JPH07111286A - Evaluating method for surface conditions of thin film - Google Patents

Evaluating method for surface conditions of thin film

Info

Publication number
JPH07111286A
JPH07111286A JP5253521A JP25352193A JPH07111286A JP H07111286 A JPH07111286 A JP H07111286A JP 5253521 A JP5253521 A JP 5253521A JP 25352193 A JP25352193 A JP 25352193A JP H07111286 A JPH07111286 A JP H07111286A
Authority
JP
Japan
Prior art keywords
thin film
electrode
source
substrate
isfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5253521A
Other languages
Japanese (ja)
Other versions
JP3013667B2 (en
Inventor
Kazuo Matsuzaki
一夫 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5253521A priority Critical patent/JP3013667B2/en
Publication of JPH07111286A publication Critical patent/JPH07111286A/en
Application granted granted Critical
Publication of JP3013667B2 publication Critical patent/JP3013667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain quickly, simply and quantitatively the information about the top surface of a thin film by bringing an A electrolytic solution into contact with the thin film covering the surface of a substrate, applying a voltage between a substrate electrode and a reference electrode immersed in the electrolytic solution and measuring an output voltage between the source and drain electrodes. CONSTITUTION:An ISFET 10 with an insulating thin film 5 to be measured, which was formed on the surface of a silicon substrate 1, is immersed in an electrolytic solution 7 in a solution tank 6. In this electrolytic solution 7, a glass electrode 8 using AgCl as an electrolytic liquid 81 is immersed as a reference electrode; and a DC voltage from a power source 9 is applied between the glass electrode 8 and a substrate electrode provided at the ISFET 10. Then, a phase boundary potential is generated in response to the flow of electrons at the phase boundary between the electrolytic solution 7 and the thin film 5. Therefore, the cleanliness level of the thin film such as th level of surface conditions related to the absorption site density of surface can be quantitatively evaluated from output voltage between a drain terminal D and a source terminal S of the ISFET 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体基体上に
形成された薄膜を機能性材料として用いる半導体素子の
製造などに利用される薄膜の表面状態の評価方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the surface condition of a thin film used in the manufacture of semiconductor devices, for example, using a thin film formed on a semiconductor substrate as a functional material.

【0002】[0002]

【従来の技術】半導体基体の表面上に形成される酸化膜
あるいは窒化膜などの薄膜の表面清浄度あるいはそれに
対する液体の濡れ性などは、それ以後の半導体素子の製
造工程ないしでき上がった素子の特性に大きな影響をも
つ。従って、任意の段階でそのような薄膜の表面状態に
ついての情報を得て評価することができれば、半導体素
子の特性向上あるいは生産管理の上に極めて有利であ
る。
2. Description of the Related Art The surface cleanliness of a thin film such as an oxide film or a nitride film formed on the surface of a semiconductor substrate or the wettability of a liquid to the surface cleanliness of subsequent semiconductor devices or the characteristics of finished devices. Have a great influence on. Therefore, if information on the surface state of such a thin film can be obtained and evaluated at an arbitrary stage, it is extremely advantageous for improving the characteristics of the semiconductor device or for production control.

【0003】薄膜の表面状態評価方法としては、従来、
イオンマイクロアナライザ (IMA) 、光電子分光装置
(ESCA) 、低速イオン散乱スペクトル装置 (IS
S) 、走査型オージエ電子分光装置 (SAM) 、低速電
子回折 (LEED) 、X線吸収広域連続微細構造 (EX
AFS) 、ラザフォード後方散乱装置 (RBS) などの
機器分析が有効な手段として知られている。表1はこれ
らの機器分析によって得られる情報を示し、◎は非常に
有効、○は有効、Δは条件付有効、×は無効をあらわ
す。
Conventional methods for evaluating the surface condition of thin films have been:
Ion micro analyzer (IMA), photoelectron spectrometer
(ESCA), Slow Ion Scattering Spectrometer (IS
S), scanning Auger electron spectroscopy (SAM), low-speed electron diffraction (LEED), X-ray absorption broad continuous fine structure (EX)
Instrument analysis such as AFS) and Rutherford backscattering device (RBS) is known as an effective means. Table 1 shows the information obtained by these instrumental analyses, ⊚ is very effective, ∘ is effective, Δ is conditionally effective, and × is ineffective.

