JPH06327291A - Control method for regenerative current feedback - Google Patents

Control method for regenerative current feedback

Info

Publication number
JPH06327291A
JPH06327291A JP5132504A JP13250493A JPH06327291A JP H06327291 A JPH06327291 A JP H06327291A JP 5132504 A JP5132504 A JP 5132504A JP 13250493 A JP13250493 A JP 13250493A JP H06327291 A JPH06327291 A JP H06327291A
Authority
JP
Japan
Prior art keywords
phase
voltage
switching element
regenerative current
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5132504A
Other languages
Japanese (ja)
Inventor
Takashi Harada
隆 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP5132504A priority Critical patent/JPH06327291A/en
Priority to PCT/JP1994/000750 priority patent/WO1994027358A1/en
Publication of JPH06327291A publication Critical patent/JPH06327291A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit

Abstract

PURPOSE:To reduce strain on supply voltage by minimizing variation in current when changing the phase of power supply in which a regenerative current is fed back. CONSTITUTION:When changing the phases R2, S2 and T2 of power supply in which a regenerative current is fed back, one of switching elements SW1-SW6 is turned on before the previous one is turned off. These two switching elements' being on during switching operation, represents a short circuit between the phase terminals of the power supply. However, the voltage of a phase in which one switching element is to be turned off is almost equal to that of a phase in which another switching element is to be turned on; therefore, variation in voltageis slight. For the reason variation in current is slight as well, which minimizes strain on supply voltage. This prevents the malfunctions of electrical apparatus and machines connected to the power supply due to strain thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モータ駆動用インバー
タ装置における電源回生動作時における回生電流帰還制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative current feedback control method during a power regeneration operation in a motor drive inverter device.

【0002】[0002]

【従来の技術】モータ駆動用インバータ装置等において
は、回生電流を電源に帰還させる方法として、3相電源
に対し、電源電圧の絶対値が高い2つの相に回生電流を
流すように、スイッチング素子をオンオフ制御してい
る。図1は、この電源回生動作に関係する手段の要部を
示す図である。図中、R,S,Tは3相電源のR相、S
相、T相端子を意味し、符号1はACリアクトルと該A
Cリアクトルから電源までの浮遊インダクタンスを含む
インダクタンスである。SW1〜SW6はスイッチング
素子、D1〜D6はダイオード、CはDCリンクコンデ
ンサである。
2. Description of the Related Art In a motor drive inverter device or the like, as a method of feeding back a regenerative current to a power source, a switching element is provided so that a regenerative current flows in two phases having a high absolute value of a power source voltage with respect to a three-phase power source. Is controlled on and off. FIG. 1 is a diagram showing a main part of means relating to the power regeneration operation. In the figure, R, S, and T are the R phase and S of the three-phase power supply.
Phase and T phase terminals, and reference numeral 1 indicates the AC reactor and the A
It is an inductance including stray inductance from the C reactor to the power supply. SW1 to SW6 are switching elements, D1 to D6 are diodes, and C is a DC link capacitor.

【0003】図4は、上述した構成において、従来の方
法による電源回生動作時の回生電流制御動作の説明図で
ある。図1において、インダクタンス1の電源側の各相
端子をR1,S1,T1、スイッチング素子側の端子を
R2,S2,T2とすると、図4における最上段に示す
曲線は、端子R2,S2,T2の電圧(電源の各相電
圧)を示し、該曲線の下に記載されれたSW1〜SW6
はスイッチング素子のオン/オフ状態を示している。ま
たir はR相の出力電流を示すものである。なお、4図
において、R相のみ電源ノイズを記入している。
FIG. 4 is an explanatory diagram of the regenerative current control operation at the time of power source regenerative operation by the conventional method in the above-mentioned configuration. In FIG. 1, assuming that the phase terminals on the power supply side of the inductance 1 are R1, S1, T1 and the terminals on the switching element side are R2, S2, T2, the curves shown in the uppermost stage in FIG. 4 are the terminals R2, S2, T2. Voltage (each phase voltage of the power supply) of each of SW1 to SW6 described below the curve.
Indicates the on / off state of the switching element. Further, ir indicates the output current of the R phase. In FIG. 4, power supply noise is shown only for the R phase.

