JPH0654674B2 - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JPH0654674B2
JPH0654674B2 JP58128231A JP12823183A JPH0654674B2 JP H0654674 B2 JPH0654674 B2 JP H0654674B2 JP 58128231 A JP58128231 A JP 58128231A JP 12823183 A JP12823183 A JP 12823183A JP H0654674 B2 JPH0654674 B2 JP H0654674B2
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
exhaust gas
gas
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58128231A
Other languages
Japanese (ja)
Other versions
JPS6020473A (en
Inventor
太一 武知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58128231A priority Critical patent/JPH0654674B2/en
Publication of JPS6020473A publication Critical patent/JPS6020473A/en
Publication of JPH0654674B2 publication Critical patent/JPH0654674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電極の電気化学的反応による劣化を防止して長
寿命化を図り得るようにした燃料電池発電装置に関す
る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a fuel cell power generator capable of preventing deterioration of an electrode due to an electrochemical reaction and prolonging its life.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料電池は燃料の有している化学的エネルギー
を、直接電気エネルギーに変換する装置である。この燃
料電池は、通常電解質を挾んで一対の多孔質電極を配置
し、一方の電極の背面に水素等の燃料ガスを接触させる
と共に、他方の電極の背面に酸素等の酸化剤ガスを接触
させ、このときに起る電気化学的反応により発生する電
気エネルギーを、上記一対の電極から取出すようにした
ものである。この場合、電解質としては溶融塩、アルカ
リ溶液、酸性溶液等があるが、ここでは燃料電池として
代表的なリン酸を電解質とするリン酸型燃料電池を例と
してその原理について説明する。
Conventionally, a fuel cell is a device that directly converts the chemical energy of fuel into electrical energy. In this fuel cell, a pair of porous electrodes are usually placed across the electrolyte, and a fuel gas such as hydrogen is brought into contact with the back surface of one electrode and an oxidant gas such as oxygen is brought into contact with the back surface of the other electrode. The electric energy generated by the electrochemical reaction that occurs at this time is taken out from the pair of electrodes. In this case, the electrolyte may be a molten salt, an alkaline solution, an acidic solution, or the like. Here, the principle of the phosphoric acid fuel cell using phosphoric acid as an electrolyte as a typical fuel cell will be described as an example.

第1図は、この種の燃料電池の原理構成を示すものであ
る。図において、電解質層1は繊維質シートや鉱物質粉
末にリン酸を含浸したものである。また、2および3は
この電解質層1を挾んで配置されたアノードおよびカソ
ードの一対の多孔質(炭素質)電極で、電解質層1との
間にはコロイド状白金を炭素質粉末に担持せしめたもの
を塗布してなる触媒層4,5を夫々配置している。さら
に、6は水素等の燃料ガスの流れる部屋であり、7は酸
素(通常は空気)等の酸化剤ガスの流れる部屋である。
FIG. 1 shows the basic configuration of a fuel cell of this type. In the figure, the electrolyte layer 1 is a fibrous sheet or mineral powder impregnated with phosphoric acid. Reference numerals 2 and 3 denote a pair of porous (carbonaceous) electrodes, an anode and a cathode, which are arranged so as to sandwich the electrolyte layer 1. Colloidal platinum is supported on the carbonaceous powder between itself and the electrolyte layer 1. The catalyst layers 4 and 5 formed by coating the respective materials are arranged. Further, 6 is a chamber in which a fuel gas such as hydrogen flows, and 7 is a chamber in which an oxidant gas such as oxygen (usually air) flows.

かかる燃料電池において、部屋6に流入した水素はアノ
ード電極2の空所を拡散して触媒層4に達する。ここ
で、水素ガスは触媒の作用により水素イオンと電子とに
解離する。その反応式は H2→2H++2e …(1) となる。そして、水素イオンは電解質層1に入り、起電
圧による作用と濃度拡散によりカソード電極3に向って
泳動する。一方、水素ガスの解離により分離した電子は
アノード電極2に流れ込み、電極2は負に課電したこと
になる。またカソード電極3では、アノード電極2側か
ら泳動してきた水素イオンと、酸化剤として部屋7に供
給されさらにカソード電極3の空所を拡散してきた酸素
と、アノード電極2から外部の電力負荷を通って仕事を
した電池のカソード3に戻ってきた電子の3者が、触媒
層5表面で次の反応を起こす。
In such a fuel cell, hydrogen flowing into the chamber 6 diffuses in the void space of the anode electrode 2 and reaches the catalyst layer 4. Here, the hydrogen gas is dissociated into hydrogen ions and electrons by the action of the catalyst. The reaction formula is H 2 → 2H + + 2e (1). Then, the hydrogen ions enter the electrolyte layer 1 and migrate toward the cathode electrode 3 by the action of the electromotive force and the concentration diffusion. On the other hand, the electrons separated by the dissociation of hydrogen gas flow into the anode electrode 2 and the electrode 2 is negatively charged. In the cathode electrode 3, hydrogen ions that have migrated from the anode electrode 2 side, oxygen that has been supplied to the room 7 as an oxidant and has diffused in the voids of the cathode electrode 3, and the anode electrode 2 that passes through an external power load. The three electrons that have returned to the cathode 3 of the battery that has worked as a work cause the following reaction on the surface of the catalyst layer 5.

