JPH07142091A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH07142091A
JPH07142091A JP5289001A JP28900193A JPH07142091A JP H07142091 A JPH07142091 A JP H07142091A JP 5289001 A JP5289001 A JP 5289001A JP 28900193 A JP28900193 A JP 28900193A JP H07142091 A JPH07142091 A JP H07142091A
Authority
JP
Japan
Prior art keywords
container
current collector
positive
negative
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5289001A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Nose
博義 能勢
Yoshikazu Kobayashi
義和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP5289001A priority Critical patent/JPH07142091A/en
Publication of JPH07142091A publication Critical patent/JPH07142091A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To decrease internal short circuit, make thin, and increase capacity by interposing a current collector, in which a slit with burr at the cut edge of the slit is installed, between a positive electrode and a positive container and/or between a negative electrode and a negative container. CONSTITUTION:A slit with a dimension of 200X100mum is installed in a specified space in a 0.1mm thick SUS 304 plate by using a mold with a square cutting punch to manufacture a positive current collector 2. A negative current collector 6 is manufactured in the same process. A positive electrode 3 is placed on the inside of a stainless steel positive container 1 through the positive current collector 2. An electrolyte prepared by dissolving lithium perchlorate in propylene carbonate is impregnated in a polypropylene nonwoven fabric separator 4, and the separator 4 is placed on the positive electrode 3. A negative electrode 7 is placed on the inside of a stainless steel negative container 5 through the negative current collector 6. The negative container 5 is fit to the opening of the positive container through an insulating gasket 8, and the container 1 is caulked to seal the positive electrode 3, the separator 4, and the negative electrode 5 inside the containers 1, 5 to fabricate a battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スリット切断端部にバ
リを有するスリットを設けた集電体を電極体とその電極
容器との間に介在させた非水溶媒二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery in which a current collector having slits having burrs at slit ends is interposed between an electrode body and its electrode container.

【0002】[0002]

【従来の技術】従来、非水溶媒二次電池としては、金属
リチウムのシートからなる負極を負極端子を兼ねる負極
容器に着設し、遷移金属のカルコゲン化合物等からなる
正極を正極端子を兼ねる正極容器に着設して、前記正負
両極の間に電解液を含むセパレータを介在させるよう
に、前記両容器を気密に封口した構造のものが知られて
いる。このような非水溶媒二次電池は、高いエネルギー
密度を有することが確認されている。
2. Description of the Related Art Conventionally, as a non-aqueous solvent secondary battery, a negative electrode made of a sheet of metal lithium is attached to a negative electrode container which also serves as a negative electrode terminal, and a positive electrode made of a transition metal chalcogen compound also serves as a positive electrode terminal. There is known a structure in which both containers are attached airtightly so that a separator containing an electrolytic solution is interposed between the positive and negative electrodes. It has been confirmed that such a non-aqueous solvent secondary battery has a high energy density.

【0003】しかしながら、上記構造の非水溶媒二次電
池においては、負極として金属リチウムシートをそのま
ま使用しているため、放電時にイオンとして溶出したリ
チウムが充電時にデンドライトとして負極体上に析出・
成長する。このリチウムデンドライトは活性が高く、非
水溶媒を分解するため、電池の充放電サイクル特性を劣
化させ、デンドライトの成長が進むと、デンドライトが
セパレータを通過して正負極間が短絡するという問題を
生じる。
However, in the non-aqueous solvent secondary battery having the above structure, since the metal lithium sheet is used as it is as the negative electrode, lithium eluted as ions during discharging is deposited as dendrites on the negative electrode during charging.
grow up. This lithium dendrite is highly active and decomposes non-aqueous solvents, which deteriorates the charge / discharge cycle characteristics of the battery, and when the dendrite grows, it causes a problem that the dendrite passes through the separator and short-circuits between the positive and negative electrodes. .