【0004】電源のR相の電圧が一番高い時にはスイッ
チング素子SW1をオンとし、かつスイッチング素子S
W5(S相の電圧が1番低い時)若しくはスイッチング
素子SW6(T相の電圧が1番低い時)をオンとして、
R相−S相、またはR相−T相に回生電流ir を流すよ
うにしている。また、S相電圧が一番高いときには、ス
イッチング素子SW2をオンとし、かつスイッチング素
子SW4(R相の電圧が1番低い時)若しくはスイッチ
ング素子SW6(T相の電圧が1番低い時)オンとして
S相−R相またはS相−T相に回生電流が流れるように
している。更に、T相電圧が一番高いときには、スイッ
チング素子SW3をオンとし、かつスイッチング素子S
W4(R相の電圧が1番低い時)若しくはスイッチング
素子SW5(S相の電圧が1番低い時)オンとしてT相
−R相またはT相−S相に回生電流が流れるようにして
いる。
When the R-phase voltage of the power source is the highest, the switching element SW1 is turned on and the switching element S is turned on.
Turn on W5 (when the voltage of the S phase is the lowest) or switching element SW6 (when the voltage of the T phase is the lowest),
The regenerative current ir is made to flow in the R phase-S phase or the R phase-T phase. When the S-phase voltage is the highest, the switching element SW2 is turned on, and the switching element SW4 (when the R-phase voltage is the lowest) or switching element SW6 (when the T-phase voltage is the lowest) is turned on. The regenerative current is made to flow in the S phase-R phase or the S phase-T phase. Furthermore, when the T-phase voltage is the highest, the switching element SW3 is turned on and the switching element S3 is turned on.
W4 (when the voltage of the R phase is the lowest) or switching element SW5 (when the voltage of the S phase is the lowest) is turned on so that the regenerative current flows in the T phase-R phase or the T phase-S phase.

【0005】各スイッチング素子SW1〜SW6の1つ
がオンからオフに切り替わり他のスイッチング素子がオ
フからオンに切り替わる時僅かの遅れがあり、このとき
電源にノイズが発生する。例えば、図4におけるa点、
すなわち、スイッチング素子SW1,SW6がオンで、
回生電流をDCリンク電圧側から、スイッチング素子S
W1、端子R2、R相のインダクタンスL、端子R1、
電源、端子T1、T相インダクタンスL、スイッチング
素子SW6、DCリンク電圧側への回路で回生電流が流
れているとき、次に電源のS相の電圧が大きくなりこの
S相に帰還させるためにスイッチング素子SW1をオフ
にし、スイッチング素子SW2にした場合、その間のオ
ン,オフの遅れの間、スイッチング素子SW1,SW2
が共にオフの間が生じ、R相,T相のインダクタンスに
蓄積されたエネルギーにより、端子R2、R相インダク
タンスL、端子R1、電源、端子T1、T相インダクタ
ンスL、端子T2、スイッチング素子SW6、ダイオー
ドD4、端子R2と電流が流れ、端子R2と端子T2は
短絡された状態となり、端子R2と端子T2の電圧は同
一となる。その結果、図4に示すように端子R2の電圧
はそれまでの端子R2の電圧と端子T2の電圧の中間点
まで変化する(なお、図4にはR相の電源ノイズについ
てのみ記載しているが、a点においては端子T2の電圧
も変化し(4図の場合は上昇)、端子R2と端子T2と
同一となる。
When one of the switching elements SW1 to SW6 is switched from on to off and the other switching element is switched from off to on, there is a slight delay, at which time noise is generated in the power supply. For example, point a in FIG.
That is, when the switching elements SW1 and SW6 are on,
The regenerative current is switched from the DC link voltage side to the switching element S.
W1, terminal R2, R-phase inductance L, terminal R1,
When a regenerative current is flowing through the power supply, the terminal T1, the T-phase inductance L, the switching element SW6, and the circuit to the DC link voltage side, the voltage of the S-phase of the power supply increases next and switching is performed to feed back to this S-phase. When the element SW1 is turned off and the switching element SW2 is turned on, the switching elements SW1 and SW2 are delayed during the on / off delay therebetween.
Are both off, and energy accumulated in the R-phase and T-phase inductances causes the terminals R2, R-phase inductance L, terminal R1, power supply, terminal T1, T-phase inductance L, terminal T2, switching element SW6, A current flows through the diode D4 and the terminal R2, the terminals R2 and T2 are short-circuited, and the voltages of the terminals R2 and T2 are the same. As a result, as shown in FIG. 4, the voltage at the terminal R2 changes to the midpoint between the voltage at the terminal R2 and the voltage at the terminal T2 up to then (note that only the R-phase power supply noise is shown in FIG. 4). However, at the point a, the voltage of the terminal T2 also changes (in the case of FIG. 4, it rises), and becomes the same as the terminals R2 and T2.

