JPH069143B2 - Fuel cell storage method - Google Patents

Fuel cell storage method

Info

Publication number
JPH069143B2
JPH069143B2 JP57185106A JP18510682A JPH069143B2 JP H069143 B2 JPH069143 B2 JP H069143B2 JP 57185106 A JP57185106 A JP 57185106A JP 18510682 A JP18510682 A JP 18510682A JP H069143 B2 JPH069143 B2 JP H069143B2
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
electrode
anode electrode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57185106A
Other languages
Japanese (ja)
Other versions
JPS5975569A (en
Inventor
武 桑原
敏昭 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57185106A priority Critical patent/JPH069143B2/en
Publication of JPS5975569A publication Critical patent/JPS5975569A/en
Publication of JPH069143B2 publication Critical patent/JPH069143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池の保管方法に関するものである。TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for storing a fuel cell.

〔発明の技術的背景〕[Technical background of the invention]

従来、燃料電池は燃料の有している化学的エネルギー
を、直接電気エネルギーに変換する装置である。この燃
料電池は、通常電解質を挾んで一対の多孔質電極を配置
し、一方の電極の背面に水素等の気体燃料を接触させる
と共に、他方の電極の背面に酸素等の酸化剤を接触さ
せ、このときに起る電気化学的反応により発生する電気
エネルギーを、上記一対の電極から取出すようにしたも
のである。この場合、電解質としては溶融塩,アルカリ
溶液,酸性溶液等があるが、ここでは燃料電池として代
表的なリン酸を電解質とする燃料電池を例としてその原
理について説明する。
Conventionally, a fuel cell is a device that directly converts the chemical energy of fuel into electrical energy. In this fuel cell, a pair of porous electrodes are usually placed across the electrolyte, and a gas fuel such as hydrogen is brought into contact with the back surface of one electrode, and an oxidant such as oxygen is brought into contact with the back surface of the other electrode. The electric energy generated by the electrochemical reaction that occurs at this time is taken out from the pair of electrodes. In this case, the electrolyte may be a molten salt, an alkaline solution, an acidic solution, or the like. Here, the principle of the fuel cell, which is a typical fuel cell and uses phosphoric acid as the electrolyte, will be described.

第1図は、この種の燃料電池の原理構成を示すものであ
る。図において、電解質層1は繊維質シートや鉱物質粉
末にリン酸を含浸したものである。また、2および3は
この電解質層1を挾んで配置されたアノードおよびカソ
ードの一対の多孔質(炭素質)電極で、電解質層1と接
する面には白金触媒を塗布している。さらに、4は水素
を含むガスの流れる部屋であり、5は酸素(通常は空
気)等の酸化剤気体の流れる部屋である。
FIG. 1 shows the basic configuration of a fuel cell of this type. In the figure, the electrolyte layer 1 is a fibrous sheet or mineral powder impregnated with phosphoric acid. Reference numerals 2 and 3 denote a pair of porous (carbonaceous) electrodes, an anode and a cathode, which are arranged so as to sandwich the electrolyte layer 1, and a platinum catalyst is applied to the surface in contact with the electrolyte layer 1. Further, 4 is a room in which a gas containing hydrogen flows, and 5 is a room in which an oxidant gas such as oxygen (usually air) flows.

かかる燃料電池において、部屋4に流入した水素はアノ
ード電極2の空所を拡散して触媒に達する。ここで、水
素ガスは触媒の作用により水素イオンと電子とに解離す
る。その反応式は H→2H++2e ……(1) となる。そして、水素イオンは電解質層1に入り、起電
圧による作用と濃度拡散によりカソード電極3に向つて
泳動する。一方、水素ガスの解離により分離した電子は
アノード電極2に流れ込み、電極2は負に課電したこと
になる。またカソード電極3では、アノード電極2側か
ら泳動してきた水素イオンと、酸化剤として部屋5に供
給されさらにカソード電極3の空所を拡散してきた酸素
と、アノード電極2から外部の電力負荷を通つて仕事を
し電池のカソード3に戻つてきた電子の3者が、触媒表
面で次の反応を起こす。
In such a fuel cell, hydrogen flowing into the chamber 4 diffuses in the void space of the anode electrode 2 and reaches the catalyst. Here, the hydrogen gas is dissociated into hydrogen ions and electrons by the action of the catalyst. The reaction formula is H 2 → 2H + + 2e (1). Then, the hydrogen ions enter the electrolyte layer 1 and migrate toward the cathode electrode 3 by the action of the electromotive force and the concentration diffusion. On the other hand, the electrons separated by the dissociation of hydrogen gas flow into the anode electrode 2 and the electrode 2 is negatively charged. At the cathode electrode 3, hydrogen ions that have migrated from the anode electrode 2 side, oxygen that has been supplied to the chamber 5 as an oxidant and has diffused in the voids of the cathode electrode 3, and an external power load from the anode electrode 2 are passed. Then, three of the electrons that have worked and returned to the cathode 3 of the cell cause the next reaction on the catalyst surface.

