JPH06275284A - Solid polymer electrolyte film type fuel cell - Google Patents

Solid polymer electrolyte film type fuel cell

Info

Publication number
JPH06275284A
JPH06275284A JP5064885A JP6488593A JPH06275284A JP H06275284 A JPH06275284 A JP H06275284A JP 5064885 A JP5064885 A JP 5064885A JP 6488593 A JP6488593 A JP 6488593A JP H06275284 A JPH06275284 A JP H06275284A
Authority
JP
Japan
Prior art keywords
water
electrode
hydrogen
air
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5064885A
Other languages
Japanese (ja)
Inventor
Hiroshi Makihara
洋 牧原
Kazuto Kobayashi
一登 小林
Hiroyuki Ozora
弘幸 大空
Yoshiyuki Takeuchi
竹内  善幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5064885A priority Critical patent/JPH06275284A/en
Publication of JPH06275284A publication Critical patent/JPH06275284A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide effective and new methods for the humidifying method of the fuel hydrogen on a hydrogen electrode side for wetting an electrolyte film and the discharging method of water on an air electrode (or oxygen electrode) side. CONSTITUTION:In a fuel cell arranged with a solid polymer electrode film 2, a gas separator constituting element 1B kept in contact with a hydrogen electrode (anode) side is made of a conductive, water-repellent, porous body or a conductive, hydrophilic, porous body. A gas separator constituting element 1A kept in contact with an air electrode or an oxygen electrode (cathode) side is made of a conductive solid body, a cooling water passage 6 is formed in a gas separator 1, the water transportation characteristic (capillary action) of the porous body is utilized to feed water to the hydrogen electrode, and water is discharged from the air electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質膜を
用いる固定高分子電解質膜型燃料電池に関し、当該電解
質膜を湿潤化するために、必要な水素極側における燃料
水素の加湿方法および空気極(又は酸素極)側における
水の排出を効率よくするように工夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixed polymer electrolyte membrane fuel cell using a solid polymer electrolyte membrane, and a method for humidifying fuel hydrogen on the hydrogen electrode side necessary for wetting the electrolyte membrane. This is a device designed to efficiently discharge water on the air electrode (or oxygen electrode) side.

【0002】[0002]

【従来の技術】従来の固体高分子電解質膜を有する燃料
電池においては、固体高分子電解質膜をカチオン交換膜
としており、飽和状態まで含水することで最大のプロト
ン導電性を示すことが知られている。すなわち、当該電
解質膜としては、例えばスルホン酸基を有するポリスチ
レン系の陽イオン交換膜、フロロカーボンスルホン酸と
ポリビニリデンフロライドとを混合した膜、パーフロロ
カーボンスルホン酸膜などが知られているが、これらの
電解質膜はその分子構造中にプロトン交換基があり、飽
和状態までに水を湿潤させることによって、良好なプロ
トン導電性(常温において比抵抗が略20Ω・cm以下)
を示し、電解質膜として作用する。
2. Description of the Related Art In a conventional fuel cell having a solid polymer electrolyte membrane, the solid polymer electrolyte membrane is used as a cation exchange membrane, and it is known that it exhibits maximum proton conductivity when it is saturated with water. There is. That is, as the electrolyte membrane, for example, a polystyrene cation exchange membrane having a sulfonic acid group, a membrane in which a fluorocarbon sulfonic acid and polyvinylidene fluoride are mixed, a perfluorocarbon sulfonic acid membrane, etc. are known. The electrolyte membrane has a proton exchange group in its molecular structure, and has good proton conductivity by moistening water until saturation (specific resistance at room temperature is approximately 20 Ω · cm or less).
And acts as an electrolyte membrane.

【0003】このための加湿方法として文献等に種々の
方式が提案されている。たとえば、燃料水素ガスに直接
液体状の水を添加する方式、燃料電池に燃料水素を供給
する前に、供給ラインに加湿器を設ける方式、セルに多
孔体材料を接触させ当該材料が保有する毛管作用(すな
わちウイック作用)を利用して水をセルに供給する方式
などがある。
Various methods have been proposed in the literature as a humidifying method for this purpose. For example, a method in which liquid water is directly added to fuel hydrogen gas, a method in which a humidifier is provided in a supply line before supplying fuel hydrogen to a fuel cell, a porous material is brought into contact with a cell, and a capillary held by the material is provided. There is a method of supplying water to the cell by utilizing the action (that is, wick action).

【0004】以下に、加湿方法として文献等に示されて
いる種々の方式の例を列挙する。
Listed below are examples of various methods shown in the literature as humidifying methods.

【0005】(タイプI) 直接水添加方式(US−Pa
t. No.3061658 ) 空気および燃料水素ガスにそれぞれ直接液体状の水を添
加する。
(Type I) Direct water addition method (US-Pa
t. No.3061658) Add liquid water directly to air and fuel hydrogen gas respectively.