【0004】上記問題の解決方法として、有機高分子化
合物やコークス、ピッチ等を焼成して得られる炭素質材
料;または、人造グラファイトや天然グラファイト等の
炭素質材料にリチウムもしくはリチウムを主成分とする
アルカリ金属合金を含有させた、例えばペレット状の負
極を使用することが試みられている。このような負極を
用いることによって、前述のリチウムデンドライトの析
出・成長を防止することが可能となった。
As a method for solving the above problems, a carbonaceous material obtained by firing an organic polymer compound, coke, pitch or the like; or a carbonaceous material such as artificial graphite or natural graphite containing lithium or lithium as a main component. Attempts have been made to use, for example, a pellet-shaped negative electrode containing an alkali metal alloy. By using such a negative electrode, it becomes possible to prevent the above-mentioned precipitation and growth of lithium dendrite.

【0005】しかしながら、ペレット状等の形状に成形
された負極は、従来用いられていた金属リチウムシート
からなる負極と異なり、炭素質材料にリチウム等が分散
された構成であるため、負極端子を兼ねる負極容器と負
極との間の接触抵抗が増大する。その結果、非水溶媒二
次電池の内部抵抗も増大し、大電流放電が阻害されると
いう新たな問題が生じる。
However, the negative electrode formed into a pellet shape or the like is different from the conventionally used negative electrode made of a metallic lithium sheet in that it has a structure in which lithium or the like is dispersed in a carbonaceous material, and therefore also serves as a negative electrode terminal. The contact resistance between the negative electrode container and the negative electrode increases. As a result, the internal resistance of the non-aqueous solvent secondary battery also increases, which causes a new problem of hindering large current discharge.

【0006】上記接触抵抗を低減するためには、例えば
負極を導電性網体等に圧着して、該網体を介して負極を
負極容器に着設する方法が考えられる。
In order to reduce the contact resistance, for example, a method in which the negative electrode is pressure-bonded to a conductive mesh body or the like and the negative electrode is attached to the negative electrode container via the mesh body can be considered.

【0007】しかしながら、充放電時に正負極はかなり
の厚み範囲において膨張するため、このような網体では
非水溶媒二次電池の薄型化が図れないという問題を招
く。
However, since the positive and negative electrodes expand in a considerable thickness range during charging and discharging, such a mesh causes a problem that the non-aqueous solvent secondary battery cannot be thinned.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、前述
の問題を解決して、内部抵抗の小さい、薄型化・高容量
化された非水溶媒二次電池を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a thin, high capacity non-aqueous solvent secondary battery having a small internal resistance.

【0009】[0009]

【課題を解決するための手段】本発明は、正極体、負極
体、セパレータおよび該セパレータに保持される電解液
を含む非水溶媒二次電池において、スリット切断端部に
バリを有するスリットを設けた集電体を、該正極体と正
極容器および/または該負極体と負極容器の間に介在さ
せることを特徴とする非水溶媒二次電池に関する。
The present invention provides a non-aqueous solvent secondary battery containing a positive electrode body, a negative electrode body, a separator and an electrolytic solution held by the separator, and a slit having a burr at a cut end thereof. The non-aqueous solvent secondary battery is characterized in that the current collector is interposed between the positive electrode body and the positive electrode container and / or the negative electrode body and the negative electrode container.

【0010】本発明に用いる集電体は、金属板を切り裂
いて穴を開けたものであり、切り裂かれた部分の端部
は、表面から裏面へ向けてバリ状に残っている。したが
って、正負極のペレットに上記集電体を圧着すると、切
り裂かれたバリ状の端部がペレットに突き刺さるため、
電極と集電体との密着性を向上させる。また、該集電体
に用いる金属板は、網体、エキスパンドメタル、パンチ
ドメタル等と異なり、薄膜加工が可能であり、切り裂か
れたスリットの形状も自由に選択することができるた
め、非水溶媒二次電池の薄膜化および電池容量を増大す
ることが可能となる点で有利である。
The current collector used in the present invention is obtained by cutting a metal plate to make a hole, and the end of the cut portion remains in a burr shape from the front surface to the back surface. Therefore, when the current collector is pressure-bonded to the positive and negative electrode pellets, the dissected burr-like ends pierce the pellets,
Improves the adhesion between the electrode and the current collector. Further, unlike the net body, expanded metal, punched metal, etc., the metal plate used for the current collector can be processed into a thin film and the shape of the slit slit can be freely selected. It is advantageous in that the solvent secondary battery can be thinned and the battery capacity can be increased.

