JPH0710707A - Transpiration wick made of porous ceramic, its production and chemicals transpiration method - Google Patents

Transpiration wick made of porous ceramic, its production and chemicals transpiration method

Info

Publication number
JPH0710707A
JPH0710707A JP5152323A JP15232393A JPH0710707A JP H0710707 A JPH0710707 A JP H0710707A JP 5152323 A JP5152323 A JP 5152323A JP 15232393 A JP15232393 A JP 15232393A JP H0710707 A JPH0710707 A JP H0710707A
Authority
JP
Japan
Prior art keywords
liquid
absorbent core
core
transpiration
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5152323A
Other languages
Japanese (ja)
Inventor
Shiro Koyama
司朗 小山
Hiroshi Asai
洋 浅井
Kenji Kadowaki
健二 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainihon Jochugiku Co Ltd
Nippon Sharyo Ltd
Original Assignee
Dainihon Jochugiku Co Ltd
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainihon Jochugiku Co Ltd, Nippon Sharyo Ltd filed Critical Dainihon Jochugiku Co Ltd
Priority to JP5152323A priority Critical patent/JPH0710707A/en
Publication of JPH0710707A publication Critical patent/JPH0710707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To obtain a wick having high transpiration stability of chemicals with time, low activity and high stability to chemicals, stably usable for both oily and aqueous liquids, exhibiting high heat-resistance and enabling easy recycling and reuse. CONSTITUTION:This transpiration wick made of a porous ceramic material is composed of a liquid-ducking material obtained by calcining inorganic powder free from substances which are carbonized or dissipated in the form of CO gas or CO2 gas together with other gases in the calcination process in an oxidizing atmosphere. The liquid-sucking material is composed of a skeleton part made of an inorganic material (e.g. glass or ceramics) and through-holes included in the skeleton and enabling the migration of a solution to the surface of the wick, e.g. large-diameter channels included in the skeleton part and small-diameter connecting holes connecting the channels with each other and the channel with the surface of the wick. The liquid-sucking wick can be produced, e.g. by using raw material powder containing inorganic powder sinterable to form aggregates by heating to cause the formation of voids, forming the raw material powder to the wick form, drying the formed product and baking at the objective temperature, i.e., 1000-1450 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば吸上式加熱蒸散
装置に用いられる蒸散用多孔質セラミックス製吸液芯及
びその製造方法並びに薬剤蒸散方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid absorption core made of porous ceramics for evaporation used in a wicking type heating evaporation device, a method for producing the same, and a method for evaporating a drug.

【0002】[0002]

【従来の技術】[Prior art]

(1)従来より、殺虫等の目的で薬剤を加熱蒸散させる
方法としては、蚊取り線香や電気蚊取りマット等による
方法が愛好されてきた。 (2)また近年では、薬剤溶液中に多孔質吸液芯を浸漬
し、芯上部を加熱して薬剤を加熱蒸散させる方式(以
下、液体方式と称す)が、一回毎にマット等を交換する
必要がない事、効果が長時間安定する事等の理由で再び
注目されている。ところが、これら液体方式加熱蒸散器
に用いられる多孔質吸液芯としては、かってはフェルト
がそのままの形で用いられていたが、フェルトの場合に
は、一般に吸液量が多すぎるという問題や、保管,輸
送,使用時に薬液が芯を介して溢れるという問題や、そ
の柔軟性の故に芯を正しくセットしにくいという問題等
があった。
(1) Conventionally, as a method for heating and evaporating a drug for the purpose of insecticidal, a method using a mosquito coil or an electric mosquito mat has been popular. (2) In recent years, a method of immersing a porous absorbent core in a drug solution and heating the upper part of the core to heat and evaporate the drug (hereinafter referred to as a liquid system) is a method in which a mat or the like is replaced every time. It is receiving attention again because it does not need to be performed and the effect is stable for a long time. However, as the porous liquid absorbent core used in these liquid heating vaporizers, the felt was used as it was in the past, but in the case of felt, the problem that the liquid absorption amount is generally too large, There were problems such as the chemical liquid overflowing through the core during storage, transportation and use, and the problem that it was difficult to set the core correctly due to its flexibility.

【0003】(3)これに対し、無機粉体あるいは無機
粉体と木粉等を水溶性糊材で固着成形した吸液芯が、特
公昭61ー23163号公報,特公昭59ー40409
号公報,特開昭63ー24841号公報,特開昭63ー
74440号公報,特開平1ー296933号公報,特
開平2ー39841号公報,特開平2ー174628号
公報,特開平4ー36137号公報に示されている。し
かしながら、水溶性糊材で固着した吸液芯は、無機粉体
の表面活性の為にしばしば薬液が化学的に分解を受ける
等の問題があり、その上、薬液が水性溶液の場合は、糊
材の溶解,溶出,膨潤により吸液芯に形状や組織内微構
造の変化や機械的強度低下等の物理的劣化が起こるとい
う問題が残っていた。
(3) On the other hand, the liquid-absorbent core formed by fixing and molding the inorganic powder or the inorganic powder and the wood powder with the water-soluble paste material is disclosed in Japanese Examined Patent Publication Nos. 61-23163 and 59-40409.
JP, JP-A-63-244841, JP-A-63-74440, JP-A-1-296933, JP-A-2-39841, JP-A-2-174628, and JP-A-4-36137. It is shown in the publication. However, the absorbent core adhered with a water-soluble paste material has a problem that the chemical solution is often chemically decomposed due to the surface activity of the inorganic powder. There remains a problem that the absorbent core undergoes physical deterioration such as changes in shape and microstructure in the tissue and deterioration of mechanical strength due to dissolution, elution and swelling of the material.

【0004】(4)また、特開平3ー72833号公報
には、中心に多孔質の吸液蒸散層を有し周囲に保持材層
を有する構造の吸液芯が示されているが、このタイプの
ものとして、繊維を束ねた中心層を薬液を透過させうる
保持層で囲む吸液芯が例示されている。この繊維芯は用
いる材料が耐水性のものであれば、前記の水性薬液にも
用いる事ができ、また、薬液も分解される事も少ない
が、その柔軟性の為に寸法的に定まりにくいとか、製造
面で困難が予想される。
(4) Further, Japanese Patent Laid-Open No. 3-72833 discloses an absorbent core having a structure having a porous liquid absorption / evaporation layer in the center and a holding material layer in the periphery. As a type, a liquid-absorbing core in which a central layer formed by bundling fibers is surrounded by a holding layer that allows a chemical solution to pass therethrough is illustrated. If the material used for this fiber core is water-resistant, it can be used in the above-mentioned aqueous chemicals, and the chemicals are not easily decomposed, but it is difficult to settle dimensionally due to its flexibility. However, difficulties in manufacturing are expected.

【0005】(5)更に、特開平4ー117303号公
報には、無機粉体,有機粉体及び粘結剤を混合成形し高
温で焼結させる焼結芯が示されており、特開平4ー20
0336号公報には、無機粉体及び/又は有機粉体及び
炭化するバインダーを混合成形し高温で焼結させる焼結
芯が示されている。
(5) Further, JP-A-4-117303 discloses a sintered core obtained by mixing and molding an inorganic powder, an organic powder and a binder and sintering the mixture at a high temperature. -20
Japanese Patent No. 0336 discloses a sintered core obtained by mixing and molding an inorganic powder and / or an organic powder and a binder to be carbonized and sintering the mixture at a high temperature.

【0006】このタイプの芯は水性薬液にも使用でき、
寸法的にも安定するという利点があるが、その構造には
下記(a)〜(c)の特徴がある。 (a)多孔体骨組み(又は壁)構造体が、原粒小粒子又
は焼結作用による二次小粒子等の粒子間隙孔を連通孔と
して薬液を通過させ表面から蒸散させる多孔体の微構造
(いわゆる”素焼状”の構造)であり、比表面積[m2
g -1]は大である事。
This type of core can also be used for aqueous chemicals,
Although it has the advantage of being dimensionally stable, its structure has the following characteristics (a) to (c). (A) A microstructure of a porous body in which a porous frame (or wall) structure allows a chemical solution to pass through and evaporate from the surface by using interparticle pores such as small particles of primary particles or secondary small particles due to a sintering action as communication holes ( The so-called "unfired structure") has a specific surface area [m 2 ·
g -1 ] is a big thing.

【0007】(b)前記(a)の構造のものの内で、連
通孔径に比し極めて大径の洞穴を有するものであって
も、洞穴と洞穴との間や洞穴と吸液芯表面との間の壁構
造が、上述の小粒子間隙孔を有する”素焼状”組織であ
る事(図12(b)参照)。 (c)吸液芯では黒色が好まれる傾向があって、多孔体
組織内粒子に炭素粒子を残存させている例が多い事(図
12(b)参照)。
(B) Among the structures of the above (a), even if it has a cave having an extremely large diameter as compared with the diameter of the communicating hole, the space between the cave and between the cave and the liquid absorption core surface The wall structure between them is the "unfired" structure having the above-mentioned small particle pores (see FIG. 12 (b)). (C) In the liquid absorbent core, black tends to be preferred, and in many cases carbon particles remain in the particles in the porous tissue (see FIG. 12 (b)).

【0008】[0008]

【発明が解決しようとする課題】ところが、この様な構
造の吸液芯は、いずれも酸化雰囲気下での焼成工程を行
なうと、炭化したりCOガスやCO2ガスやその他のガ
スによって揮散する物質(例えば天然及び人工の油脂及
びその誘導,加工,分画品や、黒鉛や、石炭及びその誘
導,加工,分画品や、石油及びそのその誘導,加工,分
画品や、天然ガスの誘導,加工,分画品や、動植物及び
その誘導,加工,分画品等)を原料中に使用して形成さ
れるものであるので、下記(1)〜(5)の問題が生じ
てしまう。
However, any of the liquid absorbent cores having such a structure is carbonized or volatilized by CO gas, CO 2 gas or other gas when the firing process is performed in an oxidizing atmosphere. Substances (eg natural and artificial fats and oils and their derivatives, processing, fractions, graphite, coal and their derivatives, processing, fractions, oil and their derivatives, processing, fractions, natural gas (Induction, processing, fractionation products, and animals and plants and their induction, processing, fractionation products, etc.) are formed in the raw material, so the following problems (1) to (5) occur. .

【0009】(1)従来は、吸液芯の材質や吸液機能
(多孔質の微構造)によって、薬液物性(界面張力や粘
度や水性や油性)の選択範囲が狭く限定されていた。 (2)薬液の組み合せによっては、薬剤の選択吸着等の
対薬剤活性が生起することがある。つまり、上述した”
素焼状”構造は、比表面積が大となり、原料小粒子の表
面活性が残り易く、かつ、活性炭作用の残存がある事な
ど、耐薬品活性が残り易い原因となっている。
(1) Conventionally, the selection range of the physical properties of the liquid chemical (interfacial tension, viscosity, water-based or oil-based) has been narrowly limited by the material of the liquid absorbent core and the liquid absorbent function (porous microstructure). (2) Depending on the combination of drug solutions, the activity against drugs such as selective adsorption of drugs may occur. In other words, as mentioned above
The unglazed structure has a large specific surface area, and the surface activity of the raw material small particles is likely to remain, and the chemical resistance activity is likely to remain, such as residual activated carbon action.

【0010】(3)前記”素焼状”構造は、磁器質の緻
密な壁構造と比較して一般に機械的強度が弱いという問
題がある。 (4)長時間使用により単位時間当りの薬剤の蒸散量が
利用時間に比例して低下してしまう。例えば、60日目
を利用終了日とする物では、60日目の単位時間当りの
蒸散量で目的の薬効を確保する様な薬効成分の濃度を必
要とするが、前記の吸液芯では、それ以前の大量の蒸散
量にも同一濃度の薬効成分を含むので常時過剰薬効成分
の放出を行っていることになり、無駄が多い(図13参
照)。
(3) The "birefringent" structure has a problem that the mechanical strength is generally weaker than that of a dense porcelain wall structure. (4) The amount of transpiration of the drug per unit time decreases in proportion to the usage time due to long-term use. For example, a product having the use end date on the 60th day requires a concentration of a medicinal component that secures a desired medicinal effect by the transpiration amount per unit time on the 60th day. Since the large amount of transpiration before that also contains the same concentration of the medicinal component, the excessive medicinal component is always released, which is wasteful (see FIG. 13).

【0011】(5)大気雰囲気で運転される汎用炉利用
での再生焼が不可能である。つまり、上述した構造で
は、可燃性炭素(炭化物)粒子を壁構成小粒子として含
んでいる例が殆どであり、しかも安価で容易な操作ので
きる汎用炉は大気雰囲気中で運転されるので、この様な
炉での再生焼では、有機物や炭化物等は、全てガス化し
壁内連通孔径は大値化し、新品の示した吸液芯機能の再
現は不可能となる。
(5) Regeneration and firing in a general-purpose furnace operating in an air atmosphere is impossible. That is, in the above-described structure, in most cases, combustible carbon (carbide) particles are included as wall-constituting small particles, and since a general-purpose furnace that is inexpensive and easy to operate is operated in the atmosphere, In the case of re-firing in such a furnace, all the organic substances and carbides are gasified and the communicating hole diameter in the wall becomes large, making it impossible to reproduce the new liquid absorption core function.