【0006】(タイプII) 外部加湿器設置方式(E.A.
Ticianelli et al:J.Electrochem;Soc.,Vol.135.P.220
9(1988)参照) 燃料電池に空気および燃料水素を供給する前に、それぞ
れの供給ラインに加湿器を設けて、各ガスを加湿する。
(Type II) External humidifier installation method (EA
Ticianelli et al: J. Electrochem; Soc., Vol.135.P.220
9 (1988)) Before supplying air and fuel hydrogen to the fuel cell, each supply line is equipped with a humidifier to humidify each gas.

【0007】(タイプIII) 撥水性多孔質利用方式(特
開平4−95357号公報) 撥水性多孔質体に溝を凹状に設け、当該凹部を流水路と
し、上の開口部は直接セルに接触するようにして、水を
セルに供給する。
(Type III) Water-Repellent Porous Utilization Method (Japanese Patent Laid-Open No. 4-95357) A groove is provided in a water-repellent porous body in a concave shape, and the concave portion serves as a flowing water channel, and the upper opening directly contacts the cell. As described above, water is supplied to the cell.

【0008】この特開平4−95357号公報に示され
ている例を図3を参照して説明する。図3の燃料電池構
成例では、撥水性の多孔質基材5Cに刻まれた凹状の溝
を流水路5Bと為し、上の開口部を直接セルのアノード
4に接触するようにして水をセルに供給している。この
とき、アノードガス(水素含有ガス)はセパレータプレ
ート1の上部に刻まれたアノードガス通路1Aの中を流
れつつ、前記撥水性多孔質基材5Cの凸部内を上方向に
拡散してアノード4に到達し発電に寄与する。
An example shown in Japanese Patent Laid-Open No. 4-95357 will be described with reference to FIG. In the fuel cell configuration example of FIG. 3, a concave groove carved in the water repellent porous base material 5C is used as the flow channel 5B, and the upper opening is brought into direct contact with the anode 4 of the cell to generate water. Supplying to the cell. At this time, the anode gas (hydrogen-containing gas) flows in the anode gas passage 1A carved in the upper part of the separator plate 1 and diffuses upward in the convex portion of the water-repellent porous base material 5C to make the anode 4 Reach and contribute to power generation.

【0009】他方、図3の例では、カソードから水を排
出する方式は、つぎのようになっている。すなわち、中
実質の基材で構成されたセパレータプレート1に刻まれ
た状の溝をカソードガス(空気又は酸素含有ガス)の通
路1Bとなし、当該カソードガスに水蒸気を飽和させ
て、カソードガスと共にセル外に排出するようになって
いる。
On the other hand, in the example of FIG. 3, the method of discharging water from the cathode is as follows. That is, the grooves engraved in the separator plate 1 formed of a solid substrate are used as the passages 1B for the cathode gas (air or oxygen-containing gas), the cathode gas is saturated with water vapor, and the cathode gas together with the cathode gas is formed. It is designed to be discharged outside the cell.

【0010】(タイプIV) 親水性多孔質利用方式(特
開平1−309263号公報,特開平4−12462号
公報) (1)親水性多孔体の断面を凸凹状としたプレートを形
成し、当該プレートの凸部の先端をアノード部に接触さ
せ、また当該凹部の空間部は、水素の流路とし、当該プ
レートに水を供給することによって、電解質膜の湿潤状
態を保持する。一方、カソード部でも同様に断面が凸凹
状の親水性多孔体プレートを、次の凸凹面とカソード電
極面と接触させ、凹部の空間を空気の流路とし、凸部の
先端を通じて、電極部に生成する反応水を毛管作用によ
って電極部から除去しかつ凹部の中央部内表面まで輸
送、さらに当該内表面から前述の空気中に蒸発してセル
外に排出する。(特開平1−309263号公報参
照)。
(Type IV) Hydrophilic Porous Utilization Method (JP-A-1-309263, JP-A-4-12462) (1) Forming a plate in which the cross section of the hydrophilic porous body is uneven, The wet state of the electrolyte membrane is maintained by bringing the tip of the convex portion of the plate into contact with the anode portion, and the space of the concave portion serving as a hydrogen flow path, and supplying water to the plate. On the other hand, in the cathode part, similarly, a hydrophilic porous plate with an uneven cross section is brought into contact with the next uneven surface and the cathode electrode surface, and the space of the recess is used as an air flow path, and the electrode part is passed through the tip of the projection to the electrode part. The generated reaction water is removed from the electrode portion by a capillary action and is transported to the inner surface of the central portion of the recess, and further evaporated from the inner surface into the air and discharged out of the cell. (See Japanese Patent Laid-Open No. 1-309263).

【0011】(2)次に、特開平4−12462号公報
で提示されている例は、セルの外部に水の供給ポットお
よび水のトラップをそれぞれ設置し、親水性多孔質のプ
レートを用いて、前記の水供給ポットからアノード電極
への水の供給ならびにカソード電極から前記の水トラッ
プまでの反応生成水を排出する方式である。
(2) Next, in the example presented in Japanese Patent Laid-Open No. 12462/1992, a water supply pot and a water trap are installed outside the cell, and a hydrophilic porous plate is used. In this system, water is supplied from the water supply pot to the anode electrode and reaction product water from the cathode electrode to the water trap is discharged.