【0004】[0004]

【表1】 これらの機器を組み合わせることにより、非常に有効な
情報が得られることはよく知られており、このような分
析方法はますます高度化していくものと期待される。
[Table 1] It is well known that very useful information can be obtained by combining these instruments, and it is expected that such analysis methods will become more sophisticated.

【0005】[0005]

【発明が解決しようとする課題】表1に示す各評価手段
は、一般に設備が高価なこと、評価に時間を要するこ
と、薄膜の最表面の情報を得ることが比較的困難なこと
などの欠点を有する。薄膜の最表面の情報を得るために
は、評価が迅速であること、極端に低エネルギーの分析
手段が必要なことなどの制約が不可欠である。濡れ性の
評価などは、最表面の情報を得る一つの手段として以前
より活用されているが、定量的な評価法としては問題が
ある。
Each of the evaluation means shown in Table 1 is generally disadvantageous in that the equipment is expensive, the evaluation takes time, and it is relatively difficult to obtain information on the outermost surface of the thin film. Have. In order to obtain information on the outermost surface of a thin film, constraints such as rapid evaluation and the need for extremely low energy analytical means are essential. The wettability evaluation and the like have been utilized as one means for obtaining information on the outermost surface, but there is a problem as a quantitative evaluation method.

【0006】本発明の目的は、上述の問題を解決し、薄
膜の最表面の情報を、迅速、簡便かつ定量的に得て行う
薄膜の表面状態の評価方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a method for evaluating the surface state of a thin film, by which information on the outermost surface of the thin film can be obtained quickly, simply and quantitatively.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の薄膜の表面状態の評価方法は、第二導電
形のソースおよびドレイン領域が互いに間隔を介して選
択的に形成された第一導電形層の表面がシリコン酸化膜
で覆われ、そのシリコン酸化膜の開口部でソースおよび
ドレイン領域にそれぞれ接触するソース、ドレイン電極
と第一導電形層に接触する基板電極とを備えたシリコン
基体の表面上を評価すべき薄膜により被覆し、その薄膜
に電解質溶液を接触させ、電解質溶液中に浸漬した参照
電極と基板電極との間に電圧を印加したときにソース、
ドレイン電極間の出力電圧を測定し、その測定値を用い
るものとする。参照電極がガラス電極であることが有効
である。またpH値の異なる電解質溶液を用いて測定し
たソース、ドレイン電極間の出力電圧よりpH当たりの
出力電圧を算出してその値を用いることも有効である。
In order to achieve the above object, the method for evaluating the surface state of a thin film according to the present invention is such that the source and drain regions of the second conductivity type are selectively formed with a space between each other. The surface of the first conductivity type layer is covered with a silicon oxide film, and a source electrode and a drain electrode that respectively contact the source and drain regions at the opening of the silicon oxide film and a substrate electrode that contacts the first conductivity type layer are provided. The surface of the silicon substrate is coated with a thin film to be evaluated, an electrolyte solution is brought into contact with the thin film, and a source is applied when a voltage is applied between the reference electrode and the substrate electrode immersed in the electrolytic solution,
The output voltage between the drain electrodes is measured, and the measured value is used. It is effective that the reference electrode is a glass electrode. It is also effective to calculate the output voltage per pH from the output voltage between the source and drain electrodes measured using electrolyte solutions having different pH values and use that value.

【0008】[0008]