【0012】本発明は、上述した従来の問題点を解決す
るためになされたものであり、その目的は、下記(a)
〜(h)の様な優れた性能を有する吸液芯を提供するこ
とである。 (a)水性、油性を問わず正常利用可能な吸液芯。
The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to achieve the following (a).
The purpose of the present invention is to provide an absorbent core having excellent properties such as (h). (A) A liquid absorbent core that can be normally used regardless of whether it is water-based or oil-based.

【0013】(b)各種薬液の界面張力や粘度等の薬液
物性に対応し、一定目的の吸液速度が得られる様な吸液
芯が容易に幅広く提供され得る事。 (c)各種薬剤液に対し、選択吸着や、分解や、合成等
の対薬剤活性が生起しない吸液芯。
(B) It is possible to easily provide a wide range of liquid-absorbent cores that can respond to the physical properties of the liquid chemicals such as the interfacial tension and viscosity of various liquid chemicals and that can obtain a predetermined liquid-absorption rate. (C) A liquid-absorbent core that does not cause selective drug adsorption, decomposition, synthesis, or other drug activity with respect to various drug liquids.

【0014】(d)機械的強度が高く、装置の組み立
て、運送、最終利用時等での利用勝手が良い吸液芯。 (e)防黴、防腐、防虫、難燃等の処理が不要な吸液
芯。 (f)薬液の蒸散速度の経時変化特性が優れている事
で、有効薬効成分剤の消費量が節約できる吸液芯。
(D) A liquid-wicking core which has high mechanical strength and is easy to use when assembling, transporting, and finally using the apparatus. (E) Liquid-absorbent wick that does not require treatments such as mildew proofing, antiseptic, insect repellent, and flame retardant. (F) A liquid-wicking wick capable of saving consumption of the active drug ingredient due to its excellent aging characteristics of the evaporation rate of the drug solution.

【0015】(g)汎用の原料や設備で容易に製造でき
る吸液芯。 (h)汎用大気雰囲気炉で誰でも容易に再生処理できる
耐熱性の高い吸液芯。
(G) A liquid-wicking core which can be easily manufactured with general-purpose raw materials and equipment. (H) A heat-resistant liquid absorbent core that can be easily recycled by anyone in a general-purpose air atmosphere furnace.

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

[1] 前記目的を達成するための手段 (1)請求項1の発明は、無機粉末を焼成してなる吸液
芯であって、該吸液芯には、無機質の骨格部と、該骨格
部に囲まれて溶液が吸液芯表面に移動可能な連通孔と、
を備えたことを特徴とする蒸散用多孔質セラミックス製
吸液芯を要旨とする。
[1] Means for Achieving the Object (1) The invention of claim 1 is an absorbent core obtained by firing an inorganic powder, wherein the absorbent core has an inorganic skeleton and the skeleton. A communication hole surrounded by a part that allows the solution to move to the surface of the absorbent core,
The gist is a liquid absorption core made of porous ceramics for transpiration, which is characterized by comprising:

【0017】ここで、前記無機粉末とは、天然及び人工
の油脂及びその誘導,加工,分画品や、黒鉛や、石炭及
びその誘導,加工,分画品や、石油及びそのその誘導,
加工,分画品や、天然ガスの誘導,加工,分画品や、動
植物及びその誘導,加工,分画品等であり、酸化雰囲気
下の焼成工程で、炭化したりCOガスやCO2ガスやそ
の他のガスによって揮散する物質を除いた物質である。
The term "inorganic powder" as used herein means natural and artificial fats and oils and their derivatives, processed and fractionated products, graphite, coal and its derivatives, processed and fractionated products, petroleum and its derivatives,
Processing, fractionation products, natural gas induction, processing, fractionation products, animals and plants and their induction, processing, fractionation products, etc., which are carbonized or CO gas or CO 2 gas in the firing process in an oxidizing atmosphere. Substances excluding substances that volatilize with other gases.

【0018】(2)請求項2の発明は、前記吸液芯に
は、ガラス質又は陶磁器質の骨格部と、該骨格部に囲ま
れた大径の洞穴孔と、前記骨格部中に形成されて前記洞
穴孔同士及び洞穴孔と吸液芯表面とを連通する小径の連
通孔と、を備えたことを特徴とする前記請求項1記載の
蒸散用多孔質セラミックス製吸液芯を要旨とする。
(2) According to the invention of claim 2, in the liquid absorbent core, a glass or ceramic skeleton portion, a large-diameter hole surrounded by the skeleton portion, and formed in the skeleton portion. The porous ceramics liquid absorption core for evaporation according to claim 1, further comprising: a small-diameter communication hole that communicates between the cave holes and between the cave hole and the surface of the liquid absorption core. To do.

【0019】ここで、前記ガラス質又は陶磁器質の骨格
部とは、図12(a)に示す様な骨格部(壁部)のこと
であり、図12(b)に示す様な”素焼状”の骨格部
(壁部)のことではない。 (3)請求項3の発明は、前記請求項1又は請求項2記
載の蒸散用多孔質セラミックス製吸液芯の製造方法であ
って、加熱による焼結凝集塊が空孔生成因となる無機粉
末を含む原料粉末を用いて、吸液芯形状に成形し、乾燥
した後に、任意(酸化性,中性又は還元性のいずれか)
の雰囲気で1000〜1450℃を目的温度として焼成
することを特徴とする蒸散用多孔質セラミックス製吸液
芯の製造方法を要旨とする。
Here, the glass or ceramic skeleton means a skeleton (wall) as shown in FIG. 12 (a), which is a "non-fired form" as shown in FIG. 12 (b). It does not mean the skeleton part (wall part). (3) The invention of claim 3 is a method for producing a liquid absorption core made of porous ceramics for evaporation according to claim 1 or claim 2, wherein the sintered agglomerate by heating is a cause of pore formation. Raw material powder including powder is molded into a liquid-absorbent core shape, and after drying, optional (either oxidizing, neutral or reducing)
The gist is a method for producing a liquid absorption core made of porous ceramics for evaporation, which is characterized by firing in an atmosphere of 1000 to 1450 ° C. as a target temperature.

【0020】(4)請求項4の発明は、前記請求項1又
は請求項2記載の蒸散用多孔質セラミックス製吸液芯の
製造方法であって、空孔生成因となる塩類粉末を含む無
機質の原料粉末を用いて、吸液芯形状に成形し、乾燥し
た後に、任意(酸化性,中性又は還元性のいずれか)の
雰囲気で650〜1450℃を目的温度として焼成する
とともに、該製造工程中又はその後に前記塩類の揮散又
は溶脱を行なうことを特徴とする蒸散用多孔質セラミッ
クス製吸液芯の製造方法を要旨とする。
(4) The invention according to claim 4 is the method for producing the liquid absorbent core made of porous ceramics for evaporation according to claim 1 or 2, which comprises an inorganic substance containing salt powder which causes pore formation. The raw material powder is used to form an absorbent core shape, which is dried and then fired in an arbitrary (oxidizing, neutral or reducing) atmosphere at a target temperature of 650 to 1450 ° C. The gist is a method for producing a liquid absorption core made of porous ceramics for evaporation, which comprises volatilizing or leaching the salt during or after the step.

【0021】(5)請求項5の発明は、前記空孔生成因
となる塩類粉末を、加熱による焼結凝集塊が空孔生成因
となる無機粉末に含むことを特徴とする前記請求項4記
載の蒸散用多孔質セラミックス製吸液芯の製造方法。
(5) The invention according to claim 5 is characterized in that the salt powder which causes the formation of pores is contained in the inorganic powder which causes the sintered agglomerates due to heating to form pores. A method for producing a liquid absorption core made of a porous ceramic for evaporation according to the above.

【0022】(6)請求項6の発明は、前記請求項3,
請求項4又は請求項5の何れかに記載の蒸散用多孔質セ
ラミックス製蒸散用吸液芯の製造方法であって、主たる
制御内容を焼成温度とし、従たる制御内容を焼成温度保
持時間とすることにより、芯体に形成される孔の状態を
調節することを特徴とする蒸散用多孔質セラミックス製
吸液芯の製造方法を要旨とする。
(6) The invention of claim 6 is the same as claim 3,
A method for producing a vaporized absorbent core made of porous ceramics for vaporization according to claim 4 or 5, wherein the main control content is a firing temperature, and the subordinate control content is a firing temperature holding time. Thus, the gist is a method for producing a liquid absorption core made of porous ceramics for evaporation, which is characterized in that the state of the holes formed in the core is adjusted.

【0023】(7)請求項7の発明は、前記原料粉末中
に、鉄,マンガン,コバルト,銅,クローム,ニッケル
又はチタンから選ばれた金属の酸化物,水酸化物又は塩
である無機質顔料を、顔料以外の原料100重量部に対
して、0.5〜10重量部を混入することを特徴とする
前記請求項3,請求項4,請求項5又は請求項6の何れ
かに記載の蒸散用多孔質セラミックス製吸液芯の製造方
法を要旨とする。
(7) The invention of claim 7 is an inorganic pigment, wherein the raw material powder is an oxide, hydroxide or salt of a metal selected from iron, manganese, cobalt, copper, chrome, nickel or titanium. 0.5 to 10 parts by weight is mixed with 100 parts by weight of the raw material other than the pigment, according to any one of claims 3, 4, 5 and 6. A gist is a method of manufacturing a liquid absorption core made of porous ceramics for evaporation.

【0024】(8)請求項8の発明は、薬剤を含有する
溶液を吸液芯に吸液し、薬剤を蒸散させる蒸散方法にお
いて、前記吸液芯が前記請求項1又は請求項2記載の蒸
散用多孔質セラミックス製吸液芯であることを特徴とす
る薬剤蒸散方法を要旨とする。
(8) The invention of claim 8 is a vaporization method in which a solution containing a drug is absorbed in an absorbent core and the drug is evaporated, wherein the absorbent core is one of claims 1 or 2. A chemical vaporization method is characterized in that it is a liquid absorption core made of porous ceramics for vaporization.

【0025】(9)請求項9の発明は、前記薬剤を含有
する溶液が水性溶液又は油性溶液であることを特徴とす
る前記請求項8記載の薬剤蒸散方法。 (10)請求項10の発明は、前記薬剤がピレスロイド
であることを特徴とする前記請求項8又は請求項9に記
載の薬剤蒸散方法を要旨とする。 [2] 本発明の概要 (1)本発明の蒸散用多孔質セラミックス製吸液芯は、
原料粉粒子の焼結粒子間隙孔を利用したものではなく、
汎用陶磁器と同じ様な共融体の骨格材(不透水性の壁)
の中に生成される(溶液が移動可能な)連通孔を備えた
多孔体であり、特に骨格材の中に生成される大径の洞穴
孔及びその骨格材中の(洞穴孔同士又は洞穴孔と吸液芯
表面とを連通する)小孔である連通孔の両孔によって形
成される多孔体である(図12(a)参照)。
(9) The invention according to claim 9 is characterized in that the solution containing the drug is an aqueous solution or an oily solution. (10) The invention of claim 10 provides the drug vaporization method according to claim 8 or claim 9, characterized in that the drug is a pyrethroid. [2] Outline of the present invention (1) The liquid absorption core made of porous ceramics for evaporation of the present invention is
Sintered particles of raw material powder particles are not used,
A eutectic skeleton similar to general-purpose ceramics (impermeable wall)
Is a porous body having a communication hole (in which the solution can be moved) generated in the inside of the skeleton, and in particular, a large-diameter cave hole formed in the skeleton and the inside of the skeleton (cave holes or cave holes). And a liquid-absorbent core surface), which is a porous body formed by both holes of communication holes which are small holes (see FIG. 12A).

【0026】そして、本発明の製造方法によれば、焼成
時に小粒子は溶けて大粒子と共に溶けあった緻密な不透
水性の壁と成るが、その時、組織小部分が溶けて凝集移
動する時に連通孔と洞穴孔とが形成されるので、比表面
積Sも極めて小値となる(図3の表3のS参照)。
According to the manufacturing method of the present invention, the small particles are melted during firing to form a dense impermeable wall which is melted together with the large particles. At that time, when a small portion of the tissue is melted and aggregated and moved. Since the communication hole and the cave hole are formed, the specific surface area S also has an extremely small value (see S in Table 3 of FIG. 3).

【0027】(2)また、この溶け合い焼成の意味はガ
ラス質を組織内に多く含む事であって、原料粒子表面が
ガラス質と溶けあって包囲される事でもある。従って、
対薬剤安定性は前記(1)項と相まって、良好な性能と
なる(図8の表8参照)。 (3)本発明の洞穴孔及び連通孔を有するものは、その
表面開口部孔径(連通孔径)が”素焼状”の従来品(図
12(b)参照)の表面開口部孔径より大径で、かつ数
が少なく(着眼孔径での気孔率で示すことができる)、
しかも開口の連通孔の内側に連通孔径に比し格段に大径
の洞穴があるので、加熱蒸散残査物や変化物(以後、残
変物と略称する)による薬液移動抵抗層の成長は、従来
品より速くある一定値に達し、その後は安定した蒸散速
度が確保される(図9の表9参照)。従って薬効成分の
無駄が少なくなる(図13参照)。
(2) Further, the meaning of this melting and firing is that a large amount of glass is contained in the structure, and the surface of the raw material particles is melted and surrounded by the glass. Therefore,
The drug stability, combined with the item (1), provides good performance (see Table 8 in FIG. 8). (3) The hole having the cave hole and the communicating hole of the present invention has a surface opening hole diameter (communication hole diameter) larger than the surface opening hole diameter of the conventional product (see FIG. 12 (b)) of "unfired". , And the number is small (it can be indicated by the porosity at the eye diameter),
Moreover, since the inside of the communication hole of the opening has a cave with a diameter significantly larger than the diameter of the communication hole, the growth of the chemical solution migration resistance layer due to the heat evaporation residue or the change (hereinafter, abbreviated as the change) is caused. It reaches a certain value faster than the conventional product, and thereafter a stable evaporation rate is secured (see Table 9 in FIG. 9). Therefore, the waste of the medicinal component is reduced (see FIG. 13).

