JPH0713401Y2 - Power storage battery power converter - Google Patents

Power storage battery power converter

Info

Publication number
JPH0713401Y2
JPH0713401Y2 JP11731888U JP11731888U JPH0713401Y2 JP H0713401 Y2 JPH0713401 Y2 JP H0713401Y2 JP 11731888 U JP11731888 U JP 11731888U JP 11731888 U JP11731888 U JP 11731888U JP H0713401 Y2 JPH0713401 Y2 JP H0713401Y2
Authority
JP
Japan
Prior art keywords
power
battery
converter
complete discharge
reactive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11731888U
Other languages
Japanese (ja)
Other versions
JPH0241637U (en
Inventor
武春 久保
誠 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP11731888U priority Critical patent/JPH0713401Y2/en
Publication of JPH0241637U publication Critical patent/JPH0241637U/ja
Application granted granted Critical
Publication of JPH0713401Y2 publication Critical patent/JPH0713401Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【考案の詳細な説明】 A.産業上の利用分野 本考案は、電力貯蔵電池と系統電源との間で電力融通を
行うための電力変換装置に係り、特に電池の完全放電時
の無効電力補償制御に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a power conversion device for accommodating power between a power storage battery and a system power supply, and in particular, reactive power compensation when the battery is completely discharged. Regarding control.

B.考案の概要 本考案は、電池を他励式完全放電装置によって系統電源
側に完全放電するにおいて、 電力融通のための自励式交直変換装置を完全放電時に無
効電力補償制御することにより、 系統電源側への無効電力流出を抑制できるようにしたも
のである。
B. Outline of the Invention The present invention is to completely discharge the battery to the system power source side by the separately-excited complete discharge device, and by performing reactive power compensation control of the self-excited AC-DC converter for power interchange during complete discharge, This is to suppress the reactive power outflow to the side.

C.従来の技術 電力の需要は1日のうちでも大きく変動し、夜間は昼間
に比べて負荷が大きく落ち込む。そこで、軽負荷時に電
力を貯蔵し、ピーク負荷時に貯蔵電力を放出することで
負荷の平準化による電力系統設備の効率的利用が図られ
る。ここで、電力貯蔵には二次電池が採用され、従来の
鉛電池では通常の交直変換装置によって系統電源との間
で充放電を繰り返す電力融通をしているが、過放電によ
る電池電圧が低下し過ぎると電池寿命を著しく縮めるた
め、充放電終止電圧の範囲内でしか使用できない。とこ
ろが、陰極の活物質として亜鉛を用いる二次電池(例え
ば亜鉛臭素電池)では充放電をある程度繰り返すと陰極
にデントライトという突起物が生成され、このため電池
性能が劣化するが、定期的にこの二次電池を完全放電す
ることによってデントライトを溶解し、電池のサイクル
寿命を延ばしている。
C. Conventional technology Electricity demand fluctuates greatly even during the day, and the load at night is significantly lower than at daytime. Therefore, the electric power is stored at the time of light load, and the stored electric power is released at the time of peak load, so that the electric power system equipment can be efficiently used by leveling the load. Here, a secondary battery is adopted for power storage, and in a conventional lead battery, power is repeatedly charged and discharged with a system power supply by an ordinary AC / DC converter, but the battery voltage drops due to overdischarge. If it is too long, the battery life will be significantly shortened, so that the battery can only be used within the range of the charge / discharge end voltage. However, in a secondary battery that uses zinc as an active material of the cathode (for example, a zinc bromine battery), when the charge and discharge are repeated to some extent, a protrusion called a dendrite is generated on the cathode, which deteriorates the battery performance. By completely discharging the secondary battery, Dentrite is dissolved and the cycle life of the battery is extended.

この完全放電を必要とする電池は、従来の交直変換装置
では完全放電までの電圧制御不能のため、第2図に示す
ように完全放電装置を別個に持つ電力変換装置にされ
る。同図において、自励式交直変換装置1はGTOサイリ
スタとフライホイールダイオードを逆並列接続でブリッ
ジ接続された主回路構成にされ、電力貯蔵電池2から切
換スイッチ3及び平滑コンデンサ4を通した直流電力を
系統電源に一致させる周波数,電圧の交流電力に変換
し、この交流電力をトランス5,連系リアクトル6,高調波
抑制フイルタ6A及び開閉器7を通して系統電源8に融通
する。また、交直変換装置1は、系統電源8からの電力
を直流に変換して電池2に貯蔵する。
The battery requiring the complete discharge cannot be voltage controlled until the complete discharge in the conventional AC-DC converter, so that it is used as a power converter having a separate complete discharge device as shown in FIG. In the figure, the self-excited AC / DC converter 1 has a main circuit configuration in which a GTO thyristor and a flywheel diode are bridge-connected in an anti-parallel connection, and DC power from the power storage battery 2 is passed through the changeover switch 3 and the smoothing capacitor 4. The AC power is converted into AC power having a frequency and voltage that match the system power supply, and this AC power is exchanged with the system power supply 8 through the transformer 5, the interconnection reactor 6, the harmonic suppression filter 6A and the switch 7. Further, the AC / DC converter 1 converts electric power from the system power supply 8 into DC and stores it in the battery 2.