【作用】薄膜の表面状態を評価するために、最表面の情
報を迅速、簡便かつ定量的に得る一つの手段として、濡
れ性の評価にみられるように、固/液界面のエネルギー
変化に着目した評価法が考えられる。特に、半導体プロ
セスで形成される薄膜の評価を考えた場合、その評価も
半導体プロセスの中で実現できることが、よりin−situ
的であり、迅速かつ簡便である。本発明は、そのための
手段としてISFET (Ion Sensitive FET)の動作原理
に着目し、それを活用したものである。ISFETの動
作原理は次の通りである。図1はISFETの基体構造
を示す断面図で、N形シリコン基板1の表面に選択的に
P形のソース領域21、ドレイン領域22が形成され、その
ソース、ドレイン領域21、22には、表面上のシリコン酸
化膜3に明けられた接触孔でソース電極41、ドレイン電
極42がそれぞれ接触している。さらにこの上に被測定の
絶縁物薄膜5を形成したものである。このISFET10
を、図2のように液槽6の電解質溶液7に浸す。この電
解質溶液7には、電解質液81としてAgClを用いたガラス
電極8が参照電極として浸漬され、ガラス電極8とIS
FET10に設けられた図示しない基板電極との間には、
電源9により直流電圧が印加される。図1の構造を有す
るISFET10を電解質溶液7に浸すことにより、電解
質溶液7と薄膜5との界面での電子の授受の程度に応じ
て界面電位が発生する。ISFET10のソース端子Sと
ドレイン端子Dの間の出力電圧と薄膜5の表面状態との
関係は、例えばW. M.SinらによりIEEE Trans on
ED、Vol ED−26(1979)p.1805 あるいは中嶋らによ
り日本化学会誌 (1980) No.10 、p.1499 に述べられて
いるように、‘Site Binding Model’として既に説明さ
れている。このモデルは、電解質溶液と薄膜との界面
で、(1) 電子の授受が完全に行われるケースと、(2) 電
子の授受が全く行われないケースの二つの両極端のケー
スの中間のケースで、いわば現実の系を取り扱うモデル
である。(1) のケースはネルンストの式に従う理想系で
あって、‘Site Binding Model’では電解質溶液と接す
る薄膜表面にあるイオンや原子の吸着サイトの密度が高
い場合に相当し、pH当たりの出力は2.3kT/q (=
59mV) となる。すなわち、pH当たりの出力を評価す
ることで、薄膜表面の吸着サイトの密度が見積もれると
いう仕組みである。表2に示すように、ISFETの各
種のゲート表面材料についてpH当たりの出力を評価し
た結果が報告されている。〔松尾:応用物理、49巻(198
0)p586 など参照) 。
[Function] As one means for quickly, easily and quantitatively obtaining information on the outermost surface in order to evaluate the surface state of a thin film, attention is paid to the energy change at the solid / liquid interface as seen in the evaluation of wettability. The evaluation method can be considered. In particular, when considering the evaluation of thin films formed in semiconductor processes, it is more in-situ that the evaluation can be realized in semiconductor processes.
It is targeted, quick and convenient. The present invention focuses on the operating principle of an ISFET (Ion Sensitive FET) as a means for that purpose, and utilizes it. The operating principle of the ISFET is as follows. FIG. 1 is a cross-sectional view showing a base structure of an ISFET. A P-type source region 21 and a drain region 22 are selectively formed on the surface of an N-type silicon substrate 1, and the source and drain regions 21 and 22 have a surface. The source electrode 41 and the drain electrode 42 are in contact with each other through the contact holes formed in the upper silicon oxide film 3. Further, an insulator thin film 5 to be measured is formed on this. This ISFET10
Is immersed in the electrolyte solution 7 in the liquid tank 6 as shown in FIG. In this electrolyte solution 7, a glass electrode 8 using AgCl as an electrolyte solution 81 is immersed as a reference electrode, and the glass electrode 8 and IS
Between the substrate electrode (not shown) provided on the FET 10,
A DC voltage is applied by the power supply 9. By immersing the ISFET 10 having the structure shown in FIG. 1 in the electrolyte solution 7, an interface potential is generated according to the degree of electron transfer at the interface between the electrolyte solution 7 and the thin film 5. The relationship between the output voltage between the source terminal S and the drain terminal D of the ISFET 10 and the surface state of the thin film 5 is described by, for example, WM Sin et al.
ED, Vol ED-26 (1979) p.1805 or Nakajima et al., As already described as "Site Binding Model", as described in Chemical Society of Japan (1980) No.10, p.1499. This model is an intermediate case between two extreme cases: (1) complete transfer of electrons and (2) no transfer of electrons at the interface between the electrolyte solution and the thin film. , So to speak, it is a model that handles the real system. The case of (1) is an ideal system according to the Nernst equation, and the'Site Binding Model 'corresponds to the case where the density of adsorption sites of ions and atoms on the surface of the thin film in contact with the electrolyte solution is high, and the output per pH is 2.3 kT / q (=
59 mV). That is, the density of adsorption sites on the thin film surface can be estimated by evaluating the output per pH. As shown in Table 2, the results of evaluating the output per pH of various gate surface materials of ISFET have been reported. [Matsuo: Applied Physics, Volume 49 (198
0) See p586, etc.).