4H+4e+O2→2H2O …(2) この両電極2,3での還元と酸化の過程で起電力と熱を
発生するが、その合計は水素が酸化するときのエネルギ
ーに等しい。そして、もしこのエネルギーが全て電気エ
ネルギーに変換されるならば、理論上略1.23(V)の
電圧を発生するが、実際に外部に電気エネルギーとして
取出される分は、電池の内部抵抗による電圧降下を差し
引いたものとなる。この損失となるものは、触媒の活性
により支配される活性化分極、電極の反応点近傍の水素
濃度および酸素濃度により決まる濃度分極、電解質1中
をイオンが流れるときの電圧降下、電極や接触部等電子
の流れる経路での抵抗による電圧降下の合計が、電池内
部の損失つまり電圧降下となる。この場合、電解質1を
挾んで配置されている触媒層4,5間の電圧を直接測定
することはむずかしいが、外部で測定される電圧に上記
電極2,3間の電圧降下を加えたものに略等しいと考え
られる。
4H + 4e + O 2 → 2H 2 O (2) Electromotive force and heat are generated in the process of reduction and oxidation at the electrodes 2 and 3, and the total is equal to the energy when hydrogen is oxidized. If all this energy is converted to electric energy, theoretically a voltage of about 1.23 (V) is generated, but the amount of electric energy actually extracted to the outside depends on the internal resistance of the battery. The voltage drop is subtracted. This loss is caused by activation polarization dominated by the activity of the catalyst, concentration polarization determined by the hydrogen concentration and oxygen concentration near the reaction point of the electrode, voltage drop when ions flow in the electrolyte 1, electrode and contact part. The total voltage drop due to the resistance in the isoelectron flow path is the loss inside the battery, that is, the voltage drop. In this case, it is difficult to directly measure the voltage between the catalyst layers 4 and 5 which are arranged with the electrolyte 1 in between, but it is necessary to add the voltage drop between the electrodes 2 and 3 to the voltage measured externally. It is considered to be almost equal.

ところで、触媒層4,5間の電圧が高くなった場合に
は、電気化学的作用により燃料電池の電極構成部材であ
る白金の溶解や白金担持体の炭素粒子が電気化学的に酸
化する現象が生じ、電極2,3は急激に劣化することが
知られている。
By the way, when the voltage between the catalyst layers 4 and 5 becomes high, there is a phenomenon that the electrochemical action causes the dissolution of platinum which is an electrode constituent member of the fuel cell and the electrochemical oxidation of carbon particles of the platinum carrier. It is known that the electrodes 2 and 3 are rapidly deteriorated due to the occurrence.

第2図は、運転条件により電極2,3の劣化が生じるこ
とを説明するための図で、横軸は累計運転時間、縦軸は
温度180(℃)、電流密度200(mA/cm2)、大気圧下
で運転したときの電池1個当りの電圧を夫々示してい
る。図において、イは電流密度200(mA/cm2)、電圧
0.65(V)で連続運転した場合、またロは電流密度2
00(mA/cm2)、電圧0.9(V)で連続運転した場合
で、数時間毎に電流密度200(mA/cm2)、にしたとき
の電圧の経過を夫々示したものである。この曲線イとロ
の差は、電気化学的反応による劣化によるものと考えら
れる。
FIG. 2 is a diagram for explaining that deterioration of the electrodes 2 and 3 occurs depending on operating conditions. The horizontal axis represents cumulative operating time, the vertical axis represents temperature 180 (° C.), current density 200 (mA / cm 2 ). , And shows the voltage per battery when operating under atmospheric pressure. In the figure, (a) is the current density of 200 (mA / cm 2 ) and the voltage is 0.65 (V) when continuously operated, and ( b ) is the current density of 2
00 (mA / cm 2 ), voltage 0.9 (V) in continuous operation, current density is 200 (mA / cm 2 ) every few hours, showing the progress of voltage respectively. . The difference between the curves a and b is considered to be due to the deterioration due to the electrochemical reaction.

特に、燃料電池に関する技術の進歩や供給ガスの高圧化
が可能となり、発生電圧の上昇が軽負荷時の過電圧で上
記劣化を促進させる結果となっている。
In particular, it has become possible to advance the technology relating to fuel cells and to increase the pressure of the supply gas, and the rise in the generated voltage has resulted in the acceleration of the above deterioration due to overvoltage at light load.

そこで、かかる過電圧を防止するために、軽負荷時には
負荷抵抗を接続してこれに電力を消費させたり、あるい
は酸化剤ガスの供給量をしぼって電圧を抑えたりする等
の対策が考えられている。しかし乍ら、前者の方法では
電力を無駄に消費することになり、後者の方法は多数の
電池を積層して使用する実用電池では、各電池に供給す
る酸化剤ガス量にアンバランスを生じ、各電池に発生す
る電圧に大きなばらつきを生じて、全ての電池を必要な
限度内の電圧に抑えられず、目的を達成することができ
ないという問題がある。
Therefore, in order to prevent such overvoltage, measures such as connecting a load resistor at the time of light load and consuming electric power to this, or restricting the supply amount of the oxidant gas to suppress the voltage have been considered. . However, the former method wastes power in the former method, and the latter method causes an imbalance in the amount of oxidant gas supplied to each battery in a practical battery in which a large number of batteries are stacked and used. There is a problem in that the voltage generated in each battery causes a large variation, and it is not possible to suppress all the batteries to a voltage within a necessary limit, so that the purpose cannot be achieved.

〔発明の目的〕[Object of the Invention]

本発明は上記のような事情を考慮して成されたもので、
その目的は装置の複雑化や無駄なエネルギーの消費を抑
えつつ電気化学的反応による電極の劣化を防止して長寿
命を保持することが可能な燃料電池発電装置を提供する
ことにある。
The present invention has been made in consideration of the above circumstances,
An object of the present invention is to provide a fuel cell power generation device capable of preventing the electrode from being deteriorated due to an electrochemical reaction and maintaining a long life while suppressing the device from becoming complicated and wasting energy.