一方、電池2の完全放電装置14は、切換スイッチ3から
直流リアクトル9を介して2組のサイリスタブリッジ1
0,11の逆並列回路に接続され、サイリスタブリッジ10,1
1の交流側にトランス12と開閉器13を介して系統電源8
に接続される。この完全放電装置14は、電池2の完全放
電には切換スイッチ3を図示の状態から切換え、サイリ
スタブリッジ11の逆変換動作によって定電流放電を行
い、完全放電終了後に電池2を定格電圧まで充電する初
期充電にはサイリスタブリッジ10の順変換動作によって
行う。
On the other hand, the complete discharge device 14 for the battery 2 includes two sets of thyristor bridges 1 from the changeover switch 3 via the DC reactor 9.
Connected to the anti-parallel circuit of 0,11, thyristor bridge 10,1
System power supply 8 via transformer 12 and switch 13 on the AC side of 1
Connected to. This complete discharge device 14 switches the changeover switch 3 from the state shown in the figure to complete discharge of the battery 2, performs constant current discharge by the reverse conversion operation of the thyristor bridge 11, and charges the battery 2 to the rated voltage after complete discharge. The initial charge is performed by the forward conversion operation of the thyristor bridge 10.

第3図は500KW級電力貯蔵システムでの電力貯蔵電池2
の充放電タイムチャートを示す。同図中、時刻t1までは
交直変換装置1による電力融通期間を示し、時刻t2から
t6までが完全放電及び初期充電の期間を示す。このう
ち、完全放電期間は時刻t2でサイリスタブリッジ11を逆
変換動作させ、時刻t3から順変換動作で逆充電して負電
圧(−50V程度)に維持し、一定期間経過した時刻t4
サイリスタブリッジ11を停止させて完全放電を終了す
る。
Figure 3 shows a power storage battery 2 in a 500KW class power storage system.
The charge-discharge time chart of is shown. In the figure, until the time t 1 represents the power interchange period by alternating current-and-direct current conversion device 1, from time t 2
until t 6 indicated complete discharge and duration of the initial charging. Of these, a full discharge period is the inverse conversion operation of the thyristor bridge 11 in time t 2, the from time t 3 to the reverse charged by the forward transform operation to maintain a negative voltage (about -50 V), the time t 4 when the elapse of a predetermined period of time Then, the thyristor bridge 11 is stopped to complete the complete discharge.

次に、初期充電期間は、時刻t5でサイリスタブリッジ10
の逆変換動作開始で電池2を充電させ、規定電圧まで逆
放電で電池電圧を上昇させ、規定電圧以降は順変換動作
で充電を行い時刻t6でサイリスタブリッジ10を停止して
初期充電を完了する。
Next, during the initial charging period, at time t 5 , the thyristor bridge 10
In the reverse conversion starts to charge the battery 2, to increase the battery voltage in the reverse discharge until the specified voltage, complete the specified voltage after the initial charging stop thyristor bridge 10 at time t 6 was charged in the order conversion To do.

なお、これら完全放電期間と初期充電期間には切換スイ
ッチ3が完全放電装置14側に切換えられ、また同時に開
閉器7の開放と開閉器13の投入がなされ、交直変換装置
1は運転停止される。
During the complete discharge period and the initial charge period, the changeover switch 3 is switched to the complete discharge device 14 side, at the same time, the switch 7 is opened and the switch 13 is opened, and the AC / DC converter 1 is stopped. .

D.考案が解決しようとする課題 従来の装置において、電池の完全放電と初期充電の運転
中には、サイリスタブリッジ10,11が他励式にされるこ
とから系統電源8に大きな遅れ無効電力が流れ、力率の
悪い電力変換装置になる問題があった。
D. Problem to be Solved by the Invention In the conventional device, during operation of complete discharge and initial charge of the battery, since the thyristor bridges 10 and 11 are separately excited, a large delayed reactive power flows to the system power supply 8. , There was a problem of becoming a power converter with a poor power factor.