【0009】[0009]

【表2】 この結果から、薄膜表面にどんな膜が形成されているか
の推定が可能であることがわかる。図3はある条件下で
の異なる吸着サイト密度に対するΔpHとフラットバン
ド電圧シフトの関係を吸着サイト密度Nをパラメートと
して示したものである (上記W. M.Sinらの報告参照)
。図1に示したISFETの構造は、通常ICなどの
半導体素子の製造工程中に任意にできる構造であるた
め、薄膜5として表面状態の被測定薄膜を形成しておけ
ば、半導体素子製造工程のプロセスモニタとしての機能
を付与することができる。
[Table 2] From this result, it is possible to estimate what kind of film is formed on the surface of the thin film. FIG. 3 shows the relationship between ΔpH and flat band voltage shift for different adsorption site densities under a certain condition, with the adsorption site density N being a paramate (see the report by W. M. Sin et al. Above).
. Since the structure of the ISFET shown in FIG. 1 is a structure that can be arbitrarily set during the manufacturing process of a semiconductor device such as an IC, if the thin film 5 to be measured in the surface state is formed as the thin film 5, the semiconductor device manufacturing process can be performed. A function as a process monitor can be added.

【0010】[0010]

【実施例】表面評価の薄膜として熱窒化膜を選び、図1
の構造のISFETにおいて、厚さ50nmのゲート酸化膜
3を形成し、その上の被測定薄膜5からなるゲートとし
て、ゲート長30μm、ゲート幅270 μmの熱窒化膜を厚
さ50nmで形成した。ソース電極41およびドレイン電極42
はPtにより作成し、これらの電極部および図2に示すAl
からなるリード線11、12、13は、測定時に電解質溶液7
に触れないように塩化ビニル樹脂で保護した。酸として
HClあるいはHNO3 、アルカリとして苛性ソーダを用
い、適宜水と混合してpH=4.1の酸性液、pH=6.8
の中性液、pH=9.2のアルカリ性液をそれぞれ電解質
溶液7として準備し、酸性から中性、中性からアルカリ
性、アルカリ性から酸性のpH変化に対するpH感度、
すなわちS、D端子から得られる出力電圧の差をpH差
で割った値を得た。表3はこれらの感度を、煮沸前、1
回煮沸後、2回煮沸後、3回煮沸後について評価した結
果を示す。なお、煮沸は常に新しく準備された純水を用
いて、それぞれ100 ℃、1時間で行った。
[Example] A thermal nitride film was selected as a thin film for surface evaluation, and FIG.
In the ISFET having the above structure, a gate oxide film 3 having a thickness of 50 nm was formed, and a thermal nitride film having a gate length of 30 μm and a gate width of 270 μm was formed with a thickness of 50 nm as a gate formed of the thin film 5 to be measured. Source electrode 41 and drain electrode 42
Is made of Pt and these electrodes and Al shown in FIG.
The lead wires 11, 12, and 13 are made of electrolyte solution 7 at the time of measurement.
It was protected with a vinyl chloride resin so that it would not come into contact with. HCl or HNO 3 is used as the acid, caustic soda is used as the alkali, and the mixture is appropriately mixed with water to obtain an acidic solution having a pH of 4.1 and a pH of 6.8.
A neutral solution and an alkaline solution having a pH of 9.2 are prepared as electrolyte solutions 7, respectively, and pH sensitivity to pH change from acidic to neutral, neutral to alkaline, alkaline to acidic,
That is, the value obtained by dividing the difference between the output voltages obtained from the S and D terminals by the pH difference was obtained. Table 3 shows these sensitivities before boiling and 1
The results of evaluation after boiling twice, boiling twice, and boiling three times are shown. The boiling was always carried out using freshly prepared pure water at 100 ° C. for 1 hour.