【0028】(4)従来の多孔体骨格(壁)部分の構造
は小粒子の焼結品であり、小粒子間隙孔を有するいわゆ
る”素焼状”の物であるが、本発明の多孔体骨格部
(壁)はそれより緻密であるので、強度σbも高くなっ
ている(図4の表4,図14参照)。
(4) The structure of the conventional porous body skeleton (wall) is a sintered product of small particles, which is a so-called "unfired" product having pores of small particles. Since the part (wall) is denser than that, the strength σ b is also high (see Table 4 in FIG. 4 and FIG. 14).

【0029】特に、本発明の製造方法の焼成温度範囲の
うち、適切な実施例である目的温度tB=1175〜1
275℃に対応する吸液芯の機械的強度は、従来品より
約1.8倍程度大きい。 [3] 本発明の構成例及び適用例 (1)本発明の吸液芯は、殺虫,殺菌,芳香等を目的と
して、各種殺虫剤,殺菌剤,消臭剤,香料等の薬剤を液
体方式蒸散装置、例えば薬剤を加熱飛散させる液体方式
加熱蒸散装置の吸液芯として好適に用いる事ができる。
Particularly, in the firing temperature range of the production method of the present invention, the target temperature t B = 1175-1, which is a suitable example.
The mechanical strength of the absorbent core corresponding to 275 ° C is about 1.8 times higher than that of the conventional product. [3] Structural Examples and Application Examples of the Present Invention (1) The liquid absorbent core of the present invention uses various liquid chemical agents such as insecticides, bactericides, deodorants, and fragrances for the purpose of insecticide, sterilization, aroma and the like. It can be suitably used as a liquid absorption core of a vaporization device, for example, a liquid heating vaporization device for heating and dispersing a drug.

【0030】本発明の吸液芯を用いるのに適した装置の
1例を図15に示す。図中1は薬液2を入れた容器であ
り、該容器1は収納容器3内に係脱自在に収納、保持さ
れている。収納容器3の上部は解放されており、この開
放部に環状(あるいは一対の半環状)の発熱体4が固定
されている。5は発熱体4に接続された電源コードであ
る。容器1の上部には、薬液注入口6が設けられてお
り、この薬液注入口6に吸液芯7の上部が環状発熱体4
の中心部に配設される様に、略密栓状に保持されてい
る。図示するものは、本発明の吸液芯を用いるのに好適
な装置の一例であるが、これに限らず各種形状の装置を
用いることができる事は言うまでもない。
An example of an apparatus suitable for using the liquid absorbent core of the present invention is shown in FIG. In the figure, reference numeral 1 denotes a container containing a drug solution 2, and the container 1 is housed and held in a housing container 3 in a detachable manner. The upper part of the storage container 3 is open, and an annular (or a pair of semi-annular) heating element 4 is fixed to this open part. Reference numeral 5 is a power cord connected to the heating element 4. A drug solution inlet 6 is provided in the upper part of the container 1, and the upper part of the liquid absorbent core 7 in the drug solution inlet 6 is an annular heating element 4.
It is held in a substantially hermetically sealed shape so as to be arranged in the central portion of the. What is shown is an example of an apparatus suitable for using the liquid absorbent core of the present invention, but needless to say, apparatuses of various shapes can be used without being limited to this.

【0031】前記容器1に収納する薬液としては目的に
応じて殺虫液、芳香液等が用いられる。前記装置が加熱
蒸散殺虫装置として用いられる場合には、容器1に殺虫
液を入れ、発熱体4に通電して、殺虫剤の種類に応じて
好ましくは吸液芯7の表面温度が70〜140℃となる
様に加熱する。加熱温度が高すぎると、薬剤の熱分解や
重合が生じ易く、蒸散有効成分量が低くなるという問題
があり、また、この結果生成される高沸点物質等の吸液
芯内への蓄積、及びこれによる芯の目詰まりを起こし易
くなるので好ましくない。また、加熱温度が低すぎる
と、当然の事ながら有効成分の蒸散が遅くなり、場合に
よっては溶剤のみ蒸散し、有効成分の蒸散が妨げられる
事もある。従って、有効成分の種類、濃度、溶剤の揮発
性によって最適の温度が選択される。
As the chemical liquid to be stored in the container 1, an insecticidal liquid, an aromatic liquid or the like is used depending on the purpose. When the device is used as a thermal evaporation insecticidal device, the insecticidal liquid is placed in the container 1, the heating element 4 is energized, and the surface temperature of the liquid absorbent core 7 is preferably 70 to 140 depending on the type of insecticide. Heat to ℃. If the heating temperature is too high, thermal decomposition or polymerization of the drug is likely to occur, and there is a problem that the amount of the transpiration effective component becomes low, and the accumulation of the high boiling point substance and the like generated as a result in the absorbent core, and This is likely to cause clogging of the core, which is not preferable. Further, if the heating temperature is too low, the evaporation of the active ingredient is naturally delayed, and in some cases, only the solvent is evaporated, which may hinder the evaporation of the active ingredient. Therefore, the optimum temperature is selected depending on the type of active ingredient, concentration, and volatility of the solvent.

【0032】(2)前記殺虫液としては、殺虫剤を各種
溶媒中に溶解した溶液を用いる。溶媒としては引火点が
高く、臭みがなく、かつ毒性学上安全なものが好まし
い。また、用いる溶媒の沸点としては吸液芯の加熱温度
にもよるが、150〜350℃の範囲に入るものが好ま
しい。これらの条件を満足するものとしては炭素原子数
12以上の飽和脂肪族もしくは脂環式炭化水素を挙げる
事ができ、これらは、ノルマルパラフィン、イソパラフ
ィン、あるいはナフテン系炭化水素として工業的に入手
可能である。
(2) As the insecticide, a solution prepared by dissolving an insecticide in various solvents is used. As the solvent, those having a high flash point, no odor, and safe toxicology are preferable. The boiling point of the solvent used depends on the heating temperature of the absorbent core, but is preferably in the range of 150 to 350 ° C. Satisfying these conditions may include saturated aliphatic or alicyclic hydrocarbons having 12 or more carbon atoms, which are industrially available as normal paraffins, isoparaffins, or naphthene hydrocarbons. is there.

【0033】もちろん前記条件を満足する溶媒であれ
ば、これら炭化水素に限定されるものではない。例え
ば、各種非イオン型界面活性剤、好ましくはポリオキシ
アルキレンアルキルエーテル系の可溶化剤(ミセル形成
の有無にかかわらず殺虫成分を水中で清澄な状態で安定
化しうるものを指し、通常の界面活性剤の他、水及び、
油に相溶する溶剤をも含む。)を配合して水性殺虫液と
なし引火性の問題を解消することもできる。
Of course, the solvent is not limited to these hydrocarbons as long as it satisfies the above conditions. For example, various nonionic surfactants, preferably polyoxyalkylene alkyl ether-based solubilizers (refer to those that can stabilize the insecticidal component in a clear state in water regardless of the presence or absence of micelle formation. In addition to the agent, water and
It also includes a solvent that is compatible with oil. ) Can be blended to eliminate the problem of flammability without using an aqueous insecticide.

【0034】(3)本発明で用いられる殺虫剤として
は、従来より用いられている各種揮散性殺虫剤を用いる
事ができ、ピレスロイド系殺虫剤、カーバメート系殺虫
剤、有機リン系殺虫剤等を挙げる事ができる。一般に安
全性の高い事からピレスロイド系殺虫剤が好適に用いら
れる。例えば図5の表5,図6の表6の殺虫剤を採用で
き、このうち、殺虫剤A〜Hが、その工業的入手性、経
済性、効力、安全性の諸点で好ましく、中でも殺虫剤D
が効力及び経済性の点で優れている。
(3) As the insecticide used in the present invention, various volatile insecticides conventionally used can be used, and pyrethroid insecticides, carbamate insecticides, organophosphorus insecticides and the like can be used. I can name it. Generally, a pyrethroid insecticide is preferably used because it is highly safe. For example, the insecticides shown in Table 5 of FIG. 5 and Table 6 of FIG. 6 can be adopted, and among them, the insecticides A to H are preferable in terms of their industrial availability, economic efficiency, efficacy and safety, and among them, the insecticides are particularly preferable. D
Is superior in terms of efficacy and economy.

【0035】また、殺虫液中の有効殺虫成分の濃度は、
0.5重量%以上、20重量%以下が良好である。これ
ら殺虫剤は単独で用いても良いし、複合して用いる事も
できる。更に、必要に応じて安定剤、消臭剤、共力剤、
色素、その他の助剤を薬液中に小量添加する事もでき
る。
The concentration of the effective insecticidal component in the insecticidal liquid is
A content of 0.5% by weight or more and 20% by weight or less is good. These insecticides may be used alone or in combination. In addition, if necessary, stabilizers, deodorants, synergists,
A small amount of dyes and other auxiliaries can be added to the liquid medicine.

【0036】(4)同様に、芳香を目的として使用する
場合には、天然及び人工の各種香料を用いる事ができ、
例えば動物性及び/又は植物性の天然香料,炭化水素,
アルコール,フェノール,アルデヒド,ケトン,ラクト
ン,オキシド,エステル類等の人工香料等であり、これ
らの1種を単独で使用できる他、2種以上を混合して使
用する事もできる。更に、目的に応じて、消臭剤,殺菌
剤,忌避剤等の各種薬剤についても、加熱により蒸散す
る薬剤であれば使用できる。この様な各種薬剤濃度とし
ては0.5〜10重量%が好ましい。
(4) Similarly, when used for the purpose of aroma, various natural and artificial flavors can be used,
Eg natural animal and / or plant flavors, hydrocarbons,
Artificial fragrances such as alcohols, phenols, aldehydes, ketones, lactones, oxides, esters, etc. can be used alone or in a mixture of two or more. Further, depending on the purpose, various chemicals such as deodorants, bactericides, repellents, etc. can be used as long as they are vaporized by heating. The concentration of each kind of drug is preferably 0.5 to 10% by weight.

【0037】(5)本発明の吸液芯の形状は、棒状芯形
のみに限定するものではない。また、蒸散方法は加熱式
に限定するものではない。用途は殺虫、芳香、消臭のみ
に限定するものではない。 [4] 本発明の蒸散用多孔質セラミックス吸液芯の製
造方法の説明 (1)吸液芯を製造する方法のうち、焼成温度に対応し
て組織内の部分共融現象による凝集核(温度によっては
無変形原料粒子を一部含有する)の間の架橋と空孔とで
形成される共融凝集核架橋多孔質セラミックスの製造方
法について簡単に説明する。尚、この方法は、既に特願
平3ー105947号及び特願平4ー116358号に
て提案したものである。
(5) The shape of the liquid absorbent core of the present invention is not limited to the rod-shaped core. The evaporation method is not limited to the heating method. Applications are not limited to insecticide, aroma and deodorant. [4] Description of a method for producing a porous ceramics liquid-wicking core for evaporation of the present invention (1) Among the methods for producing a liquid-wicking core, agglomeration nuclei (temperature) due to partial eutectic phenomenon in the tissue corresponding to the firing temperature A method for producing a eutectic agglomerate nuclei cross-linked porous ceramics formed by cross-linking between some non-deformable raw material particles and pores will be briefly described. This method has already been proposed in Japanese Patent Application Nos. 3-105947 and 4-116358.

【0038】即ち、釉式にて示す材料成分として、酸性
成分RO2、中性成分R23、アルカリ土属成分RO、
アルカリ成分R2Oを、モル比で下記〜式を満たす
範囲、又は、下記及び式で決定された配合座標点
(X,Y)を中心として下記式で示される半径rの円
内の範囲で用いるとともに、前記中性成分R23の原料
粒子径を10〜60[μm]とし、かつアルカリ土属成
分ROは、原料粒子径40[μm]以上の含有率を40
〜70重量%とし、1.15<θ<1.45(但し、θ=
t℃×10-3)を満たす焼成温度tの範囲で焼成するこ
とを特徴とする多孔質セラミックスの製造方法、即ち共
融凝集核架橋多孔質セラミックスの製造方法である。
That is, as the material components shown by the glaze formula, acidic component RO 2 , neutral component R 2 O 3 , alkaline earth component RO,
The molar ratio of the alkali component R 2 O satisfies the following formulas, or within a circle with a radius r represented by the following formula centered on the blending coordinate point (X, Y) determined by the following formula. While using, the raw material particle diameter of the neutral component R 2 O 3 is set to 10 to 60 [μm], and the alkaline earth metal component RO has a content ratio of the raw material particle diameter of 40 [μm] or more of 40.
Up to 70% by weight and 1.15 <θ <1.45 (where θ =
A method for producing a porous ceramic, that is, a method for producing a eutectic-aggregated nuclei-bridged porous ceramic, characterized by firing at a firing temperature t satisfying t ° C. × 10 −3 ).