[発明の概要] 上記の目的を達成するために本発明の燃料電池発電装置
は、電解質を挟んでアノードおよびカソードの一対の多
孔質電極を配置し、アノード電極の背面に燃料ガスを通
過させると共にカソード電極の背面に酸化剤ガスを通過
させ、このときの電気化学的反応により発生する電気エ
ネルギーを一対の電極から取出す燃料電池と、燃料電池
のカソード電極側からの排ガスが供給されて駆動され、
燃料電池のカソード電極側へ酸化剤ガスを供給するター
ビン・コンプレッサと、燃料電池のカソード電極側から
の排ガスがタービンを駆動させた後に当該タービンから
排出される排ガスを、タービン・コンプレッサのコンプ
レッサ入口の吸入酸化剤ガス供給管路へ供給する排ガス
供給管路と、排ガス供給管路の途中に設けられた流量制
御用の弁体と、燃料電池が低出力で、当該燃料電池の電
圧があらかじめ定められた燃料電池の電極構成部材を電
気化学的な反応で劣化を起こさせる電圧以上となった場
合に、弁体の弁開度を開けるように制御する制御器とを
備えることにより、負荷が減少したときの運転時に、燃
料電池に供給する酸化剤ガスに所定の割合で排ガスを混
合して、その中の酸素濃度を低下させるようにして過電
圧の発生を抑制することを特徴とする。
[Summary of the Invention] In order to achieve the above-mentioned object, a fuel cell power generator of the present invention has a pair of porous electrodes of an anode and a cathode arranged with an electrolyte in between, and allows a fuel gas to pass through the back surface of the anode electrode. A fuel cell that allows an oxidant gas to pass through the back surface of the cathode electrode and takes out electrical energy generated by an electrochemical reaction at this time from a pair of electrodes, and is driven by being supplied with exhaust gas from the cathode electrode side of the fuel cell,
The turbine compressor that supplies the oxidant gas to the cathode electrode side of the fuel cell, and the exhaust gas discharged from the turbine after the exhaust gas from the cathode electrode side of the fuel cell drives the turbine, The exhaust gas supply pipeline for supplying to the intake oxidant gas supply pipeline, the valve body for controlling the flow rate provided in the middle of the exhaust gas supply pipeline, the fuel cell has a low output, and the voltage of the fuel cell is predetermined. The load was reduced by providing a controller that controls to open the valve opening of the valve element when the voltage exceeds the voltage that causes the electrode components of the fuel cell to deteriorate due to an electrochemical reaction. At the time of operation, the exhaust gas is mixed with the oxidant gas supplied to the fuel cell at a predetermined ratio to reduce the oxygen concentration in the exhaust gas and suppress the occurrence of overvoltage. It is characterized in.

〔発明の実施例〕Example of Invention

以下、本発明を図面に示す一実施例について説明する。
第3図は、本発明を適用したガス供給装置を備えた燃料
電池発電装置の構成例を示したものである。なお、燃料
電池の燃料ガスは水素であるが、一般の電力用途の燃料
電池では天然ガスやナフサやメタノール等を改質したも
のを供給するシステムが多いことから、ここでは天然ガ
スが燃料ガスの場合について述べる。
An embodiment of the present invention shown in the drawings will be described below.
FIG. 3 shows an example of the configuration of a fuel cell power generator equipped with a gas supply device to which the present invention is applied. Note that the fuel gas of the fuel cell is hydrogen, but in the case of fuel cells for general electric power use, there are many systems that supply reformed natural gas, naphtha, methanol, etc., so here natural gas is the fuel gas. The case will be described.

図において、8は触媒管9および燃焼室10から成るリ
フォーマーで、その触媒管9には燃料ガスAを燃料ガス
調節弁11を介して適量の水蒸気Bと共に導入し、これ
より燃料電池12のアノード電極2のガス流通部屋6へ
供給する。そして、このガス流通部屋6からの未反応燃
料ガスを含むアノード排ガスを、上記リフォーマー8の
燃焼室10へ後述する酸化剤ガスCと共に供給して燃焼
させる。
In the figure, 8 is a reformer consisting of a catalyst tube 9 and a combustion chamber 10. A fuel gas A is introduced into the catalyst tube 9 through a fuel gas control valve 11 together with an appropriate amount of water vapor B, from which an anode of a fuel cell 12 is introduced. The gas is supplied to the gas distribution chamber 6 of the electrode 2. Then, the anode exhaust gas containing the unreacted fuel gas from the gas distribution chamber 6 is supplied to the combustion chamber 10 of the reformer 8 together with an oxidant gas C described later and burned.

一方、13は後述する混合器からの排ガスDのエネルギ
ーで回転するタービンで、これによりコンプレッサ14
を駆動して吸入空気Eを圧縮し、酸化剤ガスCとして上
記燃料電池12のカソード電極3のガス流通部屋7へ酸
化剤ガス調節弁15を介して供給する。また、16は上
記リフォーマー8の燃焼室10からの排ガスと、調圧弁
17を介して得られる上記ガス流通部屋7からのカソー
ド排ガスを混合する混合器で、その混合ガスを上記排ガ
スDとしてタービン13へ供給する。さらに、18は調
節弁19を介して得られる上記燃料ガスAと、調節弁2
0を介して得られる上記酸化剤ガスCとを夫々導入して
燃焼させる補助燃焼器で、その燃焼排ガスを上記混合器
16へ付加的に供給する。つまり、この補助燃焼器18
は上記燃焼室10の排ガスとカソード排ガスのみでター
ビン13を駆動するエネルギーが不足している場合に、
調節弁19,20を作動させて運転を行なうものであ
る。さらにまた、上記コンプレッサ14への吸入空気E
の供給管路に弁としてのダンパー21を設け、且つこの
供給管路と上記タービン13からの排ガスFの排出管路
との間にはダンパー22を設けて、このタービン13の
排ガスFを上記吸入空気Eへ混合可能にしている。ま
た、23は上記ダンパー21,22を制御する制御器
で、前記燃料電池12の出力電圧と基準電圧を比較し、
出力電圧の方が高い時(軽負荷運転時)にはダンパー2
2を開制御し、逆に出力電圧の方が低い時にはダンパー
22を閉制御するように制御し、且つ必要に応じてダン
パー21の開度を制御するようにしている。そこで、基
準とする電圧は、1セル当り0.8(V)〜0.9(V)が適
当である。0.9(V)に設定すれば効率の良い発電がで
きるが電気化学的反応による劣化を起こす電圧に近いこ
とから、寿命を重視するならば0.8(V)の方が好まし
い。
On the other hand, 13 is a turbine that rotates with the energy of the exhaust gas D from the mixer, which will be described later.
Is driven to compress the intake air E and supply it as the oxidant gas C to the gas flow chamber 7 of the cathode electrode 3 of the fuel cell 12 through the oxidant gas control valve 15. Further, 16 is a mixer for mixing the exhaust gas from the combustion chamber 10 of the reformer 8 and the cathode exhaust gas from the gas distribution chamber 7 obtained via the pressure regulating valve 17, and the mixed gas is used as the exhaust gas D in the turbine 13 Supply to. Further, 18 is the fuel gas A obtained through the control valve 19 and the control valve 2
In the auxiliary combustor for introducing and burning the oxidant gas C obtained through 0, the combustion exhaust gas is additionally supplied to the mixer 16. That is, this auxiliary combustor 18
When the energy for driving the turbine 13 is insufficient only with the exhaust gas of the combustion chamber 10 and the cathode exhaust gas,
The operation is performed by operating the control valves 19 and 20. Furthermore, the intake air E to the compressor 14
A damper 21 as a valve is provided in the supply pipeline of the turbine 13, and a damper 22 is provided between the supply pipeline and the exhaust pipeline of the exhaust gas F from the turbine 13 so that the exhaust gas F of the turbine 13 is sucked in. It can be mixed with air E. Reference numeral 23 is a controller for controlling the dampers 21 and 22, which compares the output voltage of the fuel cell 12 with a reference voltage,
Damper 2 when output voltage is higher (light load operation)
2 is controlled to open, and conversely, when the output voltage is lower, the damper 22 is controlled to be closed, and the opening degree of the damper 21 is controlled as necessary. Therefore, a suitable reference voltage is 0.8 (V) to 0.9 (V) per cell. If it is set to 0.9 (V), efficient power generation can be performed, but since it is close to the voltage that causes deterioration due to an electrochemical reaction, 0.8 (V) is preferable if the life is important.