【0011】上記集電体に用いる金属の材質としては、
例えば、ニッケル、クロム、銅、ステンレス、アルミニ
ウム等を挙げることができる。集電体の厚みは電池のサ
イズにより異なるが、通常10〜500μm の範囲が好
ましい。
The metal material used for the current collector is
For example, nickel, chromium, copper, stainless steel, aluminum, etc. can be mentioned. Although the thickness of the current collector varies depending on the size of the battery, it is usually preferably in the range of 10 to 500 μm.

【0012】切り裂かれたスリットの形状および寸法は
特に限定されるものではなく、例えば、四角形、円形、
楕円形、三角形等を挙げることができ、その寸法は、例
えば、四角形の形状においては一辺の長さが5〜500
μm の範囲、円形では直径が2〜500μm の範囲が好
ましい。また、切り裂かれた端部のバリは、金属板面に
対して30〜150°、好ましくは60〜120°、さ
らに好ましくは80〜100°の範囲で立ち上がってい
るのが望ましい。なお、上記形状を有する集電体は、そ
の片側または両側から、切り裂きパンチの付いた型によ
って所定ピッチに切り裂くことにより得られる。
The shape and the size of the slit slit are not particularly limited, and include, for example, a square, a circle,
Examples of the shape include an oval shape and a triangle shape. For example, in the case of a quadrangular shape, one side has a length of 5 to 500.
The diameter is preferably in the range of 2 to 500 μm in the case of a circle. Further, it is desirable that the burrs at the torn ends rise up in the range of 30 to 150 °, preferably 60 to 120 °, and more preferably 80 to 100 ° with respect to the metal plate surface. The current collector having the above shape can be obtained by slicing the current collector from one side or both sides to a predetermined pitch with a die having a severing punch.

【0013】本発明に用いる正極としては、例えばMn
2 、LiMn24 、Li2 MnO3 およびγ−Mn
2 とβ−MnO2 の混合物、V25 、MoS2 、W
3、TiS2 、NiPS3 、FePS3 、VSe2
の遷移金属カルコゲン化合物を活物質とし、これにアセ
チレンブラックをはじめとするカーボンブラック、ニッ
ケル粉末等の導電性材料およびポリエチレン、ポリプロ
ピレン、ポリテトラフルオロエチレン、ポリアクリル
酸、ポリアクリル酸塩等の結着剤を配合した組成のもの
を用いることができる。
The positive electrode used in the present invention is, for example, Mn.
O 2 , LiMn 2 O 4 , Li 2 MnO 3 and γ-Mn
Mixture of O 2 and β-MnO 2 , V 2 O 5 , MoS 2 , W
A transition metal chalcogen compound such as O 3 , TiS 2 , NiPS 3 , FePS 3 , or VSe 2 is used as an active material, and carbon black such as acetylene black, a conductive material such as nickel powder, and polyethylene, polypropylene, polytetra A composition containing a binder such as fluoroethylene, polyacrylic acid, or polyacrylic acid salt can be used.

【0014】本発明に用いる負極は例えば次のような方
法によって作製される。まず、有機高分子化合物をアル
ゴン、窒素等の不活性ガス雰囲気において、500〜3
000℃の温度および常圧もしくは減圧下の条件下に焼
成する。この焼成粉末に正極に用いたものと同様の結着
剤を添加混合し、ペレット状等の所望の形状に成形す
る。次いで、この成形体にリチウムもしくはリチウムを
主成分とするアルカリ金属合金を含有させて負極とする
ものである。
The negative electrode used in the present invention is produced, for example, by the following method. First, the organic polymer compound is added in an atmosphere of an inert gas such as argon or nitrogen to 500 to 3
Baking is performed at a temperature of 000 ° C. and under normal pressure or reduced pressure. A binder similar to that used for the positive electrode is added to and mixed with this fired powder to form a desired shape such as a pellet. Next, this molded body is made to contain lithium or an alkali metal alloy containing lithium as a main component to form a negative electrode.

【0015】前記有機化合物としては、フェノール樹
脂、ポリアクリロニトリル、セルロース等を用いること
ができる。
As the organic compound, phenol resin, polyacrylonitrile, cellulose or the like can be used.