【0039】 X=RO2/(RO+R2O) … Y=R23/(RO+R2O) … Z=R2O/(RO+R2O) … Z=2.311×105×exp(−12.28×θ)±exp(−3.8×θ)… Y1<Y<Y2 … 但し、Y1=X−1.75,Y2=X+0.75 Y=−X+A(θ) … 但し、A(θ)=5808.75×{1−exp(−6.7
5×θ)}−5805.07 r={A(θ+0.05)−A(θ)}/21/2 … 尚、この製造方法において、前記中性成分(R23)の
原料粒子径の範囲,アルカリ土属成分(RO)の原料粒
子径の範囲及び重量比,焼成温度tの範囲に加え、前記
〜の各式にて示されるX,Y,Zの成分比の範囲は
いずれも実験によって定められたものであり、この範囲
であれば良好な多孔質セラミックスが形成できる。この
吸液芯の製造目的として、多孔性(孔構成、気孔率、孔
径)の制御を行うのは、上式によって原料配合の一種類
を決め、次いで、その吸液芯が必要とする多孔性を示す
焼成温度を上式のθより低温側の任意温度(以後tB
略称する)で決定すればよい。また、前記釉式で示すR
とは窯業で通常用いられる酸化物の成分のことであり、
例えば、Si,Zr, Al,Fe,Mg,Ca,N
a,K等の元素が挙げられる。従って、酸性成分RO2
としては、例えば、SiO2,ZrO2,中性成分として
は、例えば、Al23,Fe23,アルカリ土属成分R
Oとしては、例えば、CaO,MgO,アルカリ成分と
しては、例えば、Na2O,K2O等を各々使用できる。
X = RO 2 / (RO + R 2 O) ... Y = R 2 O 3 / (RO + R 2 O) ... Z = R 2 O / (RO + R 2 O) ... Z = 2.311 × 10 5 xexp ( −12.28 × θ) ± exp (−3.8 × θ) ... Y 1 <Y <Y 2 ... However, Y 1 = X−1.75, Y 2 = X + 0.75 Y = −X + A (θ) However, A (θ) = 5808.75 × {1-exp (−6.7)
5 × θ)} − 5805.07 r = {A (θ + 0.05) −A (θ)} / 2 1/2 ... In this manufacturing method, the raw material particles of the neutral component (R 2 O 3 ) In addition to the diameter range, the raw material particle diameter range and the weight ratio of the alkaline earth metal component (RO), and the firing temperature t range, the ranges of the X, Y, and Z component ratios represented by the above formulas are all Is also determined by experiments, and good porous ceramics can be formed within this range. For the purpose of producing this absorbent core, the porosity (pore constitution, porosity, pore size) is controlled by determining one kind of raw material blending by the above formula, and then the porosity required by the absorbent core. The firing temperature indicating the above may be determined by an arbitrary temperature (hereinafter abbreviated as t B ) on the lower temperature side than θ in the above equation. Also, R shown by the glaze formula
Is an oxide component that is usually used in the ceramic industry,
For example, Si, Zr, Al, Fe, Mg, Ca, N
Examples include elements such as a and K. Therefore, the acidic component RO 2
Examples thereof include SiO 2 and ZrO 2 , and examples of neutral components include Al 2 O 3 , Fe 2 O 3 and alkaline earth components R.
As O, for example, CaO, MgO, and as the alkaline component, for example, Na 2 O, K 2 O, etc. can be used.

【0040】(2)着色製品を得るための方法として
は、前記(1)項の配合品100重量部に対して、無機
質顔料(例えば、鉄,マンガン,コバルト,銅,クロー
ム,チタン等の酸化物や水酸化物や塩を目的に応じて適
宜配合した粉末)を、0.5〜10重量部、望ましくは
2〜6重量部を原料配合中に混入する方法がある。
(2) As a method for obtaining a colored product, 100 parts by weight of the compounded product of the above (1) is used to oxidize an inorganic pigment (for example, iron, manganese, cobalt, copper, chrome, titanium, etc.). Powder, which is an appropriate mixture of a substance, a hydroxide, and a salt according to the purpose), is mixed in the raw material in an amount of 0.5 to 10 parts by weight, preferably 2 to 6 parts by weight.

【0041】(3)前記(1)及び(2)項の原料配合
物中に、油脂粉や液,合成樹脂粉や液,有機物粉や液,
炭素又は炭化水素系粉等を更に付加配合しても、多孔質
セラミックス原料となることは自明のことである。この
時の焼成雰囲気は、酸素の含有条件の制限を受ける。し
かし、一般的には強度の弱いものができ易い。
(3) In the raw material composition of the above (1) and (2), oil and fat powder or liquid, synthetic resin powder or liquid, organic powder or liquid,
It is self-evident that even if carbon or hydrocarbon powder or the like is additionally compounded, it will be a porous ceramic raw material. The firing atmosphere at this time is limited by the oxygen content conditions. However, in general, it is easy to produce a weak one.

【0042】(4)前記材料を用いて成形する場合、常
法に従ってダイス孔より棒状物を押し出し、次いで所定
長で切断し、棒状吸液芯の成形物を得る。 (5)焼成雰囲気としては、前記(3)項の特例を除い
て、酸素の有無は特に関係なく、例えば大気雰囲気や非
酸化性雰囲気等の各種雰囲気中での焼成が可能である。
(4) When the above material is used for molding, a rod-shaped product is extruded from a die hole according to a conventional method and then cut into a predetermined length to obtain a rod-shaped liquid absorbent core molded product. (5) Except for the special case of the above item (3), the firing atmosphere is not particularly limited to the presence or absence of oxygen, and firing can be performed in various atmospheres such as an air atmosphere and a non-oxidizing atmosphere.

【0043】(6)吸液芯が必要とする機能として、吸
液速度,漏液速度,蒸散速度経時変化特性等の制御のた
め、適切な孔径(多孔質細孔径の意、以後同じ)が容易
に得られる必要がある。本法では、同一配合品で同一焼
成温度保持時間であれば、前記式,,の示す焼成
温度θより低温の目的焼成温度(tB)を制御すること
のみで、目的孔径及び気孔率の多孔質セラミックス吸液
芯が容易に得られる。
(6) As a function required by the liquid-wicking core, an appropriate pore size (meaning porous pore size, hereinafter the same) is required to control the liquid-absorption rate, the liquid-leakage rate, the evaporation rate, and the temporal change characteristics. It needs to be easily obtained. In the present method, if the same composition and the same firing temperature holding time are used, the porosity of the target pore diameter and porosity can be controlled only by controlling the target firing temperature (t B ) lower than the firing temperature θ represented by the above formulas ,. A fine ceramics liquid absorbent core can be easily obtained.

【0044】(7)上述した製造方法による焼成温度t
より低温の焼成温度tBを必要とする場合(例えばtB
1150℃)には、低温を共融点とする無機原料配合、
例えばガラス粉と食塩を原料とする方法や、或は、RO
やR2Oの配合比を特に高めたところの陶磁器原料と食
塩(又はtB以下で揮散する塩類、或は焼成後、水浴又
は特殊薬品によって溶脱させ得る塩類)を原料とする方
法があることは、特開平4−240167号公報に開示
されていることから容易にわかる。
(7) Firing temperature t according to the above manufacturing method
When a lower firing temperature t B is required (for example, t B <
1150 ° C.), an inorganic raw material mixture having a low temperature as a eutectic point,
For example, a method using glass powder and salt as raw materials, or RO
There is a method of using ceramic raw material and salt (or salts that volatilize at t B or less, or salts that can be leached by a water bath or a special chemical after firing) with a particularly high compounding ratio of R 2 O and R 2 O as raw materials. Can be easily understood from the fact that it is disclosed in Japanese Patent Laid-Open No. 4-240167.

【0045】[0045]

【作用】[1] 吸液芯の製造方法に関する作用 (1)本発明の請求項3の吸液芯の製造方法は、下記
(a)〜(d)の性質や現象を利用したものである。
[1] Operation relating to the method for producing the absorbent core (1) The method for producing the absorbent core according to claim 3 of the present invention utilizes the following properties and phenomena (a) to (d). .

【0046】(a)焼成温度は、同一成分の粉末であれ
ば、粒子径が小値ほど、より低温で相互反応する。 (b)釉式R23成分(例えばAl23)は、その含有
率が小値ほど、より共融点が低温化する。
(A) As for the firing temperature, if powders of the same component are used, the smaller the particle size, the lower the temperature at which the mutual reaction occurs. (B) The lower the content of the glaze R 2 O 3 component (eg, Al 2 O 3 ) is, the lower the eutectic point is.

【0047】(c)釉式R2O成分(例えばNa2OやK
2O)は、微量含有率で共融点が大巾に低温化する。 (d)釉式RO成分は、セラミックス焼成温度より大巾
に低温でCO2ガスを発生するので(例えば原料として
CaCO3やMgCO3は、1[atm]下での解離圧は各
々900℃,540℃)、低い温度で分子レベルに近い
極微小孔による多孔化によって、その物質粒子の外形を
殆ど変化させず軽量化する。その後例えば1150℃を
越えてくると、微小孔の凝集と共融両作用で小塊化が組
織内で進行するため、5[μm]以上の小孔多孔化が開
始される。
(C) Glazed R 2 O component (for example, Na 2 O or K)
2 O) has a very small eutectic point, and its eutectic point is significantly lowered. (D) The glaze RO component generates CO 2 gas at a temperature much lower than the firing temperature of the ceramics (for example, CaCO 3 and MgCO 3 as raw materials have a dissociation pressure of 900 ° C. under 1 [atm], (540 ° C.), the outer diameter of the substance particles is hardly changed and the weight is reduced due to the formation of micropores at a low temperature close to the molecular level. After that, for example, when the temperature exceeds 1150 ° C., the agglomeration of the micropores and the eutectic action promote the agglomeration in the tissue, so that the micropores of 5 [μm] or more are initiated.

【0048】(2)そして、上述した(1)の(a)〜
(d)の性質や現象によって、下記の様にして反応及び
組織の小孔多孔から大孔多孔への変化が進行する。 (a)まず1150℃を越えてくると、組織内部で小径
粒子(数[μm]以下)のものの間で前記釉式成分間の
多成分共融が部分的に進行し、無定形化(ガラス化)し
た部分が粘性流動し、より大径粒子のRO2,R23
RO成分粒子に凝集する。この時数[μm]以上の小孔
ができ始める。
(2) Then, (a) to (1) of the above-mentioned (1)
Depending on the property and phenomenon of (d), the reaction and the change of the structure from small pores to large pores proceed as follows. (A) First, when the temperature exceeds 1150 ° C., the multi-component eutectic between the glaze-type components partially progresses among the small-sized particles (several [μm] or less) inside the tissue, and the amorphous (glass ), Viscous flow occurs, and larger particles of RO 2 , R 2 O 3 ,
Aggregates into RO component particles. At this time, small holes more than a few [μm] begin to form.

【0049】(b)次にその配合が示す焼成温度に達す
ると、大径粒子でも熔け易い物を含んだ釉式成分間の共
融が進行することで、大径の孔の生成が製品の内部や表
面で進行する。この最終的共融による無定形化物による
凝集場での核塊として最後まで原形を保持して残ってい
るのは、Al23成分の大径粒子や前記流動化の結果生
成された二次塊であるが、前記式,,中の焼成温
度θ前後になると、原形の無い磁器化しした多孔体の骨
格(壁)として一体化している。
(B) Next, when the firing temperature indicated by the composition is reached, eutectic fusion between the glaze-type components containing easily meltable even large-diameter particles progresses, resulting in the formation of large-diameter holes in the product. It progresses inside and on the surface. As a core mass in the coagulation field due to the amorphous substance by the final eutectic, the original shape is retained and remains until the end. Large particles of Al 2 O 3 component and secondary particles generated as a result of the fluidization are left. Although it is a lump, when it reaches around the firing temperature θ in the above formula, it is integrated as a skeleton (wall) of a porcelainized porous body having no original shape.

【0050】(c)この様に、核部分が焼成過程の終末
近くまで存在することによって、全体的組織は特に大き
な変形や組織全体の流動化はなく、成形時の形状は寸法
的には2〜3%の変形内で保形されながら多孔質セラミ
ックスが形成される。 (3)この終末段階の温度が前記式,,中のθで
示されているが、その配合が示す焼成温度を越えて昇温
焼成すると、組織全体が軟化し、孔径は小径化し、つい
には無孔化する。更に昇温すると組織全体が流動化して
湯となる。
(C) As described above, since the core portion exists near the end of the firing process, the overall structure does not undergo any significant deformation or the entire structure is fluidized, and the shape during molding is 2 A porous ceramic is formed while maintaining the shape within the deformation of ˜3%. (3) The temperature of this final stage is represented by θ in the above formulas, and, but when the temperature is increased above the firing temperature indicated by the composition, the entire structure is softened and the pore diameter is reduced, finally. Make it non-porous. When the temperature is further raised, the entire structure is fluidized and becomes hot water.