なお、上記で制御器23は燃料電池12の出力電流と基
準電流を比較し、出力電流が基準電流より小さいときに
ダンパー22を開制御するように構成してもよい。
In addition, the controller 23 may be configured to compare the output current of the fuel cell 12 with the reference current and open the damper 22 when the output current is smaller than the reference current.

なお、燃料電池発電システムは上記要素以外に、電池の
冷却・加熱装置、電気出力調整器、燃料ガスおよび酸化
剤ガスの予熱や熱回収のための熱交換器、蒸気発生装置
を備えているが、これらは本発明と直接関係ないためこ
こではその図示説明を省略する。また、上記でリフォー
マー8の触媒管9はその触媒としてはニッケル/アルミ
ナ系を用い、燃料ガスAとしてのメタン等の天然ガスを
水素と二酸化炭素と一酸化炭素とに転化する。
In addition to the above elements, the fuel cell power generation system includes a cell cooling / heating device, an electric output regulator, a heat exchanger for preheating and heat recovery of fuel gas and oxidant gas, and a steam generator. Since these are not directly related to the present invention, the illustration and description thereof will be omitted here. Further, in the above, the catalyst pipe 9 of the reformer 8 uses a nickel / alumina system as its catalyst, and converts natural gas such as methane as the fuel gas A into hydrogen, carbon dioxide and carbon monoxide.

次に、かかる構成に基づく本発明の燃料電池発電装置の
作用について説明する。
Next, the operation of the fuel cell power generator of the present invention based on such a configuration will be described.

まず、燃料電池の端子電圧つまり電極間電圧は理論値が
1.23(V)になることは前述したが、活性化分極、濃
度分極、電気抵抗による電圧降下により、実用的運転条
件である200(mA/cm2)付近の電流密度では0.7
(V)前後の電圧となる。この場合、本発明に直接関係が
あるのは濃度分極で、アノード電極の反応点近傍では水
素の濃度が高い程、またカソード電極の反応点近傍では
酸素濃度が高い程、反応が夫々活発となって高い電圧が
発生する。従って、燃料電池に純水素、純酸素を夫々供
給する場合に最も高い電圧が得られ、逆に不活性な窒素
や二酸化炭素が混合して反応成分が薄くなる程発生電圧
が低くなる。またこの場合、水素よりも酸素の濃度が低
下した場合の方が、電圧降下の顕著であることが判明し
ており、その濃度を低くすることにより発生電圧を低く
することが可能となる。
First, as described above, the theoretical value of the terminal voltage of the fuel cell, that is, the voltage between electrodes is 1.23 (V), but it is a practical operating condition due to the voltage drop due to activation polarization, concentration polarization, and electric resistance. 0.7 at current density near (mA / cm 2 ).
The voltage will be around (V). In this case, the concentration polarization is directly related to the present invention. The higher the hydrogen concentration near the reaction point of the anode electrode and the higher the oxygen concentration near the reaction point of the cathode electrode, the more active the reaction becomes. Generate high voltage. Therefore, the highest voltage is obtained when pure hydrogen and pure oxygen are supplied to the fuel cell, respectively, and conversely, the inert gas and carbon dioxide are mixed and the reaction component becomes thinner, the lower the generated voltage becomes. Further, in this case, it has been found that the voltage drop is more remarkable when the concentration of oxygen is lower than that of hydrogen, and the generated voltage can be lowered by lowering the concentration.

本発明では上記の現象に着目し、燃料電池の出力電圧が
過大となる負荷が減少したときの運転時には、燃料電池
に供給する酸化剤ガスに所定の割合で排ガスを混合する
ようにして運転を行なうものであり、以下これを第3図
を基に具体的に述べる。
In the present invention, paying attention to the above-mentioned phenomenon, at the time of operation when the load at which the output voltage of the fuel cell becomes excessively small is reduced, the oxidant gas supplied to the fuel cell is mixed with the exhaust gas at a predetermined ratio to perform the operation. This is specifically described below with reference to FIG.