【0012】上述のように、固体高分子型燃料電池にお
ける水の管理方式には、種々の方法が提案されている
が、それぞれに一長一短があることを以下に述べる。
As described above, various methods have been proposed for managing water in the polymer electrolyte fuel cell, but it will be described below that each method has advantages and disadvantages.

【0013】タイプIは、電極部に直接水を添加するこ
とから、特に反応水が生成するカソード側において、水
の供給過剰となり、空気相(又は酸素ガス相)とカソー
ドとの間に水膜を形成し、酸素の拡散を妨害して性能が
低下すると共に、適当水量のコントロールが困難であ
る。
In the type I, since water is directly added to the electrode portion, the water is excessively supplied especially on the cathode side where reaction water is generated, and a water film is formed between the air phase (or oxygen gas phase) and the cathode. , Which impedes the diffusion of oxygen and reduces the performance, and it is difficult to control an appropriate amount of water.

【0014】タイプIIは、加湿器がセル外に別途必要で
あること、加湿水がセルに至る配管中で凝縮しないよう
配管の保温が必要であること、水蒸気の形態で加湿する
ため、これに要する熱的負担が大きいことなどが問題で
ある。
Type II requires a humidifier separately outside the cell, keeps the pipe warm so that the humidifying water does not condense in the pipe leading to the cell, and humidifies in the form of water vapor. The problem is that the required thermal load is large.

【0015】タイプIII は、アノード側のセパレータが
水供給用と水素供給用の2段構造となって複雑であるこ
と、またカソード側は特に工夫された点はなく、反応水
の排出を空気に同伴するのみであるから、水の排出性能
が不足することが懸念される。
Type III is complicated because the anode side separator has a two-stage structure for water supply and hydrogen supply, and the cathode side is not specially devised, and the reaction water is discharged to the air. Since they are only accompanied, it is feared that the water discharge performance will be insufficient.

【0016】タイプIVの(1)は、アノード側での水の
供給をポンプの水圧調整で制御するとしているが、負荷
に追従して過不足なく水の供給量を制御するのは困難で
あること、またカソード側での水の排出を空気に同伴す
るのみであるから、タイプIII と同様に特に高負荷時に
水の排出性能が不足することが考えられる。
In the type IV (1), the water supply on the anode side is controlled by adjusting the water pressure of the pump, but it is difficult to control the water supply amount without excess or deficiency by following the load. In addition, since the discharge of water on the cathode side is only accompanied by air, it is conceivable that the discharge performance of water will be insufficient especially under high load as in Type III.

【0017】[0017]

【発明が解決しようとする課題】前述したような従来技
術における水の供給過程と排出過程での問題点をまとめ
てみると、以下のようになる。
The problems in the water supply process and the water discharge process in the prior art as described above are summarized as follows.

【0018】まず、アノード側への水の供給過程におい
ては、以下〜の問題がある。 水の供給量がセル内で不均一となること。たとえば、
タイプIVの(2)の例でも供給ポットから、セルのアノ
ード電極部に至る距離が長いことから、水の供給量に分
布がつく。 セルの負荷に応じて、最適な水供給量をコントロール
することが困難であること。 水をスチームの形態で供給する時は熱経済性が不良と
なること、また水供給量の制御機器を高度化することで
設備費が高価になること。 特にタイプIII において、図3に示すように、流水路
5Bを流れる水が直接アノード4に接することから、燃
料水素の拡散を妨害する分だけ有効反応面積が減少する
こと。
First, there are the following problems in the process of supplying water to the anode side. The amount of water supply is not uniform in the cell. For example,
In the case of type IV (2) as well, since the distance from the supply pot to the anode electrode part of the cell is long, the water supply amount is distributed. It is difficult to control the optimal water supply according to the cell load. When supplying water in the form of steam, the thermo-economic efficiency will be poor, and the equipment cost will be high due to the sophisticated water supply control equipment. Particularly in the type III, as shown in FIG. 3, the water flowing in the flowing water channel 5B is in direct contact with the anode 4, so that the effective reaction area is reduced by the amount that interferes with the diffusion of fuel hydrogen.

【0019】次に、カソード側からの水の排出過程にお
いては、以下〜等の問題がある。 カソード側は特に工夫された点はなく、反応水の排出
を空気に同伴するのみであるから、特に高負荷時に水の
排出性能が不足することが懸念されること。 また、水の排出速度がカソードガス(空気)入口近
傍、セル中央部、空気出口近傍の順で小さくなるため、
電解質膜は空気入口近傍で乾き気味、空気出口近傍では
水没気味となり、セル全面が有効に発電に寄与できない
こと。 空気出口近傍においても、所定の発電密度に見合う水
の排出速度を得ようとすると、空気流量を増大させるこ
とが必要となるが、これは同時に空気利用率の低下空気
供給動力費の増大を招くこと。 セルの大型化に伴なって、益々反応水の排水能力に分
布が形成されるため、セルのスケールアップに限界があ
ること。
Next, in the process of discharging water from the cathode side, there are the following problems. On the cathode side, there is nothing specially devised, and since the discharge of the reaction water is simply entrained in the air, there is concern that the water discharge performance will be insufficient especially under high load. In addition, since the discharge speed of water decreases in the order of the vicinity of the cathode gas (air) inlet, the center of the cell, and the vicinity of the air outlet,
The electrolyte membrane tends to be dry near the air inlet and submerged near the air outlet, so that the entire surface of the cell cannot effectively contribute to power generation. Even in the vicinity of the air outlet, it is necessary to increase the air flow rate in order to obtain a water discharge rate that matches a predetermined power generation density, but this also causes a decrease in the air utilization rate and an increase in the air supply power cost. thing. There is a limit to the scale-up of the cell because the drainage capacity of the reaction water becomes more distributed as the cell gets larger.