【0051】(4)つまり、焼成し製造する製品には、
各々の配合比によって望ましい最終温度θがあるが、こ
の製造方法では、大径粒子のR23を含有しているの
で、その比表面積は小さく、従って、選択した配合物の
θ以下の温度帯では、小粒子間の共融場に関与するR2
3成分含有比が小値となり、共融点は、組織全体のR2
3成分含有比が来す温度より低温度となる。
(4) That is, the product manufactured by firing is
Although there is a desired final temperature θ depending on each compounding ratio, since this production method contains large-diameter particles of R 2 O 3 , its specific surface area is small, and therefore, the temperature of θ or less of the selected compound is less than θ. In the zone, R 2 is involved in the eutectic field between small particles
The content ratio of O 3 component becomes a small value, and the eutectic point is R 2 of the entire structure.
The temperature becomes lower than the temperature at which the O 3 component content ratio comes.

【0052】この理由によって先ず大径粒子以外の部分
で、θより低温で熔融が起き、その時小孔が多数でき
る。次いでθに近づく昇温に伴って、成形体は、大きな
寸法変化を起すことなく、無数の小孔が融合して次第に
大孔多孔化していく。 (5)顔料を前記「手段」の欄の[4](2)項の記載
範囲内で混入しても、前記「作用」の欄の[1]
(1),(2)項で述べたところの基本的変化は変らな
い。
For this reason, first, melting occurs at a temperature lower than θ in portions other than the large-diameter particles, and at that time, many small holes are formed. Next, as the temperature rises to θ, the formed body gradually becomes large-pore porosity by fusing innumerable small holes without causing a large dimensional change. (5) Even if a pigment is mixed within the range described in item (4) and item (2) of the column "Means", the item "1" in the column "Action" is described.
The basic changes described in paragraphs (1) and (2) do not change.

【0053】(6)吸液芯用の棒に関する必要機能を満
足する焼成温度が、θ以下で650℃以上の間で選択し
た目的温度(tB ℃)になることは、上述の作用から、
容易に解ることである。尚、請求項4の製造方法につい
ては、前記「手段」欄の[4](7)項にて簡単に記載
した。 [2] 加熱蒸散機能の作用 次に、吸液量及び蒸散量の律速について述べる。以下
(1)〜(4)は一般論であり、(5)は従来品の作
用、(6)は本法の作用である。
(6) From the above-mentioned action, the firing temperature satisfying the required function of the liquid absorbent core becomes the target temperature (t B ° C) selected between θ and 650 ° C and above.
It is easy to understand. The manufacturing method of claim 4 is briefly described in the paragraph [4] (7) of the “means” column. [2] Action of Heating Evaporation Function Next, the rate control of the liquid absorption amount and the evaporation amount will be described. The following (1) to (4) are general theory, (5) is the operation of the conventional product, and (6) is the operation of the present method.

【0054】(1)ポアズイユの式(注1)からT時
間後の毛管吸液量Qiの式を導く。但し薬液の湿潤張
力(σ・cosθ)や粘度η等の薬液物性値は、同一薬液
利用比較なので一定値となるので除いて考える。
(1) From the Poiseuille's formula (Note 1), the formula of the capillary liquid absorption Qi after T time is derived. However, the physical properties of the chemical liquid such as the wet tension (σ · cos θ) and the viscosity η of the chemical liquid are constant because they are used for the same chemical liquid, so they are excluded.

【0055】[0055]

【数1】 [Equation 1]

【0056】但し、L :T時間後の吸液距離
(高さ) σ・cosθ:湿潤張力 η :粘度 R :毛管半径=do/2 do :毛管直径 dm :速通孔径、ポロシメーター法で求めた積算
細孔容積中央値(median)に相当する細孔径 T :吸液時間 Qi :T時間後の吸液芯(棒状)内流入液量 Ao :毛管内断面積 A :吸液芯の断面積(直径7φ[mm]で一定) εp :吸液芯の気孔率 上式よりQiは(εp・dm1/2)値に比例することが理
解できる。 *注1:化学工学会編,化学工学便覧,改訂5版,第2
刷,丸善(株)発行,1991.1.25,P246 (2)蒸散量Qoより小値なQiを取ると、即ち極小値な
(εp・dm1/2)値であれば、Qoは吸液芯多孔性、即ち
(εp・dm1/2)値で律速となる。
However, L: Liquid absorption distance (height) after T time σ · cos θ: Wetting tension η: Viscosity R: Capillary radius = do / 2 do: Capillary diameter dm: Rapid through hole diameter, determined by porosimeter method Pore diameter corresponding to median cumulative pore volume T: Absorption time Qi: Amount of influent in the absorbent core (rod) after T hours Ao: Cross-sectional area of the capillary A: Cross-sectional area of the absorbent core ( (Constant with a diameter of 7φ [mm]) ε p : Porosity of the absorbent core From the above equation, it can be understood that Qi is proportional to the value of (ε p · dm 1/2 ). * Note 1: Chemical Engineering Society, Chemical Engineering Handbook, 5th revised edition, 2nd
Printing, Maruzen Co., Ltd., 1991.1.25, P246 (2) If Qi is smaller than the transpiration amount Qo, that is, if it is the minimum value (ε p · dm 1/2 ), Qo is liquid absorbing The porosity of the core, that is, the (ε p · dm 1/2 ) value, determines the rate.

【0057】(3)逆にQo<Qiである様な、吸液芯多
孔性であれば、蒸散量の駆動力、即ち、受熱,蒸散面
積,蒸散場温度,蒸散場表面風速で律速となる。 (4)経時的に薬液移動抵抗が増加すると、初頭時のQ
oは経時的に減少する。薬液移動抵抗の増加因は、薬液
の蒸散残査物や変化物(以後、残変物と略称する)であ
る。この残変物の性質は、 (a)加熱時軟化して、薬液粘度より大値な粘度の液状
体となる。
(3) On the contrary, if the liquid absorption core is porous such that Qo <Qi, the driving force for the transpiration amount, that is, the heat reception, the transpiration area, the transpiration field temperature, and the transpiration field surface wind velocity will determine the rate. . (4) When the drug transfer resistance increases over time, Q at the beginning
o decreases with time. The cause of the increase in resistance to the movement of the chemical liquid is a transpiration residue or a change product (hereinafter, abbreviated as a residual product) of the chemical liquid. The properties of the residual metabolite are as follows: (a) When heated, it softens to become a liquid having a viscosity larger than the viscosity of the chemical liquid.

【0058】(b)冷却時(吸液芯加熱電源の入力無し
の時)は固化する。 (5)従来品の場合の作用 (a)多孔体の壁組織が小粒子同志の焼結で構成されて
いる”素焼状”壁の連通孔は、小粒子間隙孔であるの
で、加熱時、残変物が液状体期間は、吸液芯の中心方向
の低濃度液中へも残変物の拡散が徐々に進行する(図1
2(b)参照)。壁の中で経時的に芯中心方向へ、残変
物の堆積厚みが増加する。
(B) It solidifies during cooling (when the liquid absorption core heating power source is not input). (5) Action in case of conventional product (a) Since the communication hole of the "unfired" wall in which the wall structure of the porous body is composed of the sintering of the small particles is a small particle interstitial hole, when heating, During the liquid phase of the residual metabolite, diffusion of the residual metabolite gradually progresses into the low-concentration liquid toward the center of the absorbent core (Fig. 1).
2 (b)). In the wall, the deposited thickness of the residual variation increases with time toward the center of the core.

【0059】(b)粘性大値層が吸液芯の外周から中心
方向へ累積蒸散量に比例して厚みを増加するので、(粘
度ηの逆数に比例する)拡散係数Dは徐々に小値化す
る。即ち、薬液移動抵抗は累積蒸散量に比例して増大
し、蒸散速度は反比例して減少する。
(B) Since the high-viscosity layer increases in thickness from the outer periphery of the liquid absorbent core toward the center thereof in proportion to the accumulated evaporation amount, the diffusion coefficient D (proportional to the reciprocal of viscosity η) gradually decreases. Turn into. That is, the chemical transfer resistance increases in proportion to the cumulative evaporation amount, and the evaporation rate decreases in inverse proportion.

【0060】(c)残変物厚みの増大は、粘性以外に、
多孔体に於ける有効拡散係数De=D・(εp/τ)(但
し、εpは気孔率,τは迷宮度)を小値化することにも
なる。即ち、τの大値化及びεpの小値化が残変物と”
素焼状”壁の小粒子間隙孔の相互作用で生じる。従って
上述(b)のD小値化もあって、Deはさらに小値化す
る。この観点からも薬液移動抵抗の増大が、経時的に増
加することが明白である。 (6)本発明による場合の
作用 (a)本法による多孔質セラミックスの壁構造は緻密で
ある。そして、洞穴孔及び連通孔を有するものでは、上
述の”素焼状”壁より比較的大孔径の連通孔が、吸液芯
表面と内部洞穴、又は洞穴と洞穴の間に存在する。表面
近くの連通孔の内、小孔が残変物で薬液の移動抵抗値を
増加させることは、”素焼状”壁と同様であるが、表面
開口部孔径の内、大孔径連通孔が、従来品の”素焼状”
壁より多数のため、移動抵抗の小なる大口径連通孔から
表面への薬液流出が、蒸散場への薬液供給の主流とな
る。
(C) The increase in the thickness of the residual product is
It also reduces the effective diffusion coefficient De = D · (ε p / τ) (where ε p is the porosity and τ is the labyrinth) in the porous body. In other words, increasing τ and decreasing ε p are residual
It occurs due to the interaction of small particle pores in the bismuth-like wall. Therefore, De is further reduced due to the reduction of D in (b) above. (6) Operation in the case of the present invention (a) The wall structure of the porous ceramics according to the present method is dense, and in the case of having the cave holes and the communicating holes, the above-mentioned " There is a communication hole with a relatively larger diameter than the unglazed wall between the absorbent core surface and the internal cave, or between the cave and the cave. Of the communication holes near the surface, the small holes are residual compounds and the chemical solution moves. Increasing the resistance value is the same as for the "biscuit-like" wall, but of the surface opening hole diameters, the large-diameter communicating hole is the conventional "biscuit-like" shape.
Since the number is larger than that of the walls, the outflow of the chemical solution to the surface from the large-diameter communication hole having a small movement resistance becomes the main flow of the chemical solution supply to the evaporation field.

【0061】残変物堆積も、開口部周辺で徐々に開口径
を小径化させるが、開口部の内側に連通孔より格段に大
径の洞穴が存在することで、吸液芯の半径中心方向への
残査物進入があっても、従来品の様な、小粒子間隙孔へ
の進入と違い、厚い高粘度層への発達は防止される。開
口径の周辺で開口を塞ぐ層の発達は、吸液芯表面上に堆
積することが主流となり、加熱時には、重力作用によっ
て吸液芯表面上を落下して行く。即ち、ある一定厚みで
薬液移動抵抗層厚みの成長は止まることになる。尚、従
来品の”素焼状”物より急速に抵抗厚みが増加(蒸散速
度が短期間で低下する現象)するのは、表面のみに堆積
することが原因である。
Even when depositing residual metabolites, the diameter of the opening is gradually reduced in the vicinity of the opening. However, since there is a cavern inside the opening, which is significantly larger than the communication hole, the radial center of the liquid absorbent core Even if there is a residue infiltrating into the pores, unlike a conventional product, unlike a conventional product, the development into a thick high-viscosity layer is prevented. The development of the layer that closes the opening around the opening diameter is mainly deposited on the surface of the absorbent core, and when heated, falls on the surface of the absorbent core due to gravity. That is, the growth of the chemical liquid movement resistance layer thickness stops at a certain constant thickness. The reason why the resistance thickness increases more rapidly (a phenomenon in which the evaporation rate decreases in a short period of time) than that of the conventional "birch-like" product is that it is deposited only on the surface.

【0062】また、加熱停止時点で、半固化や固化部分
への薬液の侵入は、”素焼状”の様な物では連続的変化
になるが、本法品では、不連続部分が主流であり、唯一
連続点は、大開口部を覆う層部分のみである。 (b)上述の本法製法セラミックス多孔体の特徴によっ
て、本法では急激な薬液移動抵抗の増大と、その後の一
定した抵抗による長期安定な蒸散を可能としている(図
13(a)の線分A−C−B−F,同図(b)の線分A
−C−B1−F1経時変化特性線参照)。また、図13
(a)に示す様に、本法品を示す特性曲線A−C−B−
Fより、従来品の示す線A−B−Fは必要以上の蒸散量
を必要としている。更に、利用末期E時点に対応する単
位時間当りの蒸散量Gに含有される薬効成分含有率は、
Gより大なる蒸散量の時点でも同一である。即ち図13
(a)で示したハッチング部分が、従来品より本法品の
方が、利用期間を同一とした時に有利になる量を示して
いる。また、図13(b)では、蒸発総量を従来品と同
一とした場合、本法によると利用時間T1(=E1−E)
が延長可能であることを示している。
Further, when the heating is stopped, the infiltration of the chemical solution into the semi-solidified or solidified portion is continuously changed in the case of "a biscuit-like" state, but in the product of this method, the discontinuous portion is the mainstream. The only continuous point is the layer portion that covers the large opening. (B) Due to the above-mentioned characteristics of the ceramic porous body produced by the present method, the present method enables a rapid increase in resistance to the movement of the chemical liquid, and a stable long-term transpiration due to a constant resistance thereafter (line segment in FIG. 13 (a)). A-C-B-F, line segment A in FIG.
Referring -C-B 1 -F 1 aging characteristic line). In addition, FIG.
As shown in (a), the characteristic curve A-C-B- showing the product of this method.
From F, the line A-B-F shown by the conventional product requires an excessive amount of transpiration. Furthermore, the content rate of the medicinal component contained in the transpiration amount G per unit time corresponding to the end-of-use period E is:
It is the same even when the transpiration amount is larger than G. That is, FIG.
The hatched portion shown in (a) shows the amount of the product of the present method that is more advantageous than the conventional product when the usage period is the same. Further, in FIG. 13B, when the total amount of evaporation is the same as that of the conventional product, according to this method, the usage time T 1 (= E 1 −E)
Indicates that can be extended.