まず第3図において、ダンパー21を介して供給される
吸入空気Eは、タービン13にて駆動されるコンプレッ
サ14によって圧縮され、酸化剤ガス調節弁15を介し
酸化剤ガスCとして、リフォーマー8の燃焼室10に分
岐導入されると共に、燃料電池12のカソード電極3の
ガス流通部屋7に供給され、これよりそのカソード排ガ
スが混合器16へ導入される。
First, in FIG. 3, the intake air E supplied through the damper 21 is compressed by the compressor 14 driven by the turbine 13, and the combustion of the reformer 8 is performed as the oxidant gas C through the oxidant gas control valve 15. While being branched into the chamber 10, the gas is supplied to the gas flow chamber 7 of the cathode electrode 3 of the fuel cell 12, and the cathode exhaust gas is introduced into the mixer 16 from this.

一方、燃料ガスAは燃料ガス調節弁11を介し、適量の
水蒸気Bと共にリフォーマー8の触媒管9に導入されて
水素化して、上記燃料電池12のアノード電極2のガス
流通部屋6に供給される。そして、この大半の水素を燃
料電池12内で消費して、その未反応燃料ガスは上記リ
フォーマー8の燃焼室10内へ導入され、ここで燃焼し
て触媒管9を加熱し、これより上記混合器16へ導入さ
れる。これにより、混合器16ではこの燃焼室10から
の排ガスと上記カソード排ガスとを混合し、その混合排
ガスを上記タービン13へ供給してそのエネルギーによ
りこれを回転させる。ここで、燃焼室10から排ガスと
上記カソード排ガスでは、タービン13を駆動するのに
充分なエネルギーが不足するような場合には、調節弁1
9,20により燃料ガスA、酸化剤ガスCを補助燃焼器
18へ導入し、燃焼したその排ガスを上記混合器16へ
付加的に導入して所定のエネルギーを得るようにする。
On the other hand, the fuel gas A is introduced into the catalyst tube 9 of the reformer 8 through the fuel gas control valve 11 together with an appropriate amount of water vapor B to be hydrogenated, and is supplied to the gas distribution chamber 6 of the anode electrode 2 of the fuel cell 12. . Then, most of this hydrogen is consumed in the fuel cell 12, and the unreacted fuel gas is introduced into the combustion chamber 10 of the reformer 8 where it is combusted and heats the catalyst tube 9 to allow the above-mentioned mixing. It is introduced into the container 16. As a result, the mixer 16 mixes the exhaust gas from the combustion chamber 10 with the cathode exhaust gas, supplies the mixed exhaust gas to the turbine 13, and rotates it by its energy. If the exhaust gas from the combustion chamber 10 and the cathode exhaust gas do not have sufficient energy to drive the turbine 13, the control valve 1
The fuel gas A and the oxidant gas C are introduced into the auxiliary combustor 18 by 9, 20 and the burned exhaust gas is additionally introduced into the mixer 16 to obtain a predetermined energy.

また、上記燃料電池12内ではアノード電極2に供給さ
れた水素と、カソード電極3に供給された空気との前述
した電気化学的反応によって、各電極2,3間に所定の
大きさの電圧が発生し、これが図示しない負荷へ供給さ
れることになる。
Further, in the fuel cell 12, due to the above-described electrochemical reaction between hydrogen supplied to the anode electrode 2 and air supplied to the cathode electrode 3, a voltage of a predetermined magnitude is generated between the electrodes 2 and 3. Occurs, and this is supplied to a load (not shown).

さて、かような状態において、例えば負荷が減少して軽
負荷状態になると、負荷の減少に伴なって、燃料電池の
電圧降下の原因となっている活性分極、濃度分極、およ
び抵抗分極が軽減され、燃料電池12の出力電圧が上昇
して、前記燃料電池の電極間の理論電圧値に近付く。こ
の燃料電池の電極間の理論電圧は、通常、電極構成部材
の電気化学的反応による劣化反応を引き起こす電圧、す
なわち基準電圧よりも高い。よって、負荷の低減に伴な
って、基準電圧としてあらかじめ定めた電極構成部材の
電気化学的反応が急激に進行する電圧以上となる。
Now, in such a state, for example, when the load decreases to a light load state, the active polarization, the concentration polarization, and the resistance polarization that cause the voltage drop of the fuel cell are reduced as the load decreases. As a result, the output voltage of the fuel cell 12 rises and approaches the theoretical voltage value between the electrodes of the fuel cell. The theoretical voltage between the electrodes of the fuel cell is usually higher than a voltage that causes a deterioration reaction due to an electrochemical reaction of electrode constituent members, that is, a reference voltage. Therefore, as the load is reduced, the reference voltage becomes equal to or higher than a voltage at which the electrochemical reaction of the electrode constituent member that is predetermined as the reference voltage rapidly progresses.

ここで、あらかじめ定めた上記基準電圧を燃料電池の最
大電圧とし、制御器23によって、常に燃料電池電圧と
基準電圧とを比較監視させる。そして、負荷の低減によ
って、燃料電池電圧がこの基準電圧を超えたことを制御
器23が検知すると、制御器23は、燃料電池電圧が基
準値、もしくはそれ以下となるように、ダンパー22を
開くことによって、燃料電池であらかじめ酸素を消費さ
せて、タービン・コンプレッサ13の駆動に使われた酸
素濃度の低い、もしくは酸素を含まないタービン・コン
プレッサ13の排ガスFを、燃料電池へ供給する酸化剤
ガスにタービン13入り口で混入させる。これによっ
て、燃料電池へ供給される酸化剤ガスの濃度が下がり、
燃料電池電圧が活性分極、濃度分極の増加によって低下
する。
Here, the predetermined reference voltage is set as the maximum voltage of the fuel cell, and the controller 23 constantly causes the fuel cell voltage and the reference voltage to be compared and monitored. When the controller 23 detects that the fuel cell voltage exceeds the reference voltage due to the reduction of the load, the controller 23 opens the damper 22 so that the fuel cell voltage becomes the reference value or lower. As a result, the exhaust gas F of the turbine / compressor 13 which has consumed oxygen in advance in the fuel cell and used to drive the turbine / compressor 13 or which has a low oxygen concentration or does not contain oxygen is supplied to the fuel cell as an oxidant gas. Is mixed in at the inlet of the turbine 13. This reduces the concentration of the oxidant gas supplied to the fuel cell,
The fuel cell voltage decreases due to an increase in active polarization and concentration polarization.