【0016】前記リチウムもしくはリチウムを主成分と
するアルカリ金属合金を前記ペレット状等の成形体に含
有させる方法としては、蒸着法、化学含浸法、電解含浸
法等を採用することができる。なお、前記アルカリ金属
合金は、リチウムを90重量%以上含有するものを用い
ることが好ましい。
As a method of incorporating the lithium or the alkali metal alloy containing lithium as a main component into the pellet-shaped molded body, a vapor deposition method, a chemical impregnation method, an electrolytic impregnation method or the like can be adopted. The alkali metal alloy preferably contains 90% by weight or more of lithium.

【0017】セパレータには、例えばポリエチレン、ポ
リプロピレン等のポリオレフィン系樹脂の不織布や、こ
れらの多孔膜などを用いることができる。
As the separator, for example, a nonwoven fabric of polyolefin resin such as polyethylene or polypropylene, or a porous film of these can be used.

【0018】電解液としては、例えばプロピレンカーボ
ネート、エチレンカーボネート、1,2−ジメトキシエ
タン、γ−ブチロラクトン、2−メチルテトラヒドロフ
ラン等から選ばれる一種以上の非水有機溶媒に、LiC
lO4 、LiPF6 、LiBF4 等の電解質を0.2〜
1.5mol/L の濃度で溶解させたものを用いることがで
きる。
As the electrolytic solution, for example, one or more non-aqueous organic solvents selected from propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran, etc., and LiC
The electrolyte such as 10 4 , LiPF 6 , and LiBF 4 is 0.2 to
What was dissolved at a concentration of 1.5 mol / L can be used.

【0019】[0019]

【発明の効果】本発明により、正極と正極容器の間およ
び/または負極と負極容器の間の電気的接触抵抗を低減
させることができる。その結果、良好な充放電特性、衝
撃・振動に対する安定な特性を有し、さらに薄膜化、高
信頼化を達成した非水溶媒二次電池を提供することが可
能である。
According to the present invention, the electrical contact resistance between the positive electrode and the positive electrode container and / or between the negative electrode and the negative electrode container can be reduced. As a result, it is possible to provide a non-aqueous solvent secondary battery having good charge and discharge characteristics, stable characteristics against shock and vibration, and further achieving thin film and high reliability.

【0020】[0020]

【実施例】以下に、本発明を実施例によってさらに詳細
に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0021】実施例1 (1)正極の作製 正極活物質には、五酸化バナジウムを用いた。この活物
質に導電性材料としてアセチレンブラックを、また結着
剤としてポリテトラフルオロエチレン粉末を、活物質:
導電性材料:結着剤の重量比が90:6:4になるよう
に添加・混合し、ペレット状に加圧成形して正極とし
た。
Example 1 (1) Preparation of Positive Electrode Vanadium pentoxide was used as the positive electrode active material. To this active material, acetylene black as a conductive material, and polytetrafluoroethylene powder as a binder, the active material:
The conductive material and the binder were added and mixed so that the weight ratio was 90: 6: 4, and the mixture was pressed into pellets to obtain a positive electrode.

【0022】(2)負極の作製 フェノール樹脂粉末を、空気中において1,000℃の
温度で3時間焼成して、炭素質粉末を得た。この粉末に
結着剤として、ポリエチレン粉末を、炭素質粉末:結着
剤の重量比が93:7になるように添加・混合し、ペレ
ット状に加圧成形した。次いで、このペレット状成形体
を、リチウムを10重量%含有するように電解含浸して
負極とした。
(2) Preparation of Negative Electrode Phenolic resin powder was fired in air at a temperature of 1,000 ° C. for 3 hours to obtain a carbonaceous powder. Polyethylene powder as a binder was added and mixed to this powder so that the weight ratio of carbonaceous powder: binder was 93: 7, and the mixture was pressed into pellets. Next, this pellet-shaped molded body was electrolytically impregnated so as to contain 10% by weight of lithium to obtain a negative electrode.