【0006】そして、このように端子R2の電圧が大き
く変化することから、図4の最下段に示すようにR相へ
の帰還電流ir は急激に変化することになる。他のスイ
ッチング素子の切り替わり時おいても同様に電源電圧に
ひずみが生じ、かつ、帰還電流が急激に変化することに
なる。
Since the voltage at the terminal R2 changes greatly in this way, the feedback current ir to the R phase changes abruptly, as shown in the bottom row of FIG. Even when the other switching elements are switched, the power supply voltage is similarly distorted, and the feedback current changes abruptly.

【0007】[0007]

【発明が解決しようとする課題】上述したように、スイ
ッチング素子の切り替わり時に、すなわち、回生電流が
帰還する電源の相を切り替えるときに電源電圧に歪みが
生じると、当該電源に接続された他の電気機器にこの電
源電圧の歪みの影響が生じ、これら他の電気機器の誤動
作の原因を作っている。
As described above, when the power supply voltage is distorted when the switching element is switched, that is, when the phase of the power supply to which the regenerative current is fed back is switched, the other power supply connected to the power supply is distorted. The influence of the distortion of the power supply voltage occurs on the electric equipment, which causes the malfunction of these other electric equipment.

【0008】そこで、本発明の目的は、回生電流の電源
各相への帰還を切り替えるときに生じる電源電圧に対す
る歪みを減少させる回生電流帰還制御方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a regenerative current feedback control method for reducing the distortion with respect to the power source voltage that occurs when switching the feedback of the regenerative current to each phase of the power source.

【0009】[0009]

【課題を解決するための手段】本発明は、回生電流を流
す電源の相をスイッチング素子を制御して切り替える際
に、設定所定区間今まで回生電流を流した相と次に流す
相とに重複させて同時に流すようにスイッチング素子を
制御することによって回生電流切替時に発生する電源電
圧の歪みを小さくする。
According to the present invention, when a phase of a power source for supplying a regenerative current is switched by controlling a switching element, a preset predetermined section overlaps a phase to which a regenerative current has flowed and a phase to flow next. By controlling the switching elements so that they are caused to flow simultaneously, the distortion of the power supply voltage generated when switching the regenerative current is reduced.

【0010】[0010]

【作用】回生電流を帰還する場合、回生電流を電源電圧
の絶対値が大きい2つの相に流れるようにスイッチング
素子が切り替えられる。そのため、現在回生電流を流し
ている相と、次に回生電流が流れるように切り替えられ
る相の電圧は切り替え時においては同等な電圧である。
その結果、オフにするスイッチング素子と次にオンにす
るスイッチング素子を同時にオンになる区間を設け両端
をショートさせたとしても電圧の変化は少なく電源電圧
の歪みは小さく抑えられる。また、電圧の変化が小さい
から、電流の変化も少ない。
When the regenerative current is fed back, the switching element is switched so that the regenerative current flows in two phases having a large absolute value of the power supply voltage. Therefore, the voltage of the phase in which the regenerative current is currently flowing and the voltage of the phase in which the regenerative current is switched so that the regenerative current flows next are the same at the time of switching.
As a result, even when the switching element to be turned off and the switching element to be turned on next are simultaneously turned on and both ends are short-circuited, the voltage change is small and the distortion of the power supply voltage can be suppressed to a small level. Further, since the change in voltage is small, the change in current is small.