ところで、燃料電池の電気出力は、 電気出力=燃料電池の電圧×電流 で示される。従って、燃料電池電圧が基準電圧を超える
ような低負荷では、上記式に示す燃料電池の電圧を、酸
化剤ガス中の酸素濃度を下げて、前記基準電圧に固定す
ることによって、電流の増減のみで燃料電池の出力が制
御できる。
By the way, the electric output of the fuel cell is represented by electric output = voltage of the fuel cell × current. Therefore, under a low load such that the fuel cell voltage exceeds the reference voltage, the voltage of the fuel cell shown in the above formula is lowered to the oxygen concentration in the oxidant gas and fixed to the reference voltage, so that only the increase / decrease of the current is achieved. The output of the fuel cell can be controlled with.

すなわち、制御器23は、燃料電池の負荷、すなわち電
流によって増減する、基準電圧と燃料電池電圧との差を
常に監視して、燃料電池へ供給する酸化剤ガス中の酸素
濃度を、ダンパー22の開閉によって、燃料電池電圧が
基準電圧と同等、もしくは小さくなるように制御する。
この場合、本例では吸入空気Eが排ガスFを混入するこ
とで吸入空気Eの酸素濃度を下げ流量(圧力)は極度に
下げないため、多数の電池を積層した電池スタックにお
いても、各電池とも略均一に電圧を低減することができ
る。
That is, the controller 23 constantly monitors the difference between the reference voltage and the fuel cell voltage, which increases or decreases depending on the load of the fuel cell, that is, the current, and determines the oxygen concentration in the oxidant gas supplied to the fuel cell from the damper 22. The fuel cell voltage is controlled to be equal to or smaller than the reference voltage by opening and closing.
In this case, in this example, since the intake air E mixes with the exhaust gas F, the oxygen concentration of the intake air E is reduced and the flow rate (pressure) is not extremely decreased. Therefore, even in a battery stack in which a large number of batteries are stacked, each battery is The voltage can be reduced substantially uniformly.

なお、上記においてダンパー22を全開状態としても所
定値以上の酸素濃度が得られない場合には、ダンパー2
2を全開としたままダンパー21の開度を絞り込むこと
により、吸入空気E中への排ガスFの混合割合を多くし
て、上記効果を達成することができる。また、タービン
13・コンプレッサ14の入口の吸入空気供給管路にタ
ービン13からの排ガスを供給して、一次圧において酸
化剤ガスである空気の酸素濃度を低下させていることに
より、タービン13からの排ガスを環流することによる
圧力変動は、二次圧であるカソード電極3の圧力には大
きく影響せず、従って極間差圧はほとんど生じない。
In the above, when the oxygen concentration above the predetermined value cannot be obtained even when the damper 22 is fully opened, the damper 2
By narrowing the opening degree of the damper 21 while keeping 2 fully open, it is possible to increase the mixing ratio of the exhaust gas F into the intake air E and achieve the above effect. Further, since the exhaust gas from the turbine 13 is supplied to the intake air supply pipeline at the inlet of the turbine 13 / compressor 14 to reduce the oxygen concentration of the air that is the oxidant gas at the primary pressure, The pressure fluctuation caused by circulating the exhaust gas does not significantly affect the pressure of the cathode electrode 3, which is the secondary pressure, and therefore the inter-electrode differential pressure hardly occurs.

第4図は上記燃料電池12における出力電流密度と発生
電圧の関係を示したものである。図において、ハは電池
の運転温度が平均195(℃)、燃料ガス・空気の供給圧
力が3.5(Kg/cm2)ダンパー22が全閉、ダンパー2
1が全開で、カソード電極3側に吸入空気Eのみを供給
した場合のものである。また、燃料電池12における酸
素利用率(電池12に供給する空気E中の酸素量に対す
る、電池12内で実際に消費する酸素の割合)は60
(%)、同じく水素利用率は70(%)である。この運転条件
では、負荷電流が電流密度で80(mA/cm2)相当より小
さくなると、1セル当りの電圧が0.8(V)よりも高く
なり電気化学的劣化の危険域に入る。
FIG. 4 shows the relationship between the output current density and the generated voltage in the fuel cell 12. In the figure, c indicates that the operating temperature of the battery is 195 (℃) on average, the supply pressure of fuel gas and air is 3.5 (Kg / cm 2 ), the damper 22 is fully closed, and the damper 2
No. 1 is fully open, and only the intake air E is supplied to the cathode electrode 3 side. Further, the oxygen utilization rate in the fuel cell 12 (the ratio of oxygen actually consumed in the cell 12 to the amount of oxygen in the air E supplied to the cell 12) is 60.
Similarly, the hydrogen utilization rate is 70%. Under this operating condition, when the load current becomes smaller than 80 (mA / cm 2 ) in terms of current density, the voltage per cell becomes higher than 0.8 (V), which is in the dangerous range of electrochemical deterioration.

一方、ニは同じくダンパー22を開き吸入空気E中に排
ガスFを混入した場合のもので、その運転条件はカソー
ド供給ガスの排ガス混合割合が49〜50(%)、酸素濃
度が11〜12(%)、酸素利用率が40〜45(%)であ
る。また、その図示は省略しているが、更に排ガス混合
割合を大きくすると曲線ニをさらに下回るものとなり、
軽負荷時の運転に適したものであることは容易に推察で
きる。
On the other hand, D is the case where the damper 22 is also opened and the exhaust gas F is mixed in the intake air E, and the operating conditions are that the exhaust gas mixture ratio of the cathode supply gas is 49 to 50 (%) and the oxygen concentration is 11 to 12 ( %) And the oxygen utilization rate is 40 to 45 (%). Although not shown, if the exhaust gas mixing ratio is further increased, it will fall below the curve d,
It can be easily inferred that it is suitable for operation under light load.