【0023】(3)集電体の作製 厚さ0.1mmのSUS304板に、四角の切り裂きパン
チ付型を用いて、200μm ×100μm のスリットを
所定ピッチで設け、正極用集電体を作製した。一方、厚
さ0.1mmのニッケル板を用いて同様にスリットを設け
て負極用集電体とした。なお、このようにして作製した
集電体の上面を顕微鏡観察した概略図を図2に、孔の一
つのバリを同じく顕微鏡で観察した概略図を図3にそれ
ぞれに示す。図2においては、黒く四角に塗りつぶされ
ている部分が孔を示す。図3においては、山形の部分が
バリを示す。なお、図2および図3は集電体の顕微鏡写
真をもとにした概略図である。
(3) Production of Current Collector A positive electrode current collector was produced by forming slits of 200 μm × 100 μm on a SUS304 plate having a thickness of 0.1 mm at a predetermined pitch using a square slit punching die. . On the other hand, a nickel plate having a thickness of 0.1 mm was similarly provided with slits to obtain a negative electrode current collector. Note that FIG. 2 shows a schematic view of the upper surface of the current collector produced in this way under a microscope, and FIG. 3 shows a schematic view of one burr of the hole under a microscope. In FIG. 2, the black squares indicate the holes. In FIG. 3, a mountain-shaped portion indicates a burr. 2 and 3 are schematic diagrams based on micrographs of the current collector.

【0024】(4)電池の組み立て 図1は本発明にかかる非水溶媒二次電池の断面図であ
る。該非水溶媒二次電池を、以下のようにして組み立て
た。まず、厚さ0.3mmのステンレス鋼からなる正極容
器(1)の内面に、正極用集電体(2)を介して正極
(3)を収納した。プロピレンカーボネートに過塩素リ
チウムを1mol/L の濃度になるように溶解した電解液を
ポリプロピレン不織布に含浸させたセパレータ(4)
を、前記正極(3)上に載置した。厚さ0.3mmのステ
ンレス鋼からなる負極容器(5)の内面に、負極用集電
体(6)を介して負極(7)を着設した。最後に、前記
正極容器(1)の開口部に、絶縁ガスケット(8)を介
して前記負極容器(5)を嵌合し、正極容器(1)をか
しめ加工し、次いで正極容器(1)と負極容器(5)内
に、正極(3)、セパレータ(4)および負極(5)を
密閉して、外径20mm、厚さ2.5mmのコイン形非水溶
媒二次電池を組み立てた。
(4) Assembly of Battery FIG. 1 is a sectional view of a non-aqueous solvent secondary battery according to the present invention. The non-aqueous solvent secondary battery was assembled as follows. First, the positive electrode (3) was housed in the inner surface of the positive electrode container (1) made of stainless steel having a thickness of 0.3 mm via the positive electrode current collector (2). Separator (4) in which polypropylene nonwoven fabric is impregnated with an electrolytic solution prepared by dissolving lithium perchlorate in propylene carbonate to a concentration of 1 mol / L.
Was placed on the positive electrode (3). A negative electrode (7) was attached to the inner surface of a negative electrode container (5) made of stainless steel having a thickness of 0.3 mm via a negative electrode current collector (6). Finally, the negative electrode container (5) is fitted into the opening of the positive electrode container (1) through an insulating gasket (8), the positive electrode container (1) is caulked, and then the positive electrode container (1) is formed. The positive electrode (3), the separator (4) and the negative electrode (5) were sealed in the negative electrode container (5) to assemble a coin type non-aqueous solvent secondary battery having an outer diameter of 20 mm and a thickness of 2.5 mm.

【0025】(5)充放電サイクル試験 上記のように組み立てた電池を、1mAの定電流で3.4
Vになるまで充電し、次いで同じく1mAの定電流で1.
8Vまで放電し、この充放電を1サイクルとする充放電
サイクル試験を行った。初期放電容量を100%とした
場合の各サイクルにおける容量維持率を測定した。結果
を図4に示す。
(5) Charge / Discharge Cycle Test The battery assembled as described above was used at a constant current of 1 mA for 3.4.
Charge until it reaches V, then 1.
The battery was discharged to 8 V, and a charge / discharge cycle test was conducted with this charge / discharge as one cycle. The capacity retention rate in each cycle when the initial discharge capacity was 100% was measured. The results are shown in Fig. 4.