【0020】本発明は、上述のような従来技術の欠点を
解消し、セルの発電密度に追従して適度な水の供給・排
出が可能な自己制御性を備え、直接に水を均一に供給で
き、また反応水を均一に排出できる固体電解質膜型燃料
電池を提供することを目的とする。
The present invention solves the above-mentioned drawbacks of the prior art, has self-controllability capable of appropriately supplying and discharging water by following the power generation density of the cell, and directly supplies water uniformly. It is an object of the present invention to provide a solid electrolyte membrane fuel cell that is capable of uniformly discharging reaction water.

【0021】[0021]

【課題を解決するための手段】前記目的を達成する本発
明に係る固体高分子電解質膜型燃料電池の構成は、固体
高分子電解質膜を用いる燃料電池において、水素極(ア
ノード)側に接触するガスセパレータが導電性の多孔質
体とすると共に、空気極又は酸素極(カソード)側に接
触するガスセパレータが導電性中実質体とし、かつ当該
セパレータの内部に冷却水の流路を形成したことを特徴
とする。
Means for Solving the Problems A solid polymer electrolyte membrane type fuel cell according to the present invention which achieves the above-mentioned object has a structure in which a fuel cell using a solid polymer electrolyte membrane is in contact with a hydrogen electrode (anode) side. The gas separator is a conductive porous body, the gas separator in contact with the air electrode or the oxygen electrode (cathode) side is a conductive intermediate substance, and a cooling water channel is formed inside the separator. Is characterized by.

【0022】また前記構成において、上記水素極(アノ
ード側)のガスセパレータが導電性の撥水性多孔質材を
用いることも好適である。
In the above structure, it is also preferable that the gas separator on the hydrogen electrode (anode side) uses a conductive water-repellent porous material.

【0023】また、前記構成において、上記水素極(ア
ノード側)のガスセパレータを導電性の親水性多孔質材
を用いることも好適である。
In the above structure, it is also preferable to use a conductive hydrophilic porous material for the gas separator on the hydrogen electrode (anode side).

【0024】すなわち、本発明においては、導電性のす
ぐれた撥水性多孔体が有する毛管作用(細孔へ水が浸入
しない作用)を利用して、又は、親水性多孔質体が有す
る毛管作用(ウィック作用)を利用して、アノード電極
への水の供給を行なうようにしたものである。また、冷
却面への水蒸気の凝縮作用を利用してカソード電極から
の反応水の排出を行なうようにしたものである。
That is, in the present invention, the capillary action (the action in which water does not penetrate into the pores) of the water repellent porous body having excellent conductivity is utilized, or the capillary action of the hydrophilic porous body ( Wick action) is used to supply water to the anode electrode. Further, the reaction water is discharged from the cathode electrode by utilizing the condensation action of water vapor on the cooling surface.

【0025】ここで、撥水性多孔体の細孔が水に濡れな
いため、細孔内に浸入できない作用を利用して、水を多
孔体壁で囲まれた空間に封じ込めることを考えた場合、
水が当該撥水性多孔体壁を抜け出さぬための多孔体の内
外面にかかる最大の差圧(封水圧)ΔPは、下記「数
1」のようになる。
Here, considering that water is contained in the space surrounded by the walls of the porous body by utilizing the effect that the pores of the water-repellent porous body are not wetted by water and cannot penetrate into the pores,
The maximum differential pressure (sealing pressure) ΔP applied to the inner and outer surfaces of the porous body for preventing water from escaping the water-repellent porous body wall is given by the following “Equation 1”.

【0026】[0026]

【数1】 [Equation 1]

【0027】[0027]

【作用】水素極(アノード)側に接触するガスセパレー
タ構成要素の基材として導電性の撥水性多孔質材(例え
ば、撥水性多孔質カーボン)を使用し、また空気極(カ
ソード)側に接触するガスセパレータ構成要素の基材と
して導電性中実質材を使用してガスセパレータを構成
し、さらに当該セパレータの内部に水の流路を形成する
ことにより、撥水性多孔質材が有する毛管作用を利用し
て液状水が当該水流路から漏洩するのを防止しつつ水の
蒸発、拡散によって水素極への水の供給を行なうと共
に、一方の空気極側は、上記ガスセパレータ内流路中の
水でガスセパレータを冷却しつつ、空気流路壁面上で水
分を凝縮させ、空気と共に当該凝縮水を連続的に排出す
る。
[Function] A conductive water-repellent porous material (for example, water-repellent porous carbon) is used as a base material of a gas separator component that contacts the hydrogen electrode (anode) side, and also contacts the air electrode (cathode) side. By forming a gas separator using a conductive solid substance as a base material of the gas separator component, and further forming a flow path of water inside the separator, the capillary action of the water-repellent porous material can be obtained. Liquid water is utilized to prevent water from leaking from the water channel, and water is supplied to the hydrogen electrode by evaporation and diffusion of water, and one air electrode side is water in the gas separator internal channel. While cooling the gas separator, the water is condensed on the wall surface of the air passage, and the condensed water is continuously discharged together with the air.