【0011】[0011]

【実施例】図3は本発明の一実施例の回生電流帰還制御
方法の説明図である。本実施例では、図4と比較して分
かるように、次にオンするスイッチング素子を今までオ
ンしていたスイッチング素子をオフにする前にオンにし
ている。
FIG. 3 is an explanatory diagram of a regenerative current feedback control method according to an embodiment of the present invention. In this embodiment, as can be seen by comparing with FIG. 4, the switching element to be turned on next is turned on before turning off the switching element which has been turned on until now.

【0012】すなわち、端子T2の電圧が一番高く端子
R2の電圧が一番低い図3にT−Rと表示する区間で
は、回生電流をT相,R相に流すべくスイッチング素子
SW3、SW4をオンに制御し、回生電流をスイッチン
グ素子SW3、T相のインダクタンスL、電源、R相の
インダクタンスL、スイッチング素子SW4の経路で流
している。そして、次の図3でT−Sと表示する区間で
は電源電圧の絶対値が大きい相はT相とS相であるか
ら、回生電流をR相からS相に流れるように切り替える
ためスイッチング素子SW4をオフ、スイッチング素子
SW5をオン切り替えるが、この場合、スイッチング素
子SW4をオフにする前にスイッチング素子SW5をオ
ンにする。両スイッチング素子SW4,SW5が共にオ
ンの状態では、端子R2と端子S2は短絡された状態と
なり、両端子電圧は同一となる。しかし、両端子電圧
は、切り替わり時にはほぼ等しい値であるから、電圧変
化は少ない。図3では、端子R2の電圧の変化のみを示
しているが、端子S2の電圧も変化し、両スイッチング
素子SW4,SW5が共にオンの状態では、端子R2,
S2の電圧は同一となる。このように電圧変化が少ない
ので、R相電流ir 、S相電流is の電流変化(電流の
傾き)は図3に示すように少ない。
That is, in the section where T-R is shown in FIG. 3 in which the voltage of the terminal T2 is the highest and the voltage of the terminal R2 is the lowest, the switching elements SW3 and SW4 are arranged so that the regenerative current flows in the T-phase and the R-phase. It is controlled to be turned on, and the regenerative current is passed through the path of the switching element SW3, the T-phase inductance L, the power supply, the R-phase inductance L, and the switching element SW4. Then, in the section shown as T-S in the next FIG. 3, the phases in which the absolute value of the power supply voltage is large are the T phase and the S phase, and therefore the switching element SW4 is used to switch the regenerative current from the R phase to the S phase. Is turned off and the switching element SW5 is turned on. In this case, the switching element SW5 is turned on before turning off the switching element SW4. When both the switching elements SW4 and SW5 are both turned on, the terminal R2 and the terminal S2 are short-circuited, and both terminals have the same voltage. However, the voltages at both terminals have almost the same value at the time of switching, so that the voltage change is small. Although FIG. 3 shows only the change in the voltage at the terminal R2, the voltage at the terminal S2 also changes, and when both the switching elements SW4 and SW5 are both on, the terminal R2
The voltage of S2 is the same. Since the voltage change is small as described above, the change in the R-phase current ir and the S-phase current is (the slope of the current) is small as shown in FIG.