この無効電力が最も大きいのは第3図の時刻T3〜T4の逆
充電期間になり、直流電圧50V,直流電流200Aでの無効電
力は以下のようになる。
The reactive power is most large reversed charging period of time T 3 through T 4 of FIG. 3, a DC voltage 50 V, the reactive power of a DC current 200A is as follows.

サイリスタブリッジ10,11の直流側電圧Edは Ed=k cosα K;定数、α;サイリスタ制御角 と表わされ、直流電圧(電池電圧)の最大値を1120Vに
するときの制御角αを10°とすると、直流電圧50Vの
制御角αは α=cos-1{50/1120×cosα} =87.5° となる。また、無効電力Q2は有効電力P2から Q2=P2×tanα と表わされることから、 Q2=50(V)×200(A)×tanα =229(KVar) となり、非常に大きな無効電力が系統電源8側に流出す
る。
The DC side voltage E d of the thyristor bridges 10 and 11 is expressed as E d = k cos α K; constant, α; thyristor control angle, and the control angle α 1 when the maximum value of the DC voltage (battery voltage) is 1120 V Is 10 °, the control angle α 2 for a DC voltage of 50 V is α 2 = cos −1 {50/1120 × cos α 1 } = 87.5 °. Further, since the expressed reactive power Q 2 is the active power P 2 and Q 2 = P 2 × tanα 2 , Q 2 = 50 (V) × 200 (A) × tanα 2 = 229 (KVar) , and the very Large reactive power flows out to the system power supply 8 side.

本考案の目的は、電池の完全放電運転による系統への無
効電力流出を抑制できるようにしたものである。
The object of the present invention is to suppress the reactive power outflow to the grid due to the complete discharge operation of the battery.

E.課題を解決するための手段と作用 本考案は上記目的を達成するため、完全放電を必要とす
る電力貯蔵電池と系統電源との間で電力融通を行わせる
自励式交直変換装置と、前記電池と系統電源との間で該
電池の完全放電と初期充電を行わせる完全放電装置とを
備えた電力変換装置において、前記完全放電装置が運転
中に発生する無効電力を前記交直変換装置の無効電力補
償動作で補償する無効電力制御手段を備え、完全放電装
置の運転中に交直変換装置を無効電力補償装置として運
転し、完全放電及び初期充電による無効電力発生分を交
直変換装置によって補償する。
E. Means and Actions for Solving the Problem In order to achieve the above-mentioned object, the present invention provides a self-excited AC / DC converter that allows power to be exchanged between a power storage battery that requires a complete discharge and a system power supply, and In a power conversion device equipped with a complete discharge device for performing a complete discharge and an initial charge of the battery between a battery and a system power supply, reactive power generated during operation of the complete discharge device is converted into reactive power of the AC / DC converter. The reactive power control means for compensating by the power compensating operation is provided, and the AC / DC converter is operated as the reactive power compensator during the operation of the complete discharge device, and the AC / DC converter compensates the reactive power generated by the complete discharge and the initial charge.

F.実施例 第1図は本考案の一実施例を示す装置構成図である。同
図において、自励式交直変換装置15は第2図のトランス
5,リアクトル6,フイルタ6A及び交直変換装置1の構成と
同等にされる。また、完全放電装置16は第2図の直流リ
アクトル9,サイリスタブリッジ10,11及びトランス12の
構成と同等にされる。また、これらの制御装置は夫々内
蔵される。
F. Embodiment FIG. 1 is a device configuration diagram showing an embodiment of the present invention. In the figure, the self-excited AC / DC converter 15 is the transformer of FIG.
5, The reactor 6, the filter 6A, and the AC / DC converter 1 have the same configuration. The complete discharge device 16 has the same structure as the DC reactor 9, the thyristor bridges 10 and 11 and the transformer 12 shown in FIG. In addition, these control devices are incorporated respectively.