【0028】一例として、表面が完全な撥水性であり
(cos θ=−1.0)、rc =1μmとし、100℃に
おける、上記の封水圧を求めると、ΔP=−1.14at
m となる。すなわち、多孔体の内外圧力差を1.14at
m 以下にすれば、多孔体壁で囲まれた水は、外部に漏れ
出ることはないが、当該多孔体の内壁面部で水が蒸発
し、多孔体壁を拡散して外部に気相の水として出てくる
ことは可能である。この現象を利用して、アノードに加
湿することができる。
[0028] As an example, the surface is a complete water repellency (cos θ = -1.0), and r c = 1 [mu] m, at 100 ° C., when obtaining the above sealing pressure, ΔP = -1.14at
m. That is, the pressure difference between the inside and outside of the porous body is 1.14 at
If it is set to m or less, the water surrounded by the porous body wall does not leak to the outside, but the water evaporates on the inner wall surface of the porous body, diffuses through the porous body wall, and water in the vapor phase to the outside. It is possible to come out as. By utilizing this phenomenon, the anode can be humidified.

【0029】水源から輸送先であるアノードまでの拡散
距離は短かい方が良いのは当然である。このため当該多
孔体の内部に冷却水の流路を設け、冷却と同時に水の供
給を可能とした。
As a matter of course, it is preferable that the diffusion distance from the water source to the anode, which is the transportation destination, is short. For this reason, a flow path of cooling water is provided inside the porous body so that water can be supplied simultaneously with cooling.

【0030】また、カソード電極からの反応水の排出
は、空気もしくは酸素ガスの流路壁を上記冷却水で冷や
すようにし、当該冷却壁面上に水蒸気の凝縮が起るよう
にすることで、連続的に反応水を凝縮相で空気もしくは
酸素と共にセル外に排出する。
Further, the reaction water is discharged from the cathode electrode continuously by cooling the flow path wall of air or oxygen gas with the cooling water and causing condensation of water vapor on the cooling wall surface. The reaction water is discharged out of the cell together with air or oxygen in the condensed phase.

【0031】一方、アノード側に接触するガスセパレー
タ構成要素の基材として導電性のすぐれた親水性多孔体
(たとえば、親水性多孔質カーボン)が有する毛管作用
(ウィック作用)を利用した場合には、アノード電極へ
の水の供給、カソード電極からの反応水の排出を行なう
ことができる。すなわち、多孔体の細孔が水で濡れて細
孔内に充満する場合に、当該水が多孔体を抜け出さない
ための、多孔体の両端にかかる最大の差圧ΔP(保水
圧)は上記「数1」のようになる。
On the other hand, when the capillary action (wick action) of a highly conductive hydrophilic porous body (eg, hydrophilic porous carbon) is used as the base material of the gas separator component that contacts the anode side, It is possible to supply water to the anode electrode and discharge reaction water from the cathode electrode. That is, when the pores of the porous body are wet with water and fill the inside of the pores, the maximum differential pressure ΔP (water retention pressure) applied to both ends of the porous body for preventing the water from escaping the porous body is the above “ It becomes like "number 1."

【0032】また、他の一例として、表面が良く濡れる
とし(cosθ≒1.0)、rc =1μmとし、100
℃における、上記の保水圧を求めてみると、ΔP=1.
14atmとなる。すなわち、細孔径1μmの親水性多
孔体は、一端が水中に接触しているときは、その毛管作
用でヘッド差1.14atmの所までは、当該多孔体の
他端まで水を輸送できる能力を有することになる。ただ
し、水源から輸送先までの距離は短かい方が良いのは、
当然である。このため当該多孔体の内部に冷却水の流路
を設け、冷却と同時に水の供給を可能としたものであ
る。また、カソード電極からの反応水の排出は、空気も
しくは酸素ガスの流路壁を上記冷却水で冷やすように
し、当該冷却壁面上に水蒸気の凝縮が起るようにするこ
とで連続的に反応水を凝縮相で空気もしくは酸素と共に
セル外に排出する。
As another example, if the surface is well wetted (cos θ≈1.0), r c = 1 μm, and 100
Obtaining the above water retention pressure at ℃, ΔP = 1.
It will be 14 atm. That is, when one end is in contact with water, the hydrophilic porous body having a pore diameter of 1 μm has the ability to transport water to the other end of the porous body up to a head difference of 1.14 atm by its capillary action. Will have. However, it is better that the distance from the water source to the destination is shorter,
Of course. Therefore, a cooling water flow path is provided inside the porous body so that water can be supplied simultaneously with cooling. Further, the reaction water is discharged from the cathode electrode by continuously cooling the air or oxygen gas flow channel wall with the cooling water and causing condensation of water vapor on the cooling wall surface. Are discharged together with air or oxygen in the condensed phase from the cell.