【0013】次のR−S区間に切り替わる前には、スイ
ッチング素子SW3がオフになる前にスイッチング素子
SW1をオンにする。端子R2と端子T2が短絡し両端
子電圧は同一となる。この場合も、短絡前の両端子電圧
の電圧差は小さいから、電圧の変化は少なく、R相電流
の変化度も小さい。次のR−T区間に切り替わる時も、
スイッチング素子SW5とSW6が共にオンとなって端
子S2,T2を短絡するが、この場合でも、端子S2,
T2の電圧差は小さいから、電圧変化は小さい。なお、
図3では端子R2の電圧変化のみを記載し、端子S2,
T2の変化を記載していないが、両端子電圧は同一レベ
ルとなるものである。
Before switching to the next RS section, the switching element SW1 is turned on before the switching element SW3 is turned off. The terminal R2 and the terminal T2 are short-circuited and both terminals have the same voltage. Also in this case, since the voltage difference between the two terminal voltages before the short circuit is small, the change in voltage is small and the change degree of the R-phase current is also small. When switching to the next RT section,
The switching elements SW5 and SW6 are both turned on to short-circuit the terminals S2 and T2. Even in this case, the terminals S2 and T2 are also short-circuited.
Since the voltage difference of T2 is small, the voltage change is small. In addition,
In FIG. 3, only the voltage change of the terminal R2 is shown, and the terminal S2,
Although the change of T2 is not described, both terminal voltages are at the same level.

【0014】さらに、R−Tの区間から次のS−Tの区
間に切り替わる時も、スイッチング素子SW1,SW2
が共にオンとなる区間を設けることによって端子R2と
S2を短絡し同一電圧レベルとなるが、その変化量は小
さいので、R相の電流ir の変化量は図3に示すように
小さい。
Furthermore, even when switching from the RT section to the next ST section, the switching elements SW1 and SW2 are switched.
Although the terminals R2 and S2 are short-circuited to have the same voltage level by providing a section in which both are turned on, the amount of change is small, so the amount of change in the R-phase current ir is small as shown in FIG.

【0015】以上のようにして回生電流の各相電流ir
,is ,it の絶対値を減少することができるが、そ
の原理について以下説明する。説明の代表として、図3
のb点の状態を例にして説明する。図2は、図3におけ
るb点における、スイッチング素子SW2とSW3が共
にオンになった時の瞬間を直流的に表現した回路図であ
る。このb点の状態においては、V1 は電源電圧で図1
における端子R1−T1間の電圧、V2 は電源電圧より
低い電圧相で図1におけるS1−T1間の電圧、V3 は
DCリンク電圧で図1におけるDCリンク電圧である。
R,S,T相の電流をir ,is ,it とすると、次の
1〜3式が成立する。
As described above, each phase current ir of the regenerative current
, Is and it can be reduced in absolute value, and the principle thereof will be described below. As a representative of the explanation, FIG.
The state at point b in FIG. FIG. 2 is a circuit diagram in which the moment when both the switching elements SW2 and SW3 are turned on at point b in FIG. 3 is expressed as a direct current. In this state of point b, V1 is the power supply voltage.
1 is a voltage between terminals R1 and T1, V2 is a voltage phase lower than the power supply voltage, a voltage between S1 and T1 in FIG. 1, and V3 is a DC link voltage which is a DC link voltage in FIG.
When the R, S, and T phase currents are ir, is, and it, the following expressions 1 to 3 are established.

