US5544039A (en) Process control system
JPH06119001A (en) Controller
JP4648448B2 (en) Closed loop process control device including PID regulator
JPH07210204A (en) Two-degree-of-freedom adjusting device
JP2839626B2 (en) 2-DOF adjustment device
JP6979330B2 (en) Feedback control method and motor control device
JPS629405A (en) Process controller
JPH07253803A (en) Regulator with two degree of freedom
JP3034404B2 (en) 2-DOF PID adjustment device
JPS6277603A (en) Process controller
JP2752230B2 (en) 2-DOF control device
JP2752240B2 (en) Target value tracking speed responsive 2-DOF adjustment device
JP3448210B2 (en) Closed loop process controller including PID regulator
JP2645112B2 (en) Gain adaptive control device
JPH08314503A (en) Adaptive controller
JP2885544B2 (en) Dead time compensation controller
JP3004152B2 (en) 2-DOF PID adjustment device
JP2809849B2 (en) 2-DOF adjustment device
JP2521259B2 (en) Control system complement device
JPH03296802A (en) Device for controlling two degrees of freedom
JPH06202710A (en) Pid controller
JP2004264979A (en) Servo control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111027

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131027

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term