尚、本発明は上記実施例に限られるものではなく、次の
ようにしても実施することができるものである。
The present invention is not limited to the above embodiment, but can be carried out as follows.

(a)上記実施例では第3図に示すように、コンプレッサ
14からの酸化剤ガスCをリフォーマー8の燃焼室10
へ直接導入せず、第5図に示すようにその途中に熱交換
器24を設け、リフォーマー8から排出される高温の改
質ガスと供給する混合空気とをこれにより熱交換し、酸
化剤ガスCを予熱して燃焼室10へ供給するようにして
もよい。本構成とすることにより、排ガスを混入して酸
素濃度が低下した酸化剤ガスCによって、安定した燃焼
ができず失火してしまうという心配が全くなくなる。
(a) In the above embodiment, as shown in FIG. 3, the oxidant gas C from the compressor 14 is supplied to the combustion chamber 10 of the reformer 8.
5 is not directly introduced into the reformer 8, but a heat exchanger 24 is provided in the middle thereof so that the high-temperature reformed gas discharged from the reformer 8 and the mixed air to be supplied are heat-exchanged with each other. C may be preheated and supplied to the combustion chamber 10. With this configuration, there is no fear that the oxidant gas C in which the exhaust gas is mixed and the oxygen concentration is lowered does not perform stable combustion and causes misfire.

(b)また第6図に示すように、混合空気をリフォーマー
8からの燃焼排ガスと熱交換器25により熱交換してそ
の燃焼室10へ導入するようにしても、(a)項と同様の
効果が得られることはもちろんのこと、燃料ガスをも予
熱することになり全体の熱効率を上げることが可能とな
る。
(b) Further, as shown in FIG. 6, even if the mixed air is introduced into the combustion chamber 10 by exchanging heat with the combustion exhaust gas from the reformer 8 by the heat exchanger 25, the same as in (a). Not only the effect can be obtained, but also the fuel gas is preheated, so that the overall thermal efficiency can be improved.

[発明の効果] 以上説明したように本発明によれば、電解質を挟んでア
ノードおよびカソードの一対の多孔質電極を配置し、ア
ノード電極の背面に燃料ガスを通過させると共にカソー
ド電極の背面に酸化剤ガスを通過させ、このときの電気
化学的反応により発生する電気エネルギーを一対の電極
から取出す燃料電池と、燃料電池のカソード電極側から
の排ガスが供給されて駆動され、燃料電池のカソード電
極側へ酸化剤ガスを供給するタービン・コンプレッサ
と、燃料電池のカソード電極側からの排ガスがタービン
を駆動させた後に当該タービンから排出される排ガス
を、タービン・コンプレッサのコンプレッサ入口の吸入
酸化剤ガス供給管路へ供給する排ガス供給管路と、排ガ
ス供給管路の途中に設けられた流量制御用の弁体と、燃
料電池が低出力で、当該燃料電池の電圧があらかじめ定
められた燃料電池の電極構成部材を電気化学的な反応で
劣化を起こさせる電圧以上となった場合に、弁体の弁開
度を開けるように制御する制御器とを備え、負荷が減少
したときの運転時に、燃料電池に供給する酸化剤ガスに
所定の割合で排ガスを混合して酸素濃度を低下させ、発
生電圧を前述した電気化学的劣化が生じない電圧以下に
抑えるようにしたので、装置の複雑化や無駄なエネルギ
ーの消費を抑えつつ電気化学的反応による電極の劣化を
防止して長寿命化を図りかつ発電効率の高い燃料電池発
電装置が提供できる。
[Effects of the Invention] As described above, according to the present invention, a pair of porous electrodes of an anode and a cathode are arranged with an electrolyte in between, a fuel gas is allowed to pass through the back surface of the anode electrode, and oxidation is performed on the back surface of the cathode electrode. A fuel cell that allows an agent gas to pass through and takes out electrical energy generated by an electrochemical reaction at this time from a pair of electrodes, and is driven by supplying exhaust gas from the cathode electrode side of the fuel cell to the cathode electrode side of the fuel cell. Intake oxidant gas supply pipe at the compressor inlet of the turbine / compressor for exhaust gas discharged from the turbine / compressor that supplies the oxidant gas to the Exhaust gas supply pipe to be supplied to the passage, a valve body for flow rate control provided in the middle of the exhaust gas supply pipe, and a fuel cell Is low output, and when the voltage of the fuel cell is above a predetermined voltage that causes deterioration of the electrode component members of the fuel cell by an electrochemical reaction, the valve opening of the valve body is opened. When the load is reduced, the oxidant gas supplied to the fuel cell is mixed with the exhaust gas at a predetermined ratio to reduce the oxygen concentration during operation when the load is reduced. Since the voltage is controlled so that it does not occur, the deterioration of the electrode due to the electrochemical reaction is prevented, the life of the fuel cell is increased and the power generation efficiency of the fuel cell is improved A device can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は燃料電池の原理構成を示す構成図、第2図は従
来の問題点を説明するための特性図、第3図は本発明の
一実施例を示す構成図、第4図は本発明の作用を説明す
るための特性図、第5図および第6図は本発明の他の実
施例を示す図である。 1……電解質、2……アノード電極、3……カソード電
極、4,5……触媒層、6,7……ガス流通部屋、8…
…リフォーマー、9……触媒管、10……燃焼室、11
……燃料ガス調節弁、12……燃料電池、13……ター
ビン、14……コンプレッサ、15……酸化剤ガス調節
弁、16……混合器、17……調圧弁、18……補助燃
焼器、19,20……調節弁、21,22……ダンパ
ー、23……制御器、24,25……熱交換器、A……
燃料ガス、B……水蒸気、C……酸化剤ガス、D,F…
…排ガス、E……吸入空気。
FIG. 1 is a configuration diagram showing the principle configuration of a fuel cell, FIG. 2 is a characteristic diagram for explaining conventional problems, FIG. 3 is a configuration diagram showing an embodiment of the present invention, and FIG. FIG. 5 and FIG. 6 are characteristic diagrams for explaining the operation of the invention, and are diagrams showing another embodiment of the invention. 1 ... Electrolyte, 2 ... Anode electrode, 3 ... Cathode electrode, 4,5 ... Catalyst layer, 6, 7 ... Gas distribution chamber, 8 ...
… Reformer, 9 …… Catalyst tube, 10 …… Combustion chamber, 11
...... Fuel gas control valve, 12 ...... Fuel cell, 13 ...... Turbine, 14 ...... Compressor, 15 ...... Oxidant gas control valve, 16 …… Mixer, 17 …… Pressure control valve, 18 …… Auxiliary combustor , 19, 20 ... Control valve 21, 22 ... Damper, 23 ... Controller, 24, 25 ... Heat exchanger, A ...
Fuel gas, B ... Steam, C ... Oxidizer gas, D, F ...
… Exhaust gas, E… Intake air.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解質を挟んでアノードおよびカソードの
一対の多孔質電極を配置し、アノード電極の背面に燃料
ガスを通過させると共にカソード電極の背面に酸化剤ガ
スを通過させ、このときの電気化学的反応により発生す
る電気エネルギーを前記一対の電極から取出す燃料電池
と、 前記燃料電池のカソード電極側からの排ガスが供給され
て駆動され、前記燃料電池のカソード電極側へ前記酸化
剤ガスを供給するタービン・コンプレッサと、 前記燃料電池のカソード電極側からの排ガスが前記ター
ビンを駆動させた後に当該タービンから排出される排ガ
スを、前記タービン・コンプレッサのコンプレッサ入口
の吸入酸化剤ガス供給管路へ供給する排ガス供給管路
と、 前記排ガス供給管路の途中に設けられた流量制御用の弁
体と、 前記燃料電池が低出力で、当該燃料電池の電圧があらか
じめ定められた燃料電池の電極構成部材を電気化学的な
反応で劣化を起こさせる電圧以上となった場合に、前記
弁体の弁開度を開けるように制御する制御器と、 を備えて成ることを特徴とする燃料電池発電装置。
1. A pair of porous electrodes, an anode and a cathode, are arranged with an electrolyte in between, and a fuel gas is passed through the back surface of the anode electrode and an oxidant gas is passed through the back surface of the cathode electrode. Fuel cell for extracting electric energy generated by a static reaction from the pair of electrodes, and driven by being supplied with exhaust gas from the cathode electrode side of the fuel cell, and supplying the oxidant gas to the cathode electrode side of the fuel cell The exhaust gas discharged from the turbine / compressor and the exhaust gas from the cathode electrode side of the fuel cell after driving the turbine is supplied to the intake oxidant gas supply pipeline at the compressor inlet of the turbine / compressor. An exhaust gas supply pipeline, a valve body for controlling a flow rate provided in the exhaust gas supply pipeline, the fuel cell When the pond is low-powered and the voltage of the fuel cell is higher than a predetermined voltage that causes deterioration of the electrode constituent members of the fuel cell by an electrochemical reaction, the valve opening of the valve body is opened. A fuel cell power generation device comprising:
JP58128231A 1983-07-14 1983-07-14 Fuel cell power generator Expired - Lifetime JPH0654674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128231A JPH0654674B2 (en) 1983-07-14 1983-07-14 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128231A JPH0654674B2 (en) 1983-07-14 1983-07-14 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JPS6020473A JPS6020473A (en) 1985-02-01
JPH0654674B2 true JPH0654674B2 (en) 1994-07-20