【0033】[0033]

【実施例】本発明の実施態様を示す図1および図2を用
いて説明する。図1,2において、中央部の2は固体高
分子電解質膜であり、当該膜の左側には、反応層4Aと
拡散層3Aから成る水素側電極が接合され、当該膜の右
側も同様に反応層4Bと拡散層3Bから成る空気側電極
が接合されている。次に、これらの両電極の外側には、
いわゆるガスセパレータというデバイス1を、前記の両
電極に接触して配置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. In FIGS. 1 and 2, the central part 2 is a solid polymer electrolyte membrane, the hydrogen side electrode consisting of the reaction layer 4A and the diffusion layer 3A is joined to the left side of the membrane, and the right side of the membrane also undergoes the reaction. The air side electrode composed of the layer 4B and the diffusion layer 3B is joined. Then, outside of both of these electrodes,
A device 1, which is a so-called gas separator, is placed in contact with both electrodes.

【0034】図1において、ガスセパレータ1は、導電
性の中実質材料で作られた空気極側構成要素1Aと、導
電性を有する撥水性多孔質材料又は導電性を有する親水
性多孔質材料で作られた水素極側構成要素1Bとを、導
電性の接合層5を介して合体することで構成し、当該セ
パレータ1の中央部空間は、水の流路6となし、また当
該セパレータの右側凸部9Aは水素極側の拡散層3Aに
接触させ、同様に左側凸部9Bは、空気極側の拡散層3
Bに接触させることによってセパレータ1と前記セルと
の間に形成される空間7および8を、それぞれ水素の流
路7、空気(又は酸素)の流路8となす。
In FIG. 1, the gas separator 1 is composed of an air electrode side constituent element 1A made of a conductive solid material and a water repellent porous material having conductivity or a hydrophilic porous material having conductivity. The produced hydrogen electrode side constituent element 1B is configured by being united via a conductive bonding layer 5, the central space of the separator 1 serves as a water flow path 6, and the right side of the separator. The convex portion 9A is brought into contact with the hydrogen electrode side diffusion layer 3A, and similarly, the left convex portion 9B is arranged on the air electrode side diffusion layer 3A.
The spaces 7 and 8 formed between the separator 1 and the cells by bringing them into contact with B form a hydrogen flow path 7 and an air (or oxygen) flow path 8, respectively.

【0035】図1において、所定温度の冷却水を前記の
水の流路6に流すと、水は撥水性多孔体であるガスセパ
レータ構成要素1Bの毛管作用によって水の流路6の内
部に封じ込められたまま当該セパレータ構成要素1Bの
内表面上で蒸発し、水蒸気として多孔体壁1Bの右側に
拡散して、その一部は流路7を流通している水素に合流
したのち、また残りの部分は直接に、拡散層3Aに続い
て反応層4Aを経由して流動・拡散し、前述の固体高分
子電解質膜2の左面に到達、当該電解質膜2を湿潤状態
に保つ。セルが発電状態にあるときは、水素は当該反応
層4Aの触媒作用で解離したのち、プロトン状態
(H+ )で当該電解質膜2の中を前述の水を配位して移
動し、右側の空気極側反応層4Bに到達、ここで外部電
気回路を通じて流入する電子(e- )、ならびに空気
(又は酸素)の流路8から拡散によって流入してくる酸
素(O2 )と反応することによって水を生成する。
In FIG. 1, when cooling water having a predetermined temperature is flowed through the water passage 6, the water is confined inside the water passage 6 by the capillary action of the gas separator component 1B which is a water repellent porous body. As it is, it evaporates on the inner surface of the separator component 1B, diffuses as water vapor to the right side of the porous body wall 1B, and a part thereof joins the hydrogen flowing in the flow path 7, and then the remaining The portion directly flows and diffuses through the diffusion layer 3A and then the reaction layer 4A, reaches the left surface of the solid polymer electrolyte membrane 2 described above, and keeps the electrolyte membrane 2 in a wet state. When the cell is in a power generation state, hydrogen is dissociated by the catalytic action of the reaction layer 4A, and then moves in the proton state (H + ) in the electrolyte membrane 2 by coordinating the water described above, By reaching the air electrode side reaction layer 4B, where it reacts with electrons (e ) flowing in through an external electric circuit and oxygen (O 2 ) flowing in by diffusion from the air (or oxygen) channel 8 Produces water.

【0036】すなわち、上述の電極部での反応をまとめ
ると、以下の「化1」に示すようになる。
That is, the reactions at the above-mentioned electrode portion are summarized as shown in the following "Chemical formula 1".