無効電力検出回路17は完全放電装置16が完全放電と初期
充電の動作中にその検出電圧と電流位相から系統電源8
に出力する無効電力Qを検出する。一方、無効電力検出
回路18は交直変換装置15が系統電源8に出力する無効電
力Q′を検出する。制御回路19は検出回路17の検出無効
電力Qを目標値とし、検出回路18の検出無効電力Q′を
フイードドバック量として交直変換装置15の無効電力出
力を制御する。
The reactive power detection circuit 17 detects the system voltage 8 from the detected voltage and current phase during the complete discharge and initial charge operation of the complete discharge device 16.
The reactive power Q output to is detected. On the other hand, the reactive power detection circuit 18 detects the reactive power Q ′ output from the AC / DC converter 15 to the system power supply 8. The control circuit 19 controls the reactive power output of the AC / DC converter 15 with the detected reactive power Q of the detection circuit 17 as a target value and the detected reactive power Q ′ of the detection circuit 18 as the feedback amount.

上述の構成において、電池2の完全放電と初期充電には
切換スイッチ3を完全放電装置16側に切換え、開閉器13
を投入するほかに、開閉器7を投入して交直変換装置15
を無効電力補償動作させる。即ち、電池2の完全放電と
初期充電時に完全放電装置16が系統電源8に流出させよ
うとする無効電力を検出回路17が検出し、この検出無効
電力Qと逆の無効電力Q′を交直変換装置15が出力する
よう制御回路19による制御が行なわれる。
In the above configuration, the changeover switch 3 is changed over to the complete discharge device 16 side for complete discharge and initial charge of the battery 2, and the switch 13
In addition to turning on, the switch 7 is turned on to turn the AC / DC converter 15
To operate the reactive power compensation. That is, the detection circuit 17 detects the reactive power that the complete discharge device 16 tries to flow to the system power supply 8 during the complete discharge and the initial charge of the battery 2, and the reactive power Q ′ opposite to the detected reactive power Q is subjected to AC / DC conversion. The control circuit 19 controls the output of the device 15.

この場合、交直変換装置15の制御は、コンデンサ4を直
流電源とし、その電圧が一定に保つ定電圧制御される。
このため、制御回路19はコンデンサ4の電圧と設定電圧
Vpcとの偏差信号を得て無効電力制御を行う。また、交
直変換装置15は本来の電力融通のために充分な電力処理
能力があり、500KW級の電力変換装置ではそれ以上の電
力処理能力を有しており前述の無効電力量229KVarに対
して十分な補償能力を持つ。
In this case, the AC / DC converter 15 is controlled by constant voltage control in which the capacitor 4 is a DC power source and the voltage thereof is kept constant.
Therefore, the control circuit 19 determines the voltage of the capacitor 4 and the set voltage.
Obtain the deviation signal from V pc and perform reactive power control. Further, the AC / DC converter 15 has sufficient power processing capacity for the original power interchange, and has a power processing capacity higher than that of the 500 KW class power converter, which is sufficient for the above-mentioned reactive power amount of 229 KVar. With the ability to compensate.

なお、交直変換装置15の無効電力補償動作は、電池の完
全放電と初期充電の全期間に渡って行なうに限らず、完
全放電装置16が長時間停止(第3図のt4〜t5)して交直
変換装置15の損失が過大となる場合には時刻t4の時点で
補償動作を停止しても良い。この場合、初期充電期間
(第3図のt4〜t6)での無効電力補償ができなくなる
が、この期間は時間的に短いし、完全放電装置16のサイ
リスタ制御角αも平均的には大きくなるため無効電力量
も小さくなり、系統電源8への影響は少ない。
In addition, the reactive power compensation operation of the AC / DC converter 15 is not limited to the complete discharge and initial charge of the battery, and the complete discharge device 16 is stopped for a long time (t 4 to t 5 in FIG. 3). Then, when the loss of the AC / DC converter 15 becomes excessive, the compensating operation may be stopped at time t 4 . In this case, the reactive power compensation cannot be performed during the initial charging period (t 4 to t 6 in FIG. 3), but this period is short in time and the thyristor control angle α of the complete discharge device 16 is also on average. Since it becomes large, the amount of reactive power also becomes small, and the influence on the system power supply 8 is small.

また、交直変換装置15の無効電力補償動作は、該装置15
が電力融通動作を行う場合にも利用でき、このためには
検出回路17の検出量Qに代えて設定値ΔQを与えること
で実現される。また、完全放電装置16からの無効電力補
償分に加えて、系統電源8自体が持つ無効電力分を補償
するために、設定値ΔQを与えることもできる。
Further, the reactive power compensation operation of the AC / DC converter 15 is performed by the device 15
Can also be used in the case of performing the power interchange operation, which is realized by giving the set value ΔQ instead of the detection amount Q of the detection circuit 17. Further, in addition to the reactive power compensation from the complete discharge device 16, a set value ΔQ can be given to compensate for the reactive power of the system power supply 8 itself.