【0016】 V3 −L(dir /dt)−V1 −L(dit /dt)=0 …(1) V3 −L(dis /dt)−V2 −L(dit /dt)=0 …(2) (dir /dt)+(dis /dt)=(dit /dt) …(3) 上記1〜3式より、 (dit /dt)=(2V3 −V1 −V2 )/3L …(4) (dir /dt)=(V3 −2V1 +V2 )/3L …(5) (dis /dt)=(V3 −2V2 +V1 )/3L …(6) そこで、 V3 −V1 =α (DCリンク電圧と電源電圧の差) V1 −V2 =β (位相を進めた先の電圧差) とおくと、 (dir /dt)=(α−β)/3L …(7) (dis /dt)=(α+2β)/3L …(8) (dit /dt)=(2α+β)/3L …(9) 上記7式からb点ではβ>αであるようにスイッチング
素子SW2をオンすることにより電流ir を減少させる
ことができる。R相電流ir から減少した電流は上記8
式によりS相の電流is の増加分に含まれる。この操作
によってR相電流ir からS相電流is に電流を切換え
ることができる。この際の電源端子電圧R2,S2に与
える歪みは(R2+S2)/2である。
V3−L (dir / dt) −V1−L (dit / dt) = 0 (1) V3−L (dis / dt) −V2−L (dit / dt) = 0 (2) ( dir / dt) + (dis / dt) = (dit / dt) (3) From the above formulas 1 to 3, (dit / dt) = (2V3-V1-V2) / 3L (4) (dir / dt) ) = (V3-2V1 + V2) / 3L ... (5) (dis / dt) = (V3-2V2 + V1) / 3L ... (6) Then, V3-V1 = .alpha. (Difference between DC link voltage and power supply voltage) V1 Assuming that -V2 = β (voltage difference after advancing the phase), (dir / dt) = (α-β) / 3L (7) (dis / dt) = (α + 2β) / 3L (8) (Dit / dt) = (2α + β) / 3L (9) From the above equation 7, the switching element SW2 is turned on so that β> α at the point b. By doing so, the current ir can be reduced. The current reduced from the R-phase current ir is 8 above.
According to the formula, it is included in the increment of the S-phase current is. By this operation, the current can be switched from the R-phase current ir to the S-phase current is. The distortion applied to the power supply terminal voltages R2 and S2 at this time is (R2 + S2) / 2.

【0017】また、図3のb点に対応する従来の方法に
おける図4のa点において、R相に流れる電流変化をみ
ると、端子R2とT2が短絡された形となるものである
から、 −L(dir /dt)−V1 −L(dit /dt)=0 …(10) ir =it であるから、 (dir /dt)=−V1 /2L …(11) 5式と11式の値は負の値であるからその絶対値の大き
さを比較すると、 |5式|−|11式|=|(V3 −2V1 +V2 )/3L|−|−V1 /2L| ={(−V3 +2V1 −V2 )/3L}−(V1 /2L) =(V1 −2V3 −2V2 )/6L …(12) 12式より(|5式|−|11式|)<0であることが
分かる。このことは、5式の方が絶対値が小さい、すな
わち本発明の方が電流変化は小さいことを示し、それに
より電流切替の際に電源に与える電圧の歪みがより小さ
いことを示している。
At the point a in FIG. 4 in the conventional method corresponding to the point b in FIG. 3, the change in the current flowing in the R phase is such that the terminals R2 and T2 are short-circuited. -L (dir / dt) -V1 -L (dir / dt) = 0 (10) Since ir = it, (dir / dt) =-V1 / 2L (11) Values of equations (5) and (11) Is a negative value, the magnitudes of the absolute values are compared. | 5 ||-| 11 || = | (V3 -2V1 + V2) / 3L |-| -V1 / 2L | = {(-V3 + 2V1 -V2) / 3L}-(V1 / 2L) = (V1-2V3-2V2) / 6L (12) From equation 12, it is understood that (| 5 equation |-| 11 equation |) <0. This means that Equation 5 has a smaller absolute value, that is, the current change is smaller in the present invention, and thus the distortion of the voltage applied to the power supply at the time of current switching is smaller.