【0037】[0037]

【化1】・水素極側反応層4Aにおいて、 H2 → 2H+ +2e- ・空気極側反応層4Bにおいて、 2H+ +2e- +1/2O2 → H2 Embedded image In the hydrogen electrode side reaction layer 4A, H 2 → 2H + + 2e − In the air electrode side reaction layer 4B, 2H + + 2e + 1 / 2O 2 → H 2 O

【0038】上述の過程で生成した水と前述の電解質膜
中をプロトンと共に移動した透過水の一部が、空気極側
反応層4Bにとり込まれることになるが、連続的に発電
状態を継続するためには、これら反応生成水と透過水を
当該反応層4Bから排出してやる必要がある。
The water generated in the above process and part of the permeated water that has moved along with the protons in the electrolyte membrane are taken into the air electrode side reaction layer 4B, but the power generation state is continuously continued. In order to do so, it is necessary to discharge the reaction product water and the permeated water from the reaction layer 4B.

【0039】再び図1において、当該反応層4Bの内部
に存在する水は、右方向に拡散したのち、空気側拡散層
3Bを経由して、中実質電導体材料で作ったガスセパレ
ータ構成要素(空気極側)1Aの左側表面に到達する。
ここで、当該ガスセパレータ構成要素1Aは、その内部
流路6を流れる冷却水によって冷やされているため、そ
の左側表面では、水の凝縮が起り、凝縮水は空気と共に
混相でセル外に排出される。
Referring again to FIG. 1, the water present inside the reaction layer 4B diffuses to the right and then passes through the air-side diffusion layer 3B to form a gas separator component ( The left side surface of the air electrode side) 1A is reached.
Here, since the gas separator component 1A is cooled by the cooling water flowing through the internal flow path 6, water condenses on the left surface thereof, and the condensed water is discharged together with air out of the cell in a mixed phase. It

【0040】上述したような水の移動メカニズムによ
り、連続的かつ自己制御的に水の供給排出が可能となる
ため、安定したセルの発電状態を得ることができる。
Since the water movement mechanism as described above enables continuous and self-controlled water supply and discharge, a stable power generation state of the cell can be obtained.

【0041】次に、図1に示した例では、ガスセパレー
タ構成要素1Bに加湿用の水を供給するための水の流路
と、ガスセパレータ構成要素1Aを冷却するための水の
流路とを共通にしている、つまり加湿水と冷却水を区別
していない。しかしながら、空気極側の操作圧力と水素
極側の操作圧力に差をつけて運転する場合や、加湿水と
冷却水とを完全に区別して操作したい場合には、図1に
示した例は適切ではない。
Next, in the example shown in FIG. 1, a water passage for supplying humidifying water to the gas separator component 1B and a water passage for cooling the gas separator component 1A. Is common, that is, it does not distinguish between humidification water and cooling water. However, the example shown in FIG. 1 is appropriate when operating with a difference between the operating pressure on the air electrode side and the operating pressure on the hydrogen electrode side, or when it is desired to operate by completely distinguishing between humidifying water and cooling water. is not.

【0042】そこで、かかる場合にも適用可能な実施例
として、図2に示すように、ガスセパレータ構成要素1
Aと1Bの間に、流体が透過しない導電性の隔壁10を
介入させてガスセパレータ1を構成する方式を提案す
る。図2の例では、水の流路6Aと6Bに、それぞれ冷
却水を流すこととなる。
Therefore, as an embodiment applicable to such a case, as shown in FIG.
A method of constructing the gas separator 1 by interposing a conductive partition wall 10 that does not allow the fluid to permeate between A and 1B is proposed. In the example of FIG. 2, cooling water will flow through the water channels 6A and 6B, respectively.

【0043】[試験例]図1に示した本発明の実施態様
に基づく試験例を、表1,表2に示す。
[Test Example] Tables 1 and 2 show test examples based on the embodiment of the present invention shown in FIG.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】表1,2の例は、水素の利用率を約80
%、空気の利用率を約25%となるように、それぞれの
供給量を設定してセルの発電性能を測定したもので、ほ
ぼ狙い通りの発電性能が確認されていることから、本発
明で提案した水の供給・排出法が有効であることが判っ
た。
In the examples of Tables 1 and 2, the utilization rate of hydrogen is about 80.
%, The power generation performance of the cell was measured by setting the respective supply amounts so that the air utilization rate was about 25%, and the power generation performance almost as intended was confirmed. We have found that the proposed water supply and discharge method is effective.