4H4+4e+O→2HO ……(2) かくして、水素が酸化されて水になる反応と、この時の
化学的エネルギーが電気エネルギーとなつて、外部の電
気負荷の中で電気エネルギーを与える電池としての全反
応が完成する。この場合、電気エネルギーの一部は電解
質層1の中で、電池の内部抵抗により消費される。した
がつて、電池の効率を高めるために電解質層1は極めて
薄く設計され、水素イオンの泳動距離を短かくして抵抗
を小さくするようになつている。また、原料として供給
される水素ガスおよび空気は、数気圧に加圧されるのが
普通である。これは、一般の化学反応と同様に反応に関
する物質の濃度を上げることが、反応速度を高める有効
な手段であるからである。一方、燃料電池の運転温度は
上記の如く電気化学的反応生成物として水が発生するの
で、その生成水を燃料電池系外に連続的に取り去つてや
る必要から、100℃以上の高温である。そして、この
高温で燃料電池の運転を可能とするために、85%以上
(通常95〜100%)の濃度のリン酸を電解質として
使用している。なお、電池の性能は高温になる程向上す
る。
4H 4 + 4e + O 2 → 2H 2 O (2) Thus, the reaction that hydrogen is oxidized into water and the chemical energy at this time becomes electric energy, which gives electric energy in the external electric load. The entire reaction as a battery is completed. In this case, a part of the electric energy is consumed in the electrolyte layer 1 due to the internal resistance of the battery. Therefore, in order to improve the efficiency of the battery, the electrolyte layer 1 is designed to be extremely thin, and the migration distance of hydrogen ions is shortened to reduce the resistance. Further, the hydrogen gas and air supplied as raw materials are usually pressurized to several atmospheric pressures. This is because increasing the concentration of the substance related to the reaction is an effective means of increasing the reaction rate, as in general chemical reactions. On the other hand, the operating temperature of the fuel cell is a high temperature of 100 ° C. or higher because water is generated as an electrochemical reaction product as described above, and it is necessary to continuously remove the generated water outside the fuel cell system. . Then, in order to enable the operation of the fuel cell at this high temperature, phosphoric acid having a concentration of 85% or more (usually 95 to 100%) is used as an electrolyte. The performance of the battery improves as the temperature increases.

〔背景技術の問題点〕[Problems of background technology]

上述したように、通常の燃料電池は燃料および空気の流
通条件下で、高温・高圧にて運転される。しかし、運転
を行なわない時には温度が下げられ、ガス供給は停止さ
れる。この場合、ガス供給を停止してもアノード電極2
は水素電極電位に分極しており、カソード電極3は酸素
分極電位に保たれる。そして、各電極電位が高い条件で
保持されると、触媒である白金の微粒子の結晶成長が促
進され、第2図に示す如く燃料電池の性能低下の原因と
なる。すなわち、第2図において横軸は保持した電極電
位の値であり、縦軸は負荷をとつたときの電池の出力電
圧を示しており、一定の保持時間に対して得られた関係
である。保持した電極電位が高い程電池の性能低下が促
進される。そして、電池の稼動率が約50%とし、また
目標寿命を5年とすると、2年半は保管状態にあること
になり、保管時における電池の性能維持は非常に重要な
ことである。
As described above, a normal fuel cell is operated at high temperature and high pressure under the flow conditions of fuel and air. However, when no operation is performed, the temperature is lowered and the gas supply is stopped. In this case, even if the gas supply is stopped, the anode electrode 2
Is polarized to the hydrogen electrode potential, and the cathode electrode 3 is kept at the oxygen polarization potential. If the electrode potentials are maintained under high conditions, the crystal growth of platinum fine particles as a catalyst is promoted, which causes deterioration of the performance of the fuel cell as shown in FIG. That is, in FIG. 2, the horizontal axis represents the value of the held electrode potential, and the vertical axis represents the output voltage of the battery when a load is applied, which is the relationship obtained for a fixed holding time. The higher the electrode potential held is, the more the battery performance is accelerated. If the operating rate of the battery is about 50% and the target life is 5 years, it means that the battery is in storage for two and a half years, so maintaining the performance of the battery during storage is very important.