【0063】(c)蒸散量の増減は、受熱及び蒸散の場
の面積の増減によって容易に増減できる。例えば吸液芯
の受熱部長の増減による方法は容易な実施例となる。 (d)ポアズイユの式によれば、(A・εp・dm1/2
値を一定とした場合でも、薬液の界面張力や粘度等の物
性値を変えることによっても、蒸散量の増減制御が可能
であることは自明である。
(C) The amount of transpiration can be easily increased or decreased by increasing or decreasing the area of the heat receiving and transpiration field. For example, the method of increasing / decreasing the length of the heat receiving portion of the liquid absorbent core is an easy embodiment. (D) According to Poiseuille's formula, (A · ε p · dm 1/2 )
Even if the value is fixed, it is obvious that the evaporation amount can be controlled to be increased or decreased by changing the physical properties such as the interfacial tension and the viscosity of the chemical liquid.

【0064】[0064]

【実施例】以下、本発明の実施例に基づいて説明する
が、本発明はこれに限定されるのではない。 [1] 蒸散用多孔質セラミックス製吸液芯の製作 (1)原料については、図1の表1に示す様な組成(重
量%)の窯業原料No.1〜5を準備し、それらを混合し
て、図2の表2のX,Y,Zのモル配合比及び原料粒子
径となる様に、表2の試料No.A1〜A3を調製した。
EXAMPLES The present invention will be described below based on examples, but the present invention is not limited thereto. [1] Fabrication of liquid absorption core made of porous ceramics for evaporation (1) As for raw materials, ceramic raw materials No. 1 to 5 having the composition (% by weight) as shown in Table 1 of FIG. 1 are prepared and mixed. Then, sample Nos. A1 to A3 in Table 2 were prepared so that the X, Y, and Z molar compounding ratios and raw material particle diameters in Table 2 in FIG.

【0065】(2)前記試料No.A1〜A3の100部
に対し、黒色顔料として、川村化学(株)製造の品名K
R960(組成Fe23,MnO,CoO)、又はKR
350(組成Fe23,Cr23,MnO,CoO)
を、0.5部,1部,2部,3部,4部,8部,16部
配合した物を各々製作した。
(2) As a black pigment, the product name K manufactured by Kawamura Chemical Co., Ltd. was used for 100 parts of the sample Nos. A1 to A3.
R960 (composition Fe 2 O 3 , MnO, CoO), or KR
350 (composition Fe 2 O 3 , Cr 2 O 3 , MnO, CoO)
Was mixed with 0.5 part, 1 part, 2 parts, 3 parts, 4 parts, 8 parts, and 16 parts, respectively.

【0066】(3)成形については、常法に従って、即
ち水にて試料を混練後、スクリュー式押出機の出口板の
7φ[mm]ダイス開口孔部より棒状の長尺形状物を押し
出し、ピアノ線にて所定長67〜75[mm]で切断し、
7φ[mm]×67〜75[mm]の成形品を得た。
(3) For molding, according to a conventional method, that is, after kneading the sample with water, a rod-shaped long-shaped product is extruded from the 7φ [mm] die opening hole of the exit plate of the screw type extruder, and the piano Cut with a line at a specified length of 67 to 75 [mm],
A molded product of 7φ [mm] × 67 to 75 [mm] was obtained.

【0067】(4)次いで、常法に従って、乾燥むら発
生が少なくなる様にして乾燥した。 (5)焼成については、大気零囲気下にて、昇温3
[h]、焼成温度保持時間4[h]とし、匣鉢内に積層
状態で焼成した。焼成温度は1150〜1300℃とし
て、25℃区分で焼成温度別製品を得た。尚、この時、
前記式,,で記述した標準焼成温度θ=1.35
(t=1350℃)より低温で焼成したのは、多孔体の
細孔径が、今回の実施例の薬剤の吸液芯目的に対して、
大値過ぎる孔径となることを防止するためである。 [2] 製品の特性試験 (1)上述した方法によって製造した吸液芯に対して、
その多孔性をポロシメーター法によって調べた。また、
色調を観察し、更に後述する蒸散実験と同様な実験によ
って蒸散特性を調べた。その結果、前記試料No.A1〜
A3から製造される吸液芯のうち、試料No.A1からな
るものが、多孔性及び蒸散特性の点で優れていた。ま
た、黒色顔料を変えた吸液芯のうち、4部配合のもの
が、色調,多孔性,蒸散特性の点で優れていた。
(4) Next, according to a conventional method, drying was carried out so that the occurrence of drying unevenness was reduced. (5) For firing, raise the temperature in an atmosphere of zero atmosphere 3
[H] and baking temperature retention time was 4 [h], and baking was performed in a stacked state in a bowl. The firing temperature was set to 1150 to 1300 ° C., and the products by firing temperature were obtained in the 25 ° C. section. At this time,
Standard firing temperature θ = 1.35 described by the above formula
Firing at a temperature lower than (t = 1350 ° C.) is because the pore size of the porous body is different from the purpose of the liquid absorption core of the drug of this example.
This is to prevent the pore size from becoming too large. [2] Product characteristic test (1) For the liquid absorbent core manufactured by the method described above,
The porosity was investigated by the porosimeter method. Also,
The color tone was observed, and the transpiration characteristics were examined by the same experiment as the transpiration experiment described later. As a result, the sample No. A1
Among the absorbent cores produced from A3, the one made of sample No. A1 was excellent in terms of porosity and transpiration property. Further, among the liquid absorbent cores having different black pigments, those containing 4 parts were excellent in terms of color tone, porosity and transpiration property.

【0068】(2)ここで、この性能の優れた製品、即
ち、試料No.A1の100部に対し黒色顔料KR350
を4部配合した原料の製品の多孔性試験の結果を、図3
の表3,図10及び図11に示す。この表3及び図10
から明かな様に、組織内空孔容積基準での中央値相当の
連通孔径dmは、焼成温度tが上昇するに従って大値化
しており、気孔率εpもtの大値化に伴って若干大値化
している。また、図11に示す様に、吸入機能を示す値
(εp・dm1/2)はt上昇に伴い上昇していることが判
る。
(2) Here, a black pigment KR350 is added to 100 parts of the product having this excellent performance, that is, sample No. A1.
Fig. 3 shows the result of the porosity test of the raw material product containing 4 parts of
Table 3 and FIG. 10 and FIG. This Table 3 and FIG.
As is clear from the above, the communication pore diameter dm corresponding to the median value based on the pore volume in the tissue increases as the firing temperature t rises, and the porosity ε p also slightly increases as t increases. It has become a big price. Further, as shown in FIG. 11, it can be seen that the value indicating the inhalation function (ε p · dm 1/2 ) increases as t increases.

【0069】(3)更に、この製品の強度を、JIS1
601の曲げ強さ試験にて測定した。この結果を図4の
表4及び図14に示す。図14に示す様に、焼成温度t
=1175〜1275℃の範囲で焼成した吸液芯が今回
実施例の製品の強度であり、従来品の2倍弱(約1.8
倍)の強度であることが判る。また、容器内装着状態で
の落下による耐衝撃性試験でも、強度と同様な優れた結
果であり、実用上の取扱い勝手が従来品より格段に良い
ものであった。 [3] 吸液芯の吸油(水)量及び吸液速度の実験 次に、本実施例の吸液芯の吸油(水)量及び吸液速度の
実験を行った。尚、対比のために下記比較例の吸液芯も
製造して同様な実験を行った。
(3) Furthermore, the strength of this product is
It was measured by a bending strength test of 601. The results are shown in Table 4 of FIG. 4 and FIG. As shown in FIG. 14, the firing temperature t
The liquid absorbent core baked in the range of 1175 to 1275 ° C. has the strength of the product of this example, which is slightly less than twice that of the conventional product (about 1.8).
It is understood that the strength is twice as high. Also, in the impact resistance test by dropping in the state of being mounted in the container, the result was as good as the strength, and the handling convenience in practical use was significantly better than the conventional product. [3] Experiment of oil absorption (water) amount and liquid absorption speed of liquid absorbent core Next, an experiment of oil absorption (water) amount and liquid absorption speed of the liquid absorbent core of this example was conducted. For comparison, a liquid absorbent core of the following comparative example was also manufactured and the same experiment was conducted.

【0070】(1)実施例の吸液芯 まず、本実施例の吸液芯(試料No.A1の100部に対
し黒色顔料KR350を4部配合した原料を使用し、焼
成温度を違えた図7の表7の実施例1〜5)に対し、吸
油量,吸水量,吸液速度を測定した。その結果を同じく
表7に記す。
(1) Liquid-wicking core of the example First, a diagram in which a baking temperature was changed by using a raw material in which 4 parts of the black pigment KR350 was mixed with 100 parts of the liquid-absorbing core of the present example (Sample No. A1) The oil absorption amount, the water absorption amount, and the liquid absorption speed were measured for Examples 1 to 5) in Table 7 of Table 7. The results are also shown in Table 7.

【0071】この実施例および下記比較例において吸油
量とは、吸液芯1[mL]当りに吸油されるノルマルパラ
フィンの重量[g]であり、吸油速度とは、吸液芯を7
0[mm]に切断し、室温にてその下部15[mm]を前記
ノルマルパラフィンに浸漬し、芯頂にノルマルパラフィ
ンが到達する時間を云う。
In this example and the following comparative examples, the oil absorption amount is the weight [g] of normal paraffin absorbed per 1 mL of the liquid absorption core, and the oil absorption rate is 7% of the liquid absorption core.
The time required for the normal paraffin to reach the apex by cutting it to 0 [mm] and immersing the lower part 15 [mm] in the normal paraffin at room temperature.

【0072】尚、特に断らない限り、ノルマルパラフィ
ンとは、炭素原子数14〜16の留分のものを指す。ま
た、吸水量及び吸水速度とは、可溶化剤(ジエチレンオ
キシブチルエーテル)を40重量%配合の水溶液につい
て前記と同様に測定したものである。
Unless otherwise specified, normal paraffin refers to a fraction having 14 to 16 carbon atoms. Further, the water absorption amount and water absorption rate are measured in the same manner as described above for an aqueous solution containing 40% by weight of a solubilizing agent (diethyleneoxybutyl ether).

【0073】(2)比較例の吸液芯 (a)比較例1 タルク粉43.0重量%,生コークス粉30.0重量%,
木粉6.0重量%,カオリンクレー19.0重量%,デン
プン2.0重量%からなる粉体をよく混合し、これに全
粉体量に対して30.0重量%の水を加え混練した。こ
れを7.0[mm]のノズルを有する押し出し成形機で加
圧押し出しを行なって、得られた棒状成形物を風乾後、
1000℃で焼成して比較例1の従来の吸液芯を得た。
そして、この吸液芯に対して前記実施例1〜5と同様な
実験を行った。以下、実験方法は同様である。
(2) Liquid absorbent core of Comparative Example (a) Comparative Example 1 43.0% by weight of talc powder, 30.0% by weight of raw coke powder,
A powder consisting of 6.0% by weight of wood powder, 19.0% by weight of kaolin clay and 2.0% by weight of starch was mixed well, and 30.0% by weight of water was added to this powder and kneaded. did. This was pressure-extruded with an extrusion molding machine having a 7.0 [mm] nozzle, and the obtained rod-shaped molded product was air-dried,
A conventional liquid absorbent core of Comparative Example 1 was obtained by firing at 1000 ° C.
Then, the same experiment as in Examples 1 to 5 was conducted on the liquid absorbent core. Hereinafter, the experimental method is the same.

【0074】(b)比較例2 マイカ粉53.0重量%,カオリンクレー22.0重量
%,アクリル樹脂粉末20.0重量%,カルボキシメチ
ルセルロース5.0重量%からなる粉体をよく混合し、
これに全粉体量に対して30.0重量%の水を加え混練
した。これを比較例1と同様の方法で押し出し成形し、
焼成を行って比較例2の吸液芯を得た。
(B) Comparative Example 2 A powder composed of 53.0% by weight of mica powder, 22.0% by weight of kaolin clay, 20.0% by weight of acrylic resin powder and 5.0% by weight of carboxymethyl cellulose was well mixed,
To this, 30.0% by weight of water based on the total amount of powder was added and kneaded. This was extruded in the same manner as in Comparative Example 1,
Firing was performed to obtain the absorbent core of Comparative Example 2.