【0026】(6)衝撃試験 上記のように組み立てた電池を、1.5mの高さから板
厚3cmのラワン板上に自由落下させ、落下前後の電池の
閉路電圧の変化量を図6に、同じく内部抵抗の変化量を
図7にそれぞれ示す。なお、閉路電圧は、負荷抵抗1 k
Ω、接続時間0.2秒の条件下に測定した。
(6) Impact Test The battery assembled as described above was allowed to fall freely from a height of 1.5 m onto a Lauan plate with a plate thickness of 3 cm, and the change amount of the closed circuit voltage of the battery before and after the drop is shown in FIG. Similarly, the amount of change in internal resistance is shown in FIG. The closed circuit voltage is the load resistance 1 k.
Ω and the connection time was 0.2 seconds.

【0027】実施例2 負極としてリチウム−アルミニウム合金を用い、負極用
集電体を着設しなかった以外は実施例1と同様のコイン
形非水溶媒二次電池を組み立て、充放電サイクル試験お
よび衝撃試験を行った。結果を図5、6および7にそれ
ぞれ示す。
Example 2 A coin type non-aqueous solvent secondary battery was assembled in the same manner as in Example 1 except that a lithium-aluminum alloy was used as the negative electrode and no negative electrode current collector was attached, and a charge / discharge cycle test and An impact test was conducted. The results are shown in Figures 5, 6 and 7, respectively.

【0028】実施例3 負極としてリチウム−アルミニウム合金を用い、正極用
集電体を着設しなかった以外は、実施例1と同様のコイ
ン形非水溶媒二次電池を組み立て、充放電サイクル試験
および衝撃試験を行った。結果を図5、6および7にそ
れぞれ示す。
Example 3 A coin-shaped non-aqueous solvent secondary battery was assembled in the same manner as in Example 1 except that a lithium-aluminum alloy was used as the negative electrode and no current collector for the positive electrode was attached, and a charge / discharge cycle test was conducted. And an impact test was performed. The results are shown in Figures 5, 6 and 7, respectively.

【0029】比較例1 正極集電体に線径0.1mm、20メッシュのSUS30
4網体を用い、負極集電体に同じく線径0.1mm、20
メッシュのニッケル網体を用いた以外は、実施例1と同
様のコイン形非水溶媒二次電池を組み立て、充放電サイ
クル試験および衝撃試験を行った。結果を図4、6およ
び7にそれぞれ示す。
Comparative Example 1 SUS30 having a wire diameter of 0.1 mm and 20 mesh as a positive electrode current collector
Using 4 meshes, the negative electrode current collector also has a wire diameter of 0.1 mm, 20
A coin-shaped non-aqueous solvent secondary battery was assembled in the same manner as in Example 1 except that a mesh nickel net was used, and a charge / discharge cycle test and an impact test were performed. The results are shown in Figures 4, 6 and 7, respectively.

【0030】比較例2 負極としてリチウム−アルミニウム合金を用い、正負極
ともに集電体を未着設とした以外、実施例1と同様のコ
イン形非水溶媒二次電池を組み立て、充放電サイクル試
験および衝撃試験を行った。結果を図5、6および7に
それぞれ示す。
Comparative Example 2 A coin-type non-aqueous solvent secondary battery was assembled in the same manner as in Example 1 except that a lithium-aluminum alloy was used as the negative electrode and a current collector was not attached to both the positive and negative electrodes, and a charge / discharge cycle test was conducted. And an impact test was performed. The results are shown in Figures 5, 6 and 7, respectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコイン形非水溶媒二次電池の断面図で
ある。
FIG. 1 is a cross-sectional view of a coin type non-aqueous solvent secondary battery of the present invention.

【図2】本発明の電極用集電体の上面を顕微鏡で観察し
た概略図である。
FIG. 2 is a schematic view of an upper surface of an electrode current collector of the present invention observed with a microscope.

【図3】本発明の電極用集電体に設けた孔の一つのバリ
を顕微鏡で観察した概略図である。
FIG. 3 is a schematic view of a burr of one of the holes provided in the current collector for an electrode of the present invention, which is observed with a microscope.

【図4】充放電サイクルと容量維持率の関係を示す充放
電サイクル特性図である。
FIG. 4 is a charge / discharge cycle characteristic diagram showing the relationship between the charge / discharge cycle and the capacity retention rate.