〔発明の目的〕[Object of the Invention]

本発明は上記のような事情を考慮して成されたもので、
その目的は高い性能を長期にわたつて保持し長寿命化を
図ることが可能な燃料電池を提供することにある。
The present invention has been made in consideration of the above circumstances,
An object of the invention is to provide a fuel cell capable of maintaining high performance over a long period of time and having a long life.

〔発明の概要〕[Outline of Invention]

上記の目的を達成するために本発明では、電解質を挟ん
でアノードおよびカソードの一対の多孔質電極を配置
し、アノード電極の背面に水素等の気体燃料を接触させ
ると共にカソード電極の背面に酸素等の酸化剤を接触さ
せ、このときの電気化学的反応により発生する電気エネ
ルギーを一対の電極から取出す燃料電池の保管方法にお
いて、燃料電池をその運転停止中に常温で保管する際
に、4%以下の水素を含有する窒素ガスをアノード電極
室およびカソード電極室に封入するようにしている。
To achieve the above object, in the present invention, a pair of anode and cathode porous electrodes are arranged with an electrolyte sandwiched between them, and a gaseous fuel such as hydrogen is brought into contact with the back surface of the anode electrode and oxygen or the like is provided on the back surface of the cathode electrode. In the method of storing a fuel cell in which the electric energy generated by the electrochemical reaction at this time is brought out from a pair of electrodes by contacting the oxidant of the The nitrogen gas containing hydrogen is sealed in the anode electrode chamber and the cathode electrode chamber.

ここで、特に上記窒素ガスとしては、0.1〜3%の水
素を含有するようにしている。
Here, in particular, the nitrogen gas contains 0.1 to 3% of hydrogen.

〔発明の実施例〕Example of Invention

以下、本発明を図面に示す一実施例について説明する。
本発明は、前述した第1図の構成の燃料電池を常温で保
管するに際し、アノード電極室とカソード電極室に所定
濃度(4%以下であればよい)の水素を含有する窒素ガ
スを封入、つまりアノード電極2およびカソード電極3
共に微量の水素を含有する窒素ガスでパージして水素雰
囲気とし、各電極2,3電位を水素電極電位に保持する
ようにしたものである。この場合、水素の濃度を4%以
下とするのは、この値が水素の爆発下限値であるからで
ある。実際の保管に際しては0.1〜3%の水素濃度範
囲とすることが望ましい。
An embodiment of the present invention shown in the drawings will be described below.
According to the present invention, when the fuel cell having the structure shown in FIG. 1 is stored at room temperature, nitrogen gas containing hydrogen at a predetermined concentration (4% or less) is filled in the anode electrode chamber and the cathode electrode chamber, That is, the anode electrode 2 and the cathode electrode 3
Both of them are purged with a nitrogen gas containing a slight amount of hydrogen to create a hydrogen atmosphere, and the potentials of the electrodes 2 and 3 are held at the hydrogen electrode potential. In this case, the hydrogen concentration is set to 4% or less because this value is the lower limit of explosion of hydrogen. In actual storage, it is desirable that the hydrogen concentration range is 0.1 to 3%.

第3図は、本発明の方法による寿命効果を説明するため
の図である。図において、横軸は電池製作後の経過時
間、縦軸は電池性能を示す電圧を夫々表わしている。同
図のAは従来の空気による分極電位のまま保管した場
合、同じくBは上記本発明の保管方法により処理した時
の電池性能の低下状況を夫々示すものである。第3図か
ら明らかなように本発明の保管方法によれば、従来の保
管条件のときに比較して、電池性能の経時変化を約半分
に抑えることが可能となる。
FIG. 3 is a diagram for explaining the life effect by the method of the present invention. In the figure, the horizontal axis represents the elapsed time after manufacturing the battery, and the vertical axis represents the voltage indicating the battery performance. A in the same figure shows the state of deterioration of the battery performance when stored as it is in the conventional polarization potential by air, and B shows the state of deterioration of the battery performance when treated by the storage method of the present invention. As is clear from FIG. 3, according to the storage method of the present invention, it is possible to suppress the change in battery performance over time by about half as compared with the conventional storage conditions.