【0075】(c)比較例3 珪藻土50.0重量%,木粉24.0重量%,活性炭2
4.0重量%,デンプン2.0重量%の混合物に、全粉体
量に対して130.0重量%の水を加え混練し、これを
押し出し成形後、風乾して、比較例3の吸液芯を得た。
(C) Comparative Example 3 Diatomaceous earth 50.0% by weight, wood powder 24.0% by weight, activated carbon 2
To a mixture of 4.0% by weight and 2.0% by weight of starch, 130.0% by weight of water based on the total amount of powder was added and kneaded, and the mixture was extruded and air-dried to absorb the water of Comparative Example 3. A liquid core was obtained.

【0076】(d)比較例4 同様にして珪藻土14.0重量%,クレー35.0重量
%,焼石膏49.0重量%,CMC−Na2.0重量%か
ら比較例4の吸液芯を作成した。この吸液芯の吸油量は
0.30[g/mL]、吸油速度は9時間であった。尚、
比較例3及び4の吸液芯を水性殺虫液に浸漬した場合、
膨潤、劣化が生じ使用に耐えなかった。
(D) Comparative Example 4 Similarly, the absorbent core of Comparative Example 4 was prepared from 14.0% by weight of diatomaceous earth, 35.0% by weight of clay, 49.0% by weight of calcined gypsum and 2.0% by weight of CMC-Na. Created. The oil absorption of the liquid absorbent core was 0.30 [g / mL] and the oil absorption rate was 9 hours. still,
When the absorbent cores of Comparative Examples 3 and 4 were immersed in an aqueous insecticidal solution,
It swelled and deteriorated and could not be used.

【0077】(e)比較例5 前記比較例1の配合組成に準じ、タルク粉43.0重量
%,生コークス粉30.0重量%,木粉6.0重量%,カ
オリンクレー19.0重量%,デンプン2.0重量%から
の混合物に、全粉大量に対して50.0重量%の水を加
え混練し、これを押し出し成形後、水分が1重量%以下
になるまで50〜80℃で乾燥したところ、芯の形状が
壊れる現象が見られ、吸液芯として不可であった。
(E) Comparative Example 5 According to the composition of Comparative Example 1, 43.0% by weight of talc powder, 30.0% by weight of raw coke powder, 6.0% by weight of wood powder, 19.0% by weight of kaolin clay. %, Starch 2.0% by weight, kneading is performed by adding 50.0% by weight of water to a large amount of the whole powder, and the mixture is extruded and then molded at 50 to 80 ° C. until the water content becomes 1% by weight or less. When it was dried with, a phenomenon that the shape of the core was broken was observed, and it was impossible as a liquid absorbent core.

【0078】図7の表7から明かな様に、本実施例1〜
5の吸液芯は、同一配合品なのに、焼成温度tBの上昇
に伴って大きい孔径dmが増加する(但し吸油量に比例
する気孔率εpの増加は少ない)ことにより、(εp・d
m1/2)によって定まる吸液速度もまた上昇しているこ
と、即ち吸液芯頂部への液上昇が短時間であることが示
されている。また、幅広い吸液速度がtBによって得ら
れるので、対象薬液物性も目的に応じて幅広い選択がで
きる特徴が示されている。更に、対象薬液が油性であっ
ても水性であっても、同様な結果を示していて安定であ
る。
As is apparent from Table 7 in FIG.
Wick 5 is to identical formulations products by large pore size dm with increasing firing temperature t B is increased (but less increase in porosity epsilon p proportional to oil absorption), (epsilon p · d
It has been shown that the liquid absorption rate determined by m 1/2 ) is also increasing, that is, the liquid rising to the top of the liquid absorbing core is short. Further, since a wide range of liquid absorption rate can be obtained by t B , it is shown that the physical properties of the target drug solution can be widely selected according to the purpose. Furthermore, whether the target chemical liquid is oily or aqueous, the same results are shown and stable.

【0079】それに対し、比較例のうち焼成操作なしの
比較例3〜5のものは、水性液に対し、安定使用が不可
能であった。また、焼成操作ありの比較例1,2は、耐
水性,耐油性ともあったが、後述する対薬品安定性が劣
っていた。また、多孔性については、有機物や炭化物の
揮散残孔に依存しているため、比較例1,2は、実施例
の様に、同一配合でtB変化によって多孔性を大幅に連
続的に変化させることは困難である。 [4] 吸液芯の対薬品安定性実験 前記実施例1,2,3,4及び比較例1,2,3,4の
吸液芯を粉砕し、得られた粉体3gに殺虫剤Kの1.8
重量%ノルマルパラフィンまたは、ジエチレンオキシブ
チルエーテル40重量%配合の水に溶解した薬液を吸収
させ、この粉体を130℃、8時間の条件で密栓保存
し、これら殺虫有効成分の残存率[%]を比較した。そ
の結果を図8の表8に示す。
On the other hand, among the comparative examples, those of Comparative Examples 3 to 5 without the firing operation could not be used stably with respect to the aqueous liquid. Further, Comparative Examples 1 and 2 with the firing operation also had water resistance and oil resistance, but were inferior in chemical stability described later. Further, since the porosity depends on the volatilization residual pores of organic substances and carbides, Comparative Examples 1 and 2 drastically and continuously change the porosity by changing t B with the same composition as in the example. It is difficult to get it done. [4] Chemical stability test of liquid absorbent cores The liquid absorbent cores of Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4 were crushed, and 3 g of the obtained powder was used as insecticide K. Of 1.8
Absorbing a drug solution containing 40% by weight of normal ethylene paraffin or 40% by weight of diethyleneoxybutyl ether, the powder is sealed and stored at 130 ° C for 8 hours, and the residual rate [%] of these insecticidal active ingredients is stored. Compared. The results are shown in Table 8 of FIG.

【0080】この表8から明かな様に、本実施例のもの
は、油性及び水性殺虫剤ともに、殺虫有効成分の残存率
91%以上と高く好適であるが、それに対して比較例の
ものは、いずれも86%以下である。 [5] 吸液芯の蒸散実験 図15に示す加熱蒸散器に、実施例1,2,4の吸液芯
及び比較例1,3,4の吸液芯をそれぞれセットし、殺
虫剤D1.8重量%をノルマルパラフィン又はジエチレ
ンオキシブチルエーテル40重量%配合の水に溶解した
薬液45[mL]を容器にいれ、吸液芯側面を120℃に
加熱して蒸散実験を行った。尚、所定の加熱時間までに
薬液が不足する時は、その時点で新たに薬液のみ補充し
た。
As is clear from Table 8, both the oil-based and the water-based insecticides of this example are suitable because the residual ratio of the insecticidal active ingredient is 91% or more, which is suitable. , Both are 86% or less. [5] Evaporation test of liquid absorption wick The liquid absorption wicks of Examples 1, 2 and 4 and the liquid absorption wicks of Comparative Examples 1, 3 and 4 were set in the heating vaporizer shown in FIG. 15, and the insecticide D1. A chemical solution 45 [mL] prepared by dissolving 8% by weight of water in water containing 40% by weight of normal paraffin or diethylene oxybutyl ether was placed in a container, and the side surface of the absorbent core was heated to 120 ° C. to perform a transpiration experiment. When the chemical solution was insufficient before the predetermined heating time, only the chemical solution was newly replenished at that time.

【0081】蒸散試験は、(1)薬液の時間当りの減少
量と、(2)時間あたりの殺虫剤揮散量を調べた。
(2)においては一定時間毎にシリカゲル充填カラムで
トラップし、アセトンで殺虫剤を抽出し、ガスクロマト
グラフで分析した。その結果を図9の表9に示す。尚、
この表9中で、各例の上段の値(a)は薬液蒸散量[g
/h]を表し、下段の値(b)は殺虫剤蒸散量[mg/
h]を表す。
In the transpiration test, (1) the amount of reduction of the chemical solution per hour and (2) the amount of volatilization of the insecticide per hour were examined.
In (2), a silica gel packed column was trapped at regular intervals, and the insecticide was extracted with acetone and analyzed by gas chromatography. The results are shown in Table 9 of FIG. still,
In Table 9, the value (a) in the upper part of each example is the chemical liquid evaporation amount [g
/ H], and the lower value (b) is the transpiration amount of the insecticide [mg /
h] is represented.

【0082】この表9から明かな様に、本実施例のもの
は、加熱時間が長くなっても、薬液の時間当りの減少量
の変化並びに時間あたりの殺虫剤揮散量の変化が少なく
好適である。それに対して、比較例のものは、加熱時間
が長くなるにつれて、薬液の時間当りの減少量の変化並
びに時間あたりの殺虫剤揮散量の変化が大きくなってし
まう。
As is clear from Table 9, the present example is suitable because the change in the amount of reduction of the chemical solution per hour and the change in the amount of volatilized insecticide per hour are small even if the heating time is long. is there. On the other hand, in the case of the comparative example, as the heating time becomes longer, the change in the reduction amount of the chemical solution per hour and the change in the insecticide volatilization amount per time increase.

【0083】つまり、前記対薬品安定性試験及び蒸散試
験の結果、本発明の吸液芯を用いることにより、殺虫剤
Dの様なフラン環や炭素−炭素三重結合を有するものが
薬剤であっても、本加熱蒸散方式において安定であり、
薬液の蒸散量、殺虫有効成分の経時的減少が殆どないと
いう効果が得られた。
That is, as a result of the above chemical stability test and transpiration test, by using the absorbent core of the present invention, the one having a furan ring or carbon-carbon triple bond like insecticide D is a drug. Is stable in this heating evaporation method,
It was possible to obtain the effect that the amount of transpiration of the chemical liquid and the active ingredient for insecticidal activity hardly decreased with time.

【0084】[0084]

【発明の効果】本発明は、上述した構成によって、下記
の効果を奏する。 (1)耐アルカリ性,耐酸性,耐油性,耐水性等が従来
品より優れている。油性や水性のいずれの薬液に対して
も安定して利用できる。
The present invention has the following effects due to the above configuration. (1) Alkali resistance, acid resistance, oil resistance, water resistance, etc. are superior to conventional products. It can be stably used for both oily and aqueous chemicals.

【0085】(2)目的薬液の性状に合わせた吸液機能
が、吸液芯製造時における焼成温度制御だけで容易に達
成できるので、幅広い薬液の選択が可能となった。ま
た、同一薬液量であっても、蒸散可能時間の長短が幅広
く選択可能となった。 (3)対薬品活性が小値で安定している。つまり、多孔
性について、細孔径が従来品より大のため、比表面積が
従来品より格段に小値であること、ガラス質が組織内で
多い磁器質なので原料粒子の表面活性の発現は殆ど無い
こと等によって、薬剤の分離吸着作用や分解重合促進作
用等の対薬品活性が殆ど無い。例えば、殺虫剤Dの様
な、フラン環や、炭素−炭素三重結合を有するものが薬
剤であっても、殺虫有効成分の経時的減少は殆ど無い。
(2) Since the liquid absorbing function tailored to the properties of the target liquid chemical can be easily achieved only by controlling the firing temperature during the production of the liquid absorbent core, a wide range of liquid chemicals can be selected. In addition, even with the same amount of chemical liquid, it became possible to select a wide range of possible evaporation time. (3) The chemical activity is stable with a small value. In other words, with regard to porosity, the specific surface area is significantly smaller than that of the conventional product because the pore size is larger than that of the conventional product, and there is almost no expression of surface activity of the raw material particles due to the glassy porcelain in the tissue. As a result, there is almost no activity against chemicals such as the action of separating and adsorbing the drug or the action of promoting decomposition polymerization. For example, even if a compound having a furan ring or a carbon-carbon triple bond, such as insecticide D, is a drug, there is almost no decrease in the insecticidal active ingredient over time.

【0086】(4)蒸散結果からみて、主たる利用範囲
は1150〜1275℃焼成物であるが、同様な機能を
示す従来品の”素焼状”の焼成物より、機械的強度にお
いて約1.8倍程度丈夫である。また、容器内装着状態
での落下による耐衝撃性試験でも同様な結果であり、実
用上の取扱い勝手が格段に良くなった。
(4) Judging from the result of transpiration, the main use range is 1150 to 1275 ° C., but the mechanical strength is about 1.8 in comparison with the conventional “non-fired” product having the same function. It is about twice as durable. Further, the same result was obtained in the impact resistance test by dropping in the state of being mounted in the container, and the handling convenience in practical use was significantly improved.

【0087】(5)従来品と違い、汎用磁器品と同様材
質なので、防黴,防腐,防虫,難燃等の処理は不用であ
る。 (6)薬剤蒸散速度の経時変化特性が優れている。つま
り、長期間にわたり、一定の薬液蒸散速度を保つことが
できるので、例えば殺虫剤等の薬剤の効き目が長持ちす
る。又は、有効薬効成分剤の消費量の節約ができる。
(5) Unlike conventional products, since it is made of the same material as general-purpose porcelain products, it is unnecessary to treat it against mildew, antiseptic, insect repellent, flame retardant, etc. (6) The time-dependent change characteristics of the drug transpiration rate are excellent. That is, since a constant chemical vaporization rate can be maintained for a long period of time, the effect of a chemical such as an insecticide lasts long. Alternatively, it is possible to save consumption of the active pharmaceutical ingredient.