Family

ID=14979732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128231A Expired - Lifetime JPH0654674B2 (en) 1983-07-14 1983-07-14 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH0654674B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259354A (en) * 1986-05-02 1987-11-11 Toshiba Corp Fuel cell power generating system
US5045414A (en) * 1989-12-29 1991-09-03 International Fuel Cells Corporation Reactant gas composition for fuel cell potential control
US5013617A (en) * 1989-12-29 1991-05-07 International Fuel Cells Corporation Air ejector system for fuel cell passivation
JP5200312B2 (en) 2001-09-03 2013-06-05 富士通株式会社 Electronics
US7070874B2 (en) * 2002-12-24 2006-07-04 Fuelcell Energy, Inc. Fuel cell end unit with integrated heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202933A (en) * 1978-10-13 1980-05-13 United Technologies Corporation Method for reducing fuel cell output voltage to permit low power operation

Also Published As

Publication number Publication date
JPS6020473A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
US7691508B2 (en) Fuel cell shutdown and startup using a cathode recycle loop
US4904548A (en) Method for controlling a fuel cell
JP4907861B2 (en) Fuel cell power generation system, its stop storage method, stop storage program
JP2924009B2 (en) How to stop fuel cell power generation
US7479337B2 (en) Fuel cell shutdown and startup using a cathode recycle loop
JP2021531622A (en) Fuel cell system and its control method
US20100035098A1 (en) Using chemical shorting to control electrode corrosion during the startup or shutdown of a fuel cell
KR20190098906A (en) Fuel cell system, combined power generation system, and control method for fuel cell system
JPWO2005071781A1 (en) Fuel cell system
US20080152961A1 (en) Purging a fuel cell system
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
JPWO2019163421A1 (en) Fuel cell temperature distribution control system, fuel cell, and temperature distribution control method
JPH1126003A (en) Power generation stopping method for fuel cell power generating system
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JP2007141744A (en) Fuel cell system
JPH0654674B2 (en) Fuel cell power generator
US20070154746A1 (en) Purging a fuel cell system
JP2541288B2 (en) How to shut down the fuel cell
JP4979952B2 (en) Fuel cell power generator, control program, and control method
US20100285379A1 (en) Transitioning an electrochemical cell stack between a power producing mode and a pumping mode
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
US8153319B2 (en) System and method for purging condensate from an electrochemical cell stack prior to operation
JPS6010566A (en) Operation of fuel cell
JPS59149664A (en) Fuel-cell system
JPH09320619A (en) Molten carbonate fuel cell