上述したように本保管方法とすれば、微量の水素を含有
する窒素ガスをアノード,カソードの各電極2,3に封
入するという簡単な操作で、燃料電池における性能の経
時的変化を抑えて高性能を長期にわたつて維持し、電池
の長寿命化を図ることができるものである。すなわち4
%以下の水素を含有する窒素ガスをアノード電極室4お
よびカソード電極室5に封入するため、アノード電極2
には常に水素が存在しており、アノード電極2電位が確
保できている。従って、アノード電極2電位として比較
水準が確保された状態で、電池電圧が所定値以下に維持
されるので、アノード電極2の腐食が生じない電位に制
御・保護することができる。
As described above, according to this storage method, a simple operation of enclosing a nitrogen gas containing a small amount of hydrogen in each of the anode and cathode electrodes 2 and 3 suppresses a change in the performance of the fuel cell over time and improves the performance. The performance can be maintained over a long period of time, and the battery life can be extended. Ie 4
In order to seal nitrogen gas containing hydrogen in an amount of less than 1% in the anode electrode chamber 4 and the cathode electrode chamber 5, the anode electrode 2
Hydrogen is always present in the anode, and the potential of the anode electrode 2 can be secured. Therefore, since the battery voltage is maintained at a predetermined value or less while the comparison level is secured as the potential of the anode electrode 2, the anode electrode 2 can be controlled and protected to a potential at which corrosion does not occur.

さらに、4%以下の水素の含有であり、燃料電池の起動
時にカソード電極3に酸化剤を供給しても、燃料電池の
安定性が確保されている。すなわち、燃料電池は何時で
も起動できる状態に維持されている。
Further, since the content of hydrogen is 4% or less, the stability of the fuel cell is ensured even if the oxidant is supplied to the cathode electrode 3 at the time of starting the fuel cell. That is, the fuel cell is maintained in a state in which it can be started at any time.

尚、本発明は上述した実施例に限定されるものではな
く、その要旨を変更しない範囲で種々に変形して実施す
ることができるものである。
It should be noted that the present invention is not limited to the above-described embodiments, but can be modified in various ways without departing from the scope of the invention.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、燃料電池をその運
転停止中に常温で保管する際に、4%以下の水素を含有
する窒素ガスをアノード電極室およびカソード電極室に
封入するようにしたので、高い性能を長期にわたつて保
持し長寿命化を図ることが可能な燃料電池の保管方法が
提供できる。
As described above, according to the present invention, nitrogen gas containing 4% or less of hydrogen is sealed in the anode electrode chamber and the cathode electrode chamber when the fuel cell is stored at room temperature while it is not operating. Therefore, it is possible to provide a method of storing a fuel cell capable of maintaining high performance over a long period of time and extending the life of the fuel cell.

【図面の簡単な説明】[Brief description of drawings]