【0088】(7)耐熱性が高い。製造時の焼成温度よ
り約50〜100℃以下で、例えば大気零囲気中での簡
単な再生焼を施した時、多孔質組織の微構造及び色調の
変化は無いので、安価なガス炉等で簡単に新品と同一品
が得られる様なリサイクル性に優れた物である。一方、
焼結製の従来品は多孔質の壁構造構成粒子に多量の炭素
粒を残した焼結品であり、500〜600℃の再生焼を
大気零囲気中で行うと炭素粒が無くなり、連通孔径が大
化するので新品と同一の機能を得ることはできない。ま
た、焼結製でない従来品は炭化物の代わりに有機物を多
く含んでいて、600℃加熱で保形さえできない物が多
い。
(7) High heat resistance. At a temperature of about 50 to 100 ° C. or lower than the firing temperature at the time of production, for example, when a simple regeneration firing is performed in an atmosphere of zero atmosphere, since there is no change in the microstructure and color tone of the porous structure, an inexpensive gas furnace or the like is used. This product has excellent recyclability so that the same product as a new product can be easily obtained. on the other hand,
The conventional sintered product is a sintered product in which a large amount of carbon particles are left in the particles of the porous wall structure, and when the re-baking at 500 to 600 ° C is performed in the atmosphere without atmosphere, the carbon particles disappear and the diameter of the communicating pores increases. However, it is impossible to obtain the same function as a new product. In addition, conventional non-sintered products often contain a large amount of organic substances instead of carbides, and many cannot even retain their shape when heated at 600 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】 原料粉末の成分を表1として示す図である。FIG. 1 is a table showing components of raw material powder as Table 1.

【図2】 試料の原料の配合を表2として示す図であ
る。
FIG. 2 is a diagram showing a composition of raw materials of a sample as Table 2.

【図3】 焼成温度と連通孔径等との関係を表3として
示す図である。
FIG. 3 is a table showing the relationship between the firing temperature and the communication hole diameter as Table 3.

【図4】 焼成温度と強度との関係を表4として示す図
である。
FIG. 4 is a table showing the relationship between firing temperature and strength as Table 4.

【図5】 殺虫剤一覧を表5として示す図である。FIG. 5 is a diagram showing a list of insecticides as Table 5.

【図6】 殺虫剤一覧の続きを表6として示す図であ
る。
FIG. 6 is a diagram showing the continuation of the list of insecticides as Table 6.

【図7】 吸液芯の多孔性による特性を表7として示す
図である。
FIG. 7 is a table showing the characteristics due to the porosity of the liquid absorbent core.

【図8】 薬剤成分の残存率を表8として示す図であ
る。
FIG. 8 is a diagram showing a residual ratio of drug components as Table 8.

【図9】 蒸散速度の経時変化の特性を表9として示す
図である。
FIG. 9 is a table showing characteristics of changes in transpiration rate with time.

【図10】 焼成温度と連通孔径及び気孔率との関係を
示すグラフである。
FIG. 10 is a graph showing the relationship between the firing temperature and the communication pore diameter and porosity.

【図11】 焼成温度と吸液速度比例値との関係を示す
グラフである。
FIG. 11 is a graph showing the relationship between the firing temperature and the liquid absorption rate proportional value.

【図12】 本発明と従来の吸液芯の構造を示す説明図
である。
FIG. 12 is an explanatory diagram showing structures of a liquid absorbent core of the present invention and a conventional liquid absorbent core.

【図13】 吸液時間と蒸散量との関係を示すグラフで
ある。
FIG. 13 is a graph showing the relationship between liquid absorption time and transpiration amount.

【図14】 焼成温度と強度との関係を示すグラフであ
る。
FIG. 14 is a graph showing the relationship between firing temperature and strength.

【図15】 吸液芯が使用される容器の構造を示す説明
図である。
FIG. 15 is an explanatory view showing the structure of a container in which a liquid absorbent core is used.

【符号の説明】[Explanation of symbols]

1…容器 2…薬液
3…収納容器 4…発熱体 5…コード
6…薬液注入口 7…吸液芯
1 ... container 2 ... chemical solution
3 ... Storage container 4 ... Heating element 5 ... Cord
6 ... Chemical injection port 7 ... Liquid absorbent core

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 無機粉末を焼成してなる吸液芯であっ
て、 該吸液芯には、無機質の骨格部と、該骨格部に囲まれて
溶液が吸液芯表面に移動可能な連通孔と、を備えたこと
を特徴とする蒸散用多孔質セラミックス製吸液芯。
1. A liquid absorbent core formed by firing an inorganic powder, wherein the liquid absorbent core has an inorganic skeleton and a communication in which the solution is movable to the surface of the liquid absorbent core surrounded by the skeleton. A porous ceramics liquid-wicking core for transpiration, comprising:
【請求項2】 前記吸液芯には、ガラス質又は陶磁器質
の骨格部と、該骨格部に囲まれた大径の洞穴孔と、前記
骨格部中に形成されて前記洞穴孔同士及び洞穴孔と吸液
芯表面とを連通する小径の連通孔と、を備えたことを特
徴とする前記請求項1記載の蒸散用多孔質セラミックス
製吸液芯。
2. The liquid absorbent core has a glass or ceramic skeleton portion, a large-diameter cave hole surrounded by the skeleton portion, the cave holes formed in the skeleton portion, and the cave holes. The porous ceramic liquid absorbent core for evaporation according to claim 1, further comprising: a small-diameter communication hole that communicates the hole with the liquid absorbent core surface.
【請求項3】 前記請求項1又は請求項2記載の蒸散用
多孔質セラミックス製吸液芯の製造方法であって、 加熱による焼結凝集塊が空孔生成因となる無機粉末を含
む原料粉末を用いて、吸液芯形状に成形し、乾燥した後
に、1000〜1450℃を目的温度として焼成するこ
とを特徴とする蒸散用多孔質セラミックス製吸液芯の製
造方法。
3. The method for producing a porous ceramic liquid absorbent core for evaporation according to claim 1 or 2, wherein the raw material powder contains an inorganic powder in which sintered agglomerates due to heating cause pore formation. Is used to form a liquid-absorbent core, which is then dried and then fired at a target temperature of 1000 to 1450 ° C., to produce a liquid-wicking porous ceramic liquid core for evaporation.
【請求項4】 前記請求項1又は請求項2記載の蒸散用
多孔質セラミックス製吸液芯の製造方法であって、 空孔生成因となる塩類粉末を含む無機質の原料粉末を用
いて、吸液芯形状に成形し、乾燥した後に、650〜1
450℃を目的温度として焼成するとともに、該製造工
程中又はその後に前記塩類の揮散又は溶脱を行なうこと
を特徴とする蒸散用多孔質セラミックス製吸液芯の製造
方法。
4. A method for producing a porous ceramic liquid absorbent core for evaporation according to claim 1 or 2, wherein an inorganic raw material powder containing a salt powder that causes pores is used, After being formed into a liquid core shape and dried, 650 to 1
A method for producing a porous ceramic liquid absorbent core for evaporation, which comprises firing at 450 ° C. as a target temperature, and volatilizing or leaching the salt during or after the production step.
【請求項5】前記空孔生成因となる塩類粉末を、加熱に
よる焼結凝集塊が空孔生成因となる無機粉末に含むこと
を特徴とする前記請求項4記載の蒸散用多孔質セラミッ
クス製吸液芯の製造方法。
5. The porous ceramics for transpiration according to claim 4, wherein the salt powder that causes pores is contained in the inorganic powder that causes the sintered agglomerates due to heating to generate pores. Method for manufacturing liquid absorbent core.
【請求項6】 前記請求項3,請求項4又は請求項5の
何れかに記載の蒸散用多孔質セラミックス製蒸散用吸液
芯の製造方法であって、 主たる制御内容を焼成温度とし、従たる制御内容を焼成
温度保持時間とすることにより、芯体に形成される孔の
状態を調節することを特徴とする蒸散用多孔質セラミッ
クス製吸液芯の製造方法。
6. A method for producing a liquid absorption core made of porous ceramics for evaporation according to claim 3, wherein the main control content is a firing temperature, A method for producing a liquid absorbent core made of porous ceramics for evaporation, characterized in that the state of the pores formed in the core body is adjusted by setting the content of the barrel control as the firing temperature holding time.
【請求項7】 前記原料粉末中に、鉄,マンガン,コバ
ルト,銅,クローム,ニッケル又はチタンから選ばれた
金属の酸化物,水酸化物又は塩である無機質顔料を、顔
料以外の原料100重量部に対して、0.5〜10重量
部を混入することを特徴とする前記請求項3,請求項
4,請求項5又は請求項6の何れかに記載の蒸散用多孔
質セラミックス製吸液芯の製造方法。
7. An inorganic pigment, which is an oxide, hydroxide or salt of a metal selected from iron, manganese, cobalt, copper, chrome, nickel or titanium, is added to the raw material powder in an amount of 100% by weight of the raw material other than the pigment. 0.5 to 10 parts by weight of the liquid is mixed with the parts, and the liquid absorbent made of porous ceramics for evaporation according to any one of claims 3, 4, 5 and 6. Method for manufacturing core.
【請求項8】 薬剤を含有する溶液を吸液芯に吸液し、
薬剤を蒸散させる蒸散方法において、 前記吸液芯が前記請求項1又は請求項2記載の蒸散用多
孔質セラミックス製吸液芯であることを特徴とする薬剤
蒸散方法。
8. A solution containing a drug is absorbed into an absorbent core,
A transpiration method for evaporating a drug, wherein the wick is the wicking porous ceramics wick according to claim 1 or 2.
【請求項9】 前記薬剤を含有する溶液が水性溶液又は
油性溶液であることを特徴とする前記請求項8記載の薬
剤蒸散方法。
9. The method for evaporating a drug according to claim 8, wherein the solution containing the drug is an aqueous solution or an oily solution.
【請求項10】 前記薬剤がピレスロイドであることを
特徴とする前記請求項8又は請求項9に記載の薬剤蒸散
方法。
10. The drug vaporization method according to claim 8, wherein the drug is pyrethroid.
JP5152323A 1993-06-23 1993-06-23 Transpiration wick made of porous ceramic, its production and chemicals transpiration method Pending JPH0710707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5152323A JPH0710707A (en) 1993-06-23 1993-06-23 Transpiration wick made of porous ceramic, its production and chemicals transpiration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5152323A JPH0710707A (en) 1993-06-23 1993-06-23 Transpiration wick made of porous ceramic, its production and chemicals transpiration method

Publications (1)

Publication Number Publication Date
JPH0710707A true JPH0710707A (en) 1995-01-13

Family

ID=15538022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5152323A Pending JPH0710707A (en) 1993-06-23 1993-06-23 Transpiration wick made of porous ceramic, its production and chemicals transpiration method

Country Status (1)

Country Link
JP (1) JPH0710707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120090830A (en) * 2011-02-04 2012-08-17 스미또모 가가꾸 가부시끼가이샤 Pesticidal material for heat transpiration and method for controlling pests by heat transpiration
KR20220042133A (en) 2019-07-30 2022-04-04 미쓰비시 엔피쯔 가부시키가이샤 absorbent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120090830A (en) * 2011-02-04 2012-08-17 스미또모 가가꾸 가부시끼가이샤 Pesticidal material for heat transpiration and method for controlling pests by heat transpiration
JP2012176947A (en) * 2011-02-04 2012-09-13 Sumitomo Chemical Co Ltd Thermally vaporizable pest control material and thermally vaporizable pest control method
KR20220042133A (en) 2019-07-30 2022-04-04 미쓰비시 엔피쯔 가부시키가이샤 absorbent

Similar Documents

Publication Publication Date Title
US4286754A (en) Controlled-rate liquid dispenser
JP2019515700A (en) Nicotine evaporation and inhalation device
DE3731649C2 (en)
CA2707846A1 (en) Fragrance dispensing wick and method
DE102004060792A1 (en) Process for producing a ceramic crucible
JP2013154286A (en) Photocatalytic porous body
JPH0417917B2 (en)
EP1579934B1 (en) Process for the production of a muffle for investment casing or modell casting and composition of such a muffle
JP2012176947A (en) Thermally vaporizable pest control material and thermally vaporizable pest control method
JPH0710707A (en) Transpiration wick made of porous ceramic, its production and chemicals transpiration method
DE102008001402A1 (en) Shaped body with porous surface and process for its preparation
JP4832234B2 (en) Ceramic member for liquid absorption
JP3734202B2 (en) Liquid core for transpiration and method for producing the same
CN213908496U (en) Atomizing device and electron cigarette
JP2005336459A5 (en)
JPS5940409B2 (en) liquid absorption core
JPWO2016167209A1 (en) Pest control product and pest control method
JP2731789B2 (en) Liquid-absorbing wick, method for producing the same, and method for vaporizing drug
CN111685388A (en) Porous device capable of storing and/or delivering substances
DE1936233A1 (en) Catalyst carrier
JP2000103704A (en) Liquid absorption wick for transpiration by heating
DE2242907B2 (en) Process for the production of catalyst carriers or catalysts with open porosity
CN110192065B (en) Catalytic combustion burner made of porous material with optimized operating performance and bottle provided with such a burner
JP2002114583A (en) Porous ceramic molded goods
JP2955845B2 (en) Heat transpiration insect killing method