G.考案の効果 以上のとおり、本考案によれば、完全放電装置が発生す
る無効電力を交直変換装置で補償するようにしたため、
電池の完全放電時に発生する大きな無効電力が系統電源
に流出することが無くなり、また装置構成上は無効電力
検出とその制御回路の付加によって実現される効果があ
る。
G. Effect of the Invention As described above, according to the present invention, the reactive power generated by the complete discharge device is compensated by the AC-DC converter.
The large reactive power generated when the battery is completely discharged does not flow out to the system power supply, and the reactive power detection and its control circuit are added in terms of the device configuration.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す装置構成図、第2図は
従来の回路図、第3図は電力貯蔵電池の充放電タイムチ
ャートである。 1…交直変換装置、2…電力貯蔵電池、8…系統電源、
15…自励式交直変換装置、16…完全放電装置、17,18…
無効電力検出回路、19…制御回路。
FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention, FIG. 2 is a conventional circuit diagram, and FIG. 3 is a charge / discharge time chart of a power storage battery. 1 ... AC / DC converter, 2 ... power storage battery, 8 ... system power supply,
15 ... Self-excited AC / DC converter, 16 ... Complete discharge device, 17,18 ...
Reactive power detection circuit, 19 ... Control circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】完全放電を必要とする電力貯蔵電池と系統
電源との間で電力融通を行わせる自励式交直変換装置
と、前記電池と系統電源との間で該電池の完全放電と初
期充電を行わせる完全放電装置とを備えた電力変換装置
において、前記完全放電装置が運転中に発生する無効電
力を前記交直変換装置の無効電力補償動作で補償する無
効電力制御手段を備えたことを特徴とする電力貯蔵電池
の電力変換装置。
1. A self-excited AC / DC converter that allows electric power to be exchanged between a power storage battery that requires a complete discharge and a system power supply, and complete discharge and initial charging of the battery between the battery and the system power supply. In a power conversion device including a complete discharge device for performing the above, a reactive power control means for compensating the reactive power generated during operation of the complete discharge device by a reactive power compensation operation of the AC / DC converter is provided. Power storage battery power conversion device.
JP11731888U 1988-09-06 1988-09-06 Power storage battery power converter Expired - Lifetime JPH0713401Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11731888U JPH0713401Y2 (en) 1988-09-06 1988-09-06 Power storage battery power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11731888U JPH0713401Y2 (en) 1988-09-06 1988-09-06 Power storage battery power converter

Publications (2)

Publication Number Publication Date
JPH0241637U JPH0241637U (en) 1990-03-22
JPH0713401Y2 true JPH0713401Y2 (en) 1995-03-29

Family

ID=31360674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11731888U Expired - Lifetime JPH0713401Y2 (en) 1988-09-06 1988-09-06 Power storage battery power converter

Country Status (1)

Country Link
JP (1) JPH0713401Y2 (en)

Also Published As

Publication number Publication date
JPH0241637U (en) 1990-03-22

Similar Documents

Publication Publication Date Title
Kwon et al. Improved single-phase line-interactive UPS
TWI221695B (en) Uninterruptible power system
JP2543336B2 (en) Superconducting coil energy storage circuit
JPS5920261B2 (en) Uninterruptible power system
JPS6154820A (en) Dc/ac converter of photogenerator system
JPH06266458A (en) Photovoltaic power generating equipment capable of jointly using battery
KR100844401B1 (en) Uninterrupted power supply apparatus with a solar generating apparatus
JPH08223816A (en) Switching method of commercial-system power in inverter system of solar-light power generation
JP4218155B2 (en) Combined power generation system
JP2004112954A (en) Power storage device
JPH0713401Y2 (en) Power storage battery power converter
JP2001045675A (en) Power storage system
JP2568271B2 (en) DC uninterruptible power supply
JP2000152408A (en) Electric vehicle
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
JPH0750850Y2 (en) Power storage battery power converter
JPH08331771A (en) Charge/discharge controller for secondary battery
JPH0336209Y2 (en)
JP2653450B2 (en) Power storage system
JP2000224779A (en) Uninterruptible power supply
JP2619008B2 (en) Grid-connected AC / DC conversion system
JP3591361B2 (en) Switching power supply
KR910003617Y1 (en) Power circuit
JPH07110111B2 (en) Power storage battery AC / DC converter
JPH02164236A (en) Uninterruptible power supply