【0018】以上のように、本発明では、回生電流の電
源各相への帰還を切り替えるときに、電流変化(電流の
傾き)を小さく抑え、電源電圧に対する歪みを減少させ
ることができるものである。なお、上記実施例では、次
にオンさせるスイッチング素子のオンのタイミングを早
め、オフさせるスイッチング素子と共にオンになる区間
を設けるようにしたが、逆にオフするスイッチング素子
のオフのタイミングを遅くし、次にオンするスイッチン
グ素子と共にオンする区間を設けるようにしてもよい。
例えば図3のb点の位置で説明すると、本実施例では、
R相の電圧が1番高い状態からS相の電圧が1番高くな
る状態に移る時にスイッチング素子SW1をオフにし、
それよりも前にスイッチング素子SW2をオンにして、
2つのスイッチング素子SW1,SW2が共にオンにな
る区間を設けているが、スイッチング素子SW1オフす
るタイミングをS相の電圧が1番高くなる状態のS−T
区間の領域まで僅か延長させてオフにし、スイッチング
素子SW2は1番電圧が高くなる相がR相からS相に変
化した時点でオンにしてスイッチング素子SW1,SW
2が共にオンとなる区間を形成するようにしてもよい。
As described above, according to the present invention, when the feedback of the regenerative current to each phase of the power source is switched, the change in current (gradient of current) can be suppressed to be small and the distortion with respect to the power source voltage can be reduced. . In the above embodiment, the on timing of the switching element to be turned on next is advanced, and the interval to be turned on together with the switching element to be turned off is provided, but on the contrary, the off timing of the switching element to be turned off is delayed, You may make it provide the area which turns on with the switching element which turns on next.
For example, to explain at the position of point b in FIG. 3, in this embodiment,
When the R-phase voltage is the highest and the S-phase voltage is the highest, the switching element SW1 is turned off.
Before that, turn on the switching element SW2,
Although a section is provided in which both the two switching elements SW1 and SW2 are turned on, the timing when the switching element SW1 is turned off is S-T when the voltage of the S phase is the highest.
The switching element SW2 is slightly extended to the region of the section and turned off, and the switching element SW2 is turned on when the phase in which the first voltage becomes high changes from the R phase to the S phase.
You may make it form the area where 2 is turned on together.

【0019】[0019]

【発明の効果】本発明は、回生電流が帰還する電源の相
を切り替えるときに、電流変化(電流の傾き)を小さく
抑え、電源電圧に対する歪みを減少させるから、当該電
源に接続された他の電気機器に電源電圧の歪みによる影
響を小さくし、これら他の電気機器の誤動作等を少なく
することができる。
According to the present invention, when the phase of the power source to which the regenerative current is fed back is switched, the change in current (gradient of current) is suppressed to be small and distortion with respect to the power source voltage is reduced. It is possible to reduce the influence of the distortion of the power supply voltage on the electric device and reduce malfunctions of these other electric devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を適用するモータ駆動用イン
バータ装置等における電源回生動作に関係する手段の要
部を示す図である。
FIG. 1 is a diagram showing a main part of means relating to a power regeneration operation in a motor drive inverter device or the like to which an embodiment of the present invention is applied.

【図2】本発明の一実施例における電源回生動作時の回
生電流帰還制御方法の説明図である。
FIG. 2 is an explanatory diagram of a regenerative current feedback control method at the time of power source regenerative operation in one embodiment of the present invention.

【図3】同一実施例におけるスイッチング素子のオン/
オフ切り替わり時の電流の流れを解析する説明図であ
る。
FIG. 3 is a diagram showing an example of switching on / off of a switching element in the same embodiment.
It is explanatory drawing which analyzes the flow of the electric current at the time of OFF switching.

【図4】従来の電源回生動作時の回生電流帰還制御方法
の説明図である。
FIG. 4 is an explanatory diagram of a conventional regenerative current feedback control method at the time of power regeneration operation.

【符号の説明】[Explanation of symbols]

1 ACリアクトルおよび浮遊インダクタンスを含むイ
ンダクタンス SW1〜SW6 スイッチング素子 C DCリンクコンデンサ R 電源R相 S 電源S相 T 電源T相
1 Inductance including AC reactor and stray inductance SW1 to SW6 Switching element C DC link capacitor R Power supply R phase S Power supply S phase T Power supply T phase