【0011】[0011]

【表3】 表3から明らかなように、煮沸を繰り返すごとに感度が
上がった。このことは、熱窒化膜5の表面の吸着サイト
密度が高まったこと、すなわち、熱窒化膜5表面の清浄
度が高まったことを意味している。これは、ESCAな
どの機器分析で炭素などの付着量が減少している結果と
符合している。
[Table 3] As is clear from Table 3, the sensitivity increased as the boiling was repeated. This means that the adsorption site density on the surface of the thermal nitride film 5 has increased, that is, the cleanliness of the surface of the thermal nitride film 5 has increased. This is consistent with the result of the decrease in the amount of carbon or the like adhering to the result of instrumental analysis such as ESCA.

【0012】[0012]

【発明の効果】本発明によれば、薄膜表面と電解質液と
の界面におけるSite Binding Modelに基づくISFET
出力を利用することにより、機器分析のように元素の同
定や定量といった分析評価はできないが、薄膜表面の清
浄度レベルなど表面の吸着サイト密度に関連した表面状
態のレベルについて、ある程度定量的に評価できる。さ
らに、この評価法はことさら評価のための試料を必要と
せず、ウエハ内の任意のところにモニタとして半導体素
子と同時につくりこめ、しかもその面積は半導体素子の
一つのセル程度まで小さくできるため、in-situ 的な評
価が行えるという効果も得られる。
According to the present invention, the ISFET based on the Site Binding Model at the interface between the thin film surface and the electrolyte solution.
By using output, it is not possible to perform analytical evaluation such as element identification and quantification like instrumental analysis, but to some extent quantitatively evaluate the level of surface condition related to surface adsorption site density such as cleanliness level of thin film surface. it can. Furthermore, this evaluation method does not require a sample for further evaluation, and it can be built at the same time as a semiconductor device as a monitor at any place in the wafer, and its area can be reduced to about one cell of the semiconductor device. -It also has the effect of being able to perform in-situ evaluation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により用いられるISFETの断面図FIG. 1 is a sectional view of an ISFET used according to the present invention.

【図2】ISFETの測定系を示す断面図FIG. 2 is a sectional view showing a measurement system of ISFET.

【図3】吸着サイト密度をパラメータとしてのpH値の
差とフラットバンド電圧シフトとの関係線図
FIG. 3 is a diagram showing the relationship between the difference in pH value using the adsorption site density as a parameter and the flat band voltage shift.

【符号の説明】[Explanation of symbols]

1 Nシリコン基板 21 P+ ソース領域 22 P+ ドレイン領域 3 ゲート酸化膜 41 ソース電極 42 ドレイン電極 5 被測定薄膜 7 電解質溶液 8 ガラス電極 10 ISFET1 N Silicon substrate 21 P + source region 22 P + drain region 3 Gate oxide film 41 Source electrode 42 Drain electrode 5 Measured thin film 7 Electrolyte solution 8 Glass electrode 10 ISFET

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第二導電形のソースおよびドレイン領域が
互いに間隔を介して選択的に形成された第一導電形層の
表面がシリコン酸化膜で覆われ、そのシリコン酸化膜の
開口部でソースおよびドレイン領域にそれぞれ接触する
ソース、ドレイン電極と第一導電形層に接触する基板電
極とを備えたシリコン基体の表面上を評価すべき薄膜に
より被覆し、その薄膜に電解質溶液を接触させ、電解質
溶液中に浸漬した参照電極と基板電極との間に電圧を印
加したときにソース、ドレイン電極間の出力電圧を測定
し、その測定値を用いることを特徴とする薄膜の表面状
態の評価方法。
1. A surface of a first conductivity type layer in which source and drain regions of the second conductivity type are selectively formed with an interval between each other is covered with a silicon oxide film, and the source is formed in the opening of the silicon oxide film. A surface of a silicon substrate having a source electrode and a drain electrode in contact with the drain region and a substrate electrode in contact with the first conductivity type layer is covered with a thin film to be evaluated, and the thin film is contacted with an electrolyte solution to form an electrolyte. A method for evaluating a surface state of a thin film, which comprises measuring an output voltage between a source electrode and a drain electrode when a voltage is applied between a reference electrode immersed in a solution and a substrate electrode, and using the measured value.
【請求項2】参照電極がガラス電極である請求項1記載
の薄膜の表面状態の評価方法。
2. The method for evaluating the surface condition of a thin film according to claim 1, wherein the reference electrode is a glass electrode.
【請求項3】pH値の異なる電解質溶液を用いて測定し
たソース、ドレイン電極間の出力電圧よりpH当たりの
出力電圧を算出してその値を用いる請求項1あるいは2
記載の薄膜の表面状態の評価方法。
3. The output voltage per pH is calculated from the output voltage between the source and drain electrodes measured using electrolyte solutions having different pH values, and the value is used.
A method for evaluating the surface condition of the thin film described.
JP5253521A 1993-10-12 1993-10-12 Evaluation method of surface condition of thin film Expired - Lifetime JP3013667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253521A JP3013667B2 (en) 1993-10-12 1993-10-12 Evaluation method of surface condition of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253521A JP3013667B2 (en) 1993-10-12 1993-10-12 Evaluation method of surface condition of thin film