第1図は燃料電池の原理構成を示す図、第2図は電極の
分極電位が電池性能に影響する現象を説明するための
図、第3図は本発明の効果を説明するための図である。 1…電解質層、2…アノード電極、3…カソード電極、
4,5…ガス流通室。
FIG. 1 is a diagram showing a principle configuration of a fuel cell, FIG. 2 is a diagram for explaining a phenomenon in which a polarization potential of an electrode affects cell performance, and FIG. 3 is a diagram for explaining an effect of the present invention. is there. 1 ... Electrolyte layer, 2 ... Anode electrode, 3 ... Cathode electrode,
4, 5 ... Gas distribution room.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解質を挟んでアノードおよびカソードの
一対の多孔質電極を配置し、アノード電極の背面に水素
等の気体燃料を接触させると共にカソード電極の背面に
酸素等の酸化剤を接触させ、このときの電気化学的反応
により発生する電気エネルギーを前記一対の電極から取
出す燃料電池の保管方法において、 前記燃料電池をその運転停止中に常温で保管する際に、
4%以下の水素を含有する窒素ガスをアノード電極室お
よびカソード電極室に封入するようにしたことを特徴と
する燃料電池の保管方法。
1. A pair of porous electrodes of an anode and a cathode are arranged with an electrolyte sandwiched therebetween, and a gas fuel such as hydrogen is brought into contact with the back surface of the anode electrode and an oxidant such as oxygen is brought into contact with the back surface of the cathode electrode. In a method of storing a fuel cell, in which electric energy generated by an electrochemical reaction at this time is taken out from the pair of electrodes, when the fuel cell is stored at room temperature during its shutdown,
A method of storing a fuel cell, characterized in that nitrogen gas containing 4% or less of hydrogen is sealed in the anode electrode chamber and the cathode electrode chamber.
【請求項2】前記窒素ガスとしては、0.1〜3%の水
素を含有することを特徴とする特許請求の範囲第1項に
記載の燃料電池の保管方法。
2. The method for storing a fuel cell according to claim 1, wherein the nitrogen gas contains 0.1 to 3% of hydrogen.
JP57185106A 1982-10-21 1982-10-21 Fuel cell storage method Expired - Lifetime JPH069143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185106A JPH069143B2 (en) 1982-10-21 1982-10-21 Fuel cell storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185106A JPH069143B2 (en) 1982-10-21 1982-10-21 Fuel cell storage method

Publications (2)

Publication Number Publication Date
JPS5975569A JPS5975569A (en) 1984-04-28
JPH069143B2 true JPH069143B2 (en) 1994-02-02

Family

ID=16164957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185106A Expired - Lifetime JPH069143B2 (en) 1982-10-21 1982-10-21 Fuel cell storage method

Country Status (1)

Country Link
JP (1) JPH069143B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622156B2 (en) * 1985-03-01 1994-03-23 三菱電機株式会社 Fuel cell device
JPS62150665A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Stopping method for fuel cell operation
JP4613482B2 (en) * 2003-08-28 2011-01-19 パナソニック株式会社 Fuel cell power generator and its operation method
JP2005093115A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Fuel cell power generating device and its operating method
JP2006024546A (en) * 2004-06-08 2006-01-26 Mitsubishi Electric Corp Operation method of fuel cell
WO2006040999A1 (en) * 2004-10-08 2006-04-20 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation device
JP4772473B2 (en) * 2005-11-24 2011-09-14 三菱電機株式会社 Fuel cell power generation system
JP4732407B2 (en) * 2007-08-30 2011-07-27 本田技研工業株式会社 Method for stopping power generation in fuel cell system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832903B2 (en) * 1978-07-28 1983-07-15 富士電機株式会社 How to stop a fuel cell
US4202933A (en) * 1978-10-13 1980-05-13 United Technologies Corporation Method for reducing fuel cell output voltage to permit low power operation

Also Published As

Publication number Publication date
JPS5975569A (en) 1984-04-28

Similar Documents

Publication Publication Date Title
US4390603A (en) Methanol fuel cell
Bacon The high pressure hydrogen-oxygen fuel cell
JPH069143B2 (en) Fuel cell storage method
JPS63503421A (en) Aqueous carbonate electrolyte fuel cell
Mahato et al. Some Aspects of Gas Recombination in Lead‐Acid Systems
Elmore et al. Intermediate temperature fuel cells
US3600228A (en) Multiple electrolyte high voltage cell
JPS59149668A (en) Fuel battery
JPH0622144B2 (en) Fuel cell
JPS63236262A (en) Fuel cell
Chambers et al. Carbonaceous fuel cells
US4250231A (en) Acid electrolyte fuel cell method having improved carbon corrosion protection
JPH09120830A (en) Starting method for fuel cell power-generating device
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JPH0622153B2 (en) How to operate a fuel cell
JPH0282456A (en) Fuel cell
JP2001148251A (en) Solid electrolyte and fuel cell using it
JP3094767B2 (en) Fuel cell electrolyte replenishment method
JPS62278766A (en) Operating method for phosphoric acid fuel cell
JPS59228367A (en) Operation of fuel cell
Weissbart Fuel cells—Electrochemical converters of chemical to electrical energy
JPH06267578A (en) Fuel cell
JP3100673B2 (en) Method for impregnating phosphoric acid in phosphoric acid type fuel cell electrode
JPH03105867A (en) Molten carbonate fuel cell
JPS63276879A (en) Operating method for fused carbonate fuel cell