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電源回生動作時の回生電流帰還制御方法
において、回生電流を流す電源の相を切り替える際に、
設定所定区間、今まで回生電流を流した相と次に流す相
とに重複させて同時に流させることを特徴とする回生電
流帰還制御方法。
1. In a regenerative current feedback control method at the time of regenerative operation of a power supply, when switching a phase of a power supply for supplying a regenerative current,
A regenerative current feedback control method, characterized in that a phase in which a regenerative current has flown so far and a phase in which a regenerative current has flowed so far are overlapped and flowed at the same time in a set predetermined section.
【請求項2】 電源回生動作時にスイッチング素子をオ
ン/オフさせて回生電流を流す電源の相を選択する回生
電流帰還制御方法において、スイッチング素子をオフに
して選択された相への回生電流の流れを遮断し、次の相
へ回生電流を流すためのスイッチング素子をオンにする
スイッチング素子の切り替え時に、設定所定区間両スイ
ッチング素子が共にオンになるようにスイッチング素子
オン/オフを制御する回生電流帰還制御方法。
2. A regenerative current feedback control method for selecting a phase of a power source for flowing a regenerative current by turning on / off a switching element during a power regeneration operation, and turning off the switching element to flow the regenerative current to the selected phase. To turn on the switching element for flowing the regenerative current to the next phase. When switching the switching element, the regenerative current feedback that controls both on and off of the switching element so that both switching elements are turned on for a preset period. Control method.
JP5132504A 1993-05-11 1993-05-11 Control method for regenerative current feedback Pending JPH06327291A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5132504A JPH06327291A (en) 1993-05-11 1993-05-11 Control method for regenerative current feedback
PCT/JP1994/000750 WO1994027358A1 (en) 1993-05-11 1994-05-09 Method for controlling feedback for regenerated current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132504A JPH06327291A (en) 1993-05-11 1993-05-11 Control method for regenerative current feedback

Publications (1)

Publication Number Publication Date
JPH06327291A true JPH06327291A (en) 1994-11-25

Family

ID=15082911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132504A Pending JPH06327291A (en) 1993-05-11 1993-05-11 Control method for regenerative current feedback

Country Status (2)

Country Link
JP (1) JPH06327291A (en)
WO (1) WO1994027358A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1467475A2 (en) * 2003-04-11 2004-10-13 Vacon Oyj Control of the mains bridge of a frequency converter
US7248489B2 (en) 2004-06-17 2007-07-24 Vacon Oyj Control of the mains bridge of a frequency converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084786A (en) * 1999-01-29 2000-07-04 Hamilton Sundstrand Corporation Converter system with power factor and DC ripple control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104481A (en) * 1985-10-31 1987-05-14 Yaskawa Electric Mfg Co Ltd Driving system for dc power source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1467475A2 (en) * 2003-04-11 2004-10-13 Vacon Oyj Control of the mains bridge of a frequency converter
US7102333B2 (en) 2003-04-11 2006-09-05 Vacon Oyj Control of the mains bridge of a frequency converter to regenerate energy from the motor to the supply
EP1467475A3 (en) * 2003-04-11 2007-01-03 Vacon Oyj Control of the mains bridge of a frequency converter
US7248489B2 (en) 2004-06-17 2007-07-24 Vacon Oyj Control of the mains bridge of a frequency converter

Also Published As

Publication number Publication date
WO1994027358A1 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US6459606B1 (en) Control system and method for four-quadrant switches in three-phase PWM AC voltage regulators
US8816625B2 (en) Integrated regenerative AC drive with solid state precharging
JP2016144255A (en) Semiconductor switching element driving device
JPWO2015056571A1 (en) Power conversion device and power conversion method
JPH04138068A (en) Driving circuit for inverter
JP2002142458A (en) Rectification circuit and its control method
JP3025715B2 (en) Inverter circuit
JP7099199B2 (en) Drive circuit of the switch to be driven
US4327314A (en) Inverter system for driving synchronous motor
JPH06327291A (en) Control method for regenerative current feedback
US4019117A (en) Circuit arrangement for an inverter
JPH0767320A (en) Driving circuit for power element
JP6705234B2 (en) Inverter control method
JPH07111784A (en) Power conversion system
JP3391095B2 (en) Power converter control method
US4247887A (en) AC--AC Converter device
US4597039A (en) Switched capacitor induction motor drive
JP2534704B2 (en) Switching control device
JP4556512B2 (en) Active converter and control method thereof
JP4037284B2 (en) Static reactive power compensator
JPH03280619A (en) Power element driving circuit
JP3246584B2 (en) AC / DC converter
JPH0698560A (en) Inverter apparatus
JPH04275022A (en) Method of starting dc power supply system
JP3144124B2 (en) Inverter device