Publications (2)

Publication Number Publication Date
JPH07111286A true JPH07111286A (en) 1995-04-25
JP3013667B2 JP3013667B2 (en) 2000-02-28

Family

ID=17252529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253521A Expired - Lifetime JP3013667B2 (en) 1993-10-12 1993-10-12 Evaluation method of surface condition of thin film

Country Status (1)

Country Link
JP (1) JP3013667B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065379A2 (en) 2014-10-27 2016-05-06 Mti Gmbh Method and apparatus for quality control and process development
US20220170871A1 (en) * 2020-08-04 2022-06-02 Kabushiki Kaisha Toshiba Electrode evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065379A2 (en) 2014-10-27 2016-05-06 Mti Gmbh Method and apparatus for quality control and process development
AT14805U1 (en) * 2014-10-27 2016-06-15 Mti Gmbh Apparatus and method for quality control and process development
US10488366B2 (en) 2014-10-27 2019-11-26 Mti Gmbh Apparatus and method for electrochemical quality control of electrically conducting objects
US20220170871A1 (en) * 2020-08-04 2022-06-02 Kabushiki Kaisha Toshiba Electrode evaluation method

Also Published As

Publication number Publication date
JP3013667B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US4671852A (en) Method of forming suspended gate, chemically sensitive field-effect transistor
US4411741A (en) Apparatus and method for measuring the concentration of components in fluids
Paul et al. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices
US4514263A (en) Apparatus and method for measuring the concentration of components in fluids
US5378343A (en) Electrode assembly including iridium based mercury ultramicroelectrode array
WO1999046586A1 (en) Reference electrode
US6617190B2 (en) A-WO3-gate ISFET devices and method of making the same
Chapman et al. Comparison of methods to bias fully depleted SOI-based MOSFET nanoribbon pH sensors
Zehfroosh et al. High-sensitivity ion-selective field-effect transistors using nanoporous silicon
Santinacci et al. Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces
Dong et al. Fabrication and testing of ISFET based pH sensors for microliter target solutions
Slewa et al. Synthesis of quantum dot porous silicon as extended gate field effect transistor (EGFET) for a pH sensor application
Lu et al. Characterization of K+ and Na+-sensitive membrane fabricated by CF4 plasma treatment on hafnium oxide thin films on ISFET
JP3223869B2 (en) Determination method of impurity concentration
JP3013667B2 (en) Evaluation method of surface condition of thin film
Buss et al. Modifications and characterization of a silicon-based microelectrode array
Madou et al. The silicon/silica electrode
Rodrigues Fabrication of ion sensitive field effect transistors
Zaborowski et al. Fabrication of MOS-compatible ion-sensitive devices for water pollution monitoring (warmer)
Lauks pH measurements using polarizable electrodes
Choksi et al. Modeling and simulation of ISFET using TCAD tool for various sensing films
Langereis et al. Measuring conductivity, temperature and hydrogen peroxide concentration using a single sensor structure
Baylav Ion-sensitive field effect transistor (ISFET) for MEMS multisensory chips at RIT
Fakih High Resolution Ion Sensing with Large-Area Graphene Field Effect Transistors at the Thermodynamic and Quantum Limits
JPH10199946A (en) Method of evaluating semiconductor device