【図5】充放電サイクルと容量維持率の関係を示す充放
電サイクル特性図である。
FIG. 5 is a charge / discharge cycle characteristic diagram showing the relationship between the charge / discharge cycle and the capacity retention rate.

【図6】衝撃試験による落下前後の閉路電圧の変化量を
示す頻度分布図である。
FIG. 6 is a frequency distribution chart showing the amount of change in closed circuit voltage before and after a drop by an impact test.

【図7】衝撃試験による落下前後の内部抵抗の変化量を
示す頻度分布図である。
FIG. 7 is a frequency distribution chart showing an amount of change in internal resistance before and after a drop by an impact test.

【符号の説明】[Explanation of symbols]

1……正極容器 2……正極集電体 3……正極 4……セパレータ 5……負極容器 6……負極集電体 7……負極 8……絶縁ガスケット 9……孔の手前側のバリ 10…孔の向う側のバリ 11…孔の左側のバリ 12…孔の右側のバリ 1 ... Positive electrode container 2 ... Positive electrode collector 3 ... Positive electrode 4 ... Separator 5 ... Negative electrode container 6 ... Negative electrode collector 7 ... Negative electrode 8 ... Insulation gasket 9 ... Burr on the front side of the hole 10 ... Burr on opposite side of hole 11 ... Burr on left side of hole 12 ... Burr on right side of hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、セパレータおよび該セパレ
ータに保持される電解液を含む非水溶媒二次電池におい
て、スリット切断端部にバリを有するスリットを設けた
集電体を、該正極と正極容器および/または該負極と負
極容器の間に介在させることを特徴とする非水溶媒二次
電池。
1. A non-aqueous solvent secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolytic solution held by the separator, wherein a current collector having a slit having a burr at a slit cutting end is provided with the positive electrode and the positive electrode. A non-aqueous solvent secondary battery characterized by being interposed between a container and / or the negative electrode and the negative electrode container.
JP5289001A 1993-11-18 1993-11-18 Nonaqueous solvent secondary battery Pending JPH07142091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5289001A JPH07142091A (en) 1993-11-18 1993-11-18 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5289001A JPH07142091A (en) 1993-11-18 1993-11-18 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH07142091A true JPH07142091A (en) 1995-06-02

Family

ID=17737562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5289001A Pending JPH07142091A (en) 1993-11-18 1993-11-18 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH07142091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949637A (en) * 1997-04-08 1999-09-07 Honda Giken Kogyo Kabushiki Kaisha Current collector for electric double-layer capacitor
US7803496B2 (en) * 2005-08-09 2010-09-28 Hitachi, Ltd. Fuel cell, fuel cell power source system and electronic devices using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949637A (en) * 1997-04-08 1999-09-07 Honda Giken Kogyo Kabushiki Kaisha Current collector for electric double-layer capacitor
US7803496B2 (en) * 2005-08-09 2010-09-28 Hitachi, Ltd. Fuel cell, fuel cell power source system and electronic devices using the same

Similar Documents

Publication Publication Date Title
US7575830B2 (en) Lithium secondary battery
KR100975773B1 (en) Positive electrode and non-aqueous electrolyte cell
US7749659B2 (en) Nonaqueous electrolyte battery
US6777135B2 (en) Nonaqueous electrolyte secondary cell
US20130095377A1 (en) Lithium cell and method of forming same
US5837397A (en) Laminar (flat or paper-type) lithium-ion battery with slurry anodes and slurry cathodes
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
EP1711971A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP3729155B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP3791797B2 (en) battery
JPH0636800A (en) Lithium secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP3239267B2 (en) Organic electrolyte battery
KR20160053708A (en) Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US11398625B2 (en) Specific negative electrode based on lithium and lithium electrochemical generator comprising such a negative electrode
JPH07142091A (en) Nonaqueous solvent secondary battery
JP3324365B2 (en) Negative electrode for lithium secondary battery
JPH0536401A (en) Lithium secondary battery
JP4750929B2 (en) Non-aqueous electrolyte secondary battery
JPH09259891A (en) Nonaqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JP2002056848A (en) Lithium ion secondary battery
JPH0922738A (en) Secondary battery with organic electrolytic solution
JPH0817468A (en) Non-aqueous electrolytic secondary battery