【0047】[0047]

【発明の効果】本発明は、導電性を有する撥水性多孔質
材、又は導電性多孔質材を有する親水性多孔質材を水素
極側セパレータ材料とし、また導電性を有する中実質材
を空気極側セパレータ材料としてガスセパレータを構成
し、当該セパレータの内部に冷却水用の流路を設けるこ
とによって、水素極(アノード)側での加湿、また空気
極(カソード)側からの水の排出を連続的かつ自動的に
実施でき、以下の効果を奏する。 (1)水素極側での加湿過程で、水素の流路にドレン
(水)が混在しないため、気液混相とならず、均一な水
素ガスの分配が可能である。 (2)空気極側では、冷却水で冷却した壁面を有する空
気流路とすることで、当該冷壁面上で水分を凝縮させて
空気と共にセル外に連続的に排出することが可能であ
る。すなわち空気に水の飽和蒸気を同搬するよりも、遙
かに多量の水分を排出できる。 (3)さらに、両極側とも雰囲気は水の飽和蒸気で充満
されているため、電解質膜が常に湿潤状態に保たれるた
め、セルの発電能力が十分に発揮できる。
INDUSTRIAL APPLICABILITY The present invention uses a water-repellent porous material having conductivity or a hydrophilic porous material having a conductive porous material as a hydrogen electrode side separator material, and a conductive solid material as an air By configuring a gas separator as the electrode side separator material and providing a flow path for cooling water inside the separator, humidification on the hydrogen electrode (anode) side and discharge of water from the air electrode (cathode) side can be achieved. It can be carried out continuously and automatically and has the following effects. (1) Since the drain (water) is not mixed in the hydrogen flow path during the humidification process on the hydrogen electrode side, a gas-liquid mixed phase does not occur, and uniform hydrogen gas distribution is possible. (2) On the air electrode side, an air flow path having a wall surface cooled by cooling water can be used to condense moisture on the cold wall surface and continuously discharge the water together with air to the outside of the cell. That is, much more water can be discharged than when carrying saturated steam of water in the air. (3) Furthermore, since the atmosphere is filled with saturated steam of water on both electrode sides, the electrolyte membrane is always kept in a wet state, so that the power generation capacity of the cell can be sufficiently exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る固体高分子電解質膜
型燃料電池の構成図である。
FIG. 1 is a configuration diagram of a solid polymer electrolyte membrane fuel cell according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る燃料電池の構成図で
ある。
FIG. 2 is a configuration diagram of a fuel cell according to a second embodiment of the present invention.

【図3】従来の燃料電池の構成を示す図である。FIG. 3 is a diagram showing a configuration of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1 ガスセパレータ 1A ガスセパレータ構成要素(空気極側) 1B ガスセパレータ構成要素(水素極側) 2 固体高分子電解質膜 3A 水素極側拡散層(アノード側拡散層) 3B 空気極側拡散層(カソード側拡散層) 4A 水素極側反応層(アノード触媒層) 4B 空気極側反応層(カソード触媒層) 5 導電性接合層 6,6A,6B 水の流路 7 水素の流路 8 空気(又は酸素)の流路 9A 水素極側凸部(アノード側凸部) 9B 空気極側凸部(カソード側凸部) 10 導電性の隔壁 DESCRIPTION OF SYMBOLS 1 gas separator 1A gas separator constituent element (air electrode side) 1B gas separator constituent element (hydrogen electrode side) 2 solid polymer electrolyte membrane 3A hydrogen electrode side diffusion layer (anode side diffusion layer) 3B air electrode side diffusion layer (cathode side) Diffusion layer 4A Hydrogen electrode side reaction layer (anode catalyst layer) 4B Air electrode side reaction layer (cathode catalyst layer) 5 Conductive bonding layer 6, 6A, 6B Water flow path 7 Hydrogen flow path 8 Air (or oxygen) Flow passage 9A Hydrogen electrode side convex portion (anode side convex portion) 9B Air electrode side convex portion (cathode side convex portion) 10 Conductive partition wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 善幸 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiyuki Takeuchi 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を用いる燃料電池に
おいて、 水素極(アノード)側に接触するガスセパレータが導電
性の多孔質体とすると共に、空気極又は酸素極(カソー
ド)側に接触するガスセパレータが導電性中実質体と
し、かつ当該セパレータの内部に冷却水の流路を形成し
たことを特徴とする固体高分子電解質膜型燃料電池。
1. In a fuel cell using a solid polymer electrolyte membrane, the gas separator contacting the hydrogen electrode (anode) side is a conductive porous body, and the gas separator contacting the air electrode or oxygen electrode (cathode) side. A solid polymer electrolyte membrane fuel cell, characterized in that the gas separator is a conductive solid substance, and a flow path of cooling water is formed inside the separator.
【請求項2】 請求項1記載の固体高分子電解質膜型燃
料電池において、 上記水素極(アノード側)のガスセパレータが導電性の
撥水性多孔質材を用いてなることを特徴とする固体高分
子電解質膜型燃料電池。
2. The solid polymer electrolyte membrane fuel cell according to claim 1, wherein the gas separator on the hydrogen electrode (anode side) is made of a conductive water repellent porous material. Molecular electrolyte membrane fuel cell.
【請求項3】 請求項1記載の固体高分子電解質膜型燃
料電池において、 上記水素極(アノード側)のガスセパレータを導電性の
親水性多孔質材を用いてなることを特徴とする固体高分
子電解質膜型燃料電池。
3. The solid polymer electrolyte membrane fuel cell according to claim 1, wherein the hydrogen separator (anode side) gas separator is made of a conductive hydrophilic porous material. Molecular electrolyte membrane fuel cell.
JP5064885A 1993-03-24 1993-03-24 Solid polymer electrolyte film type fuel cell Withdrawn JPH06275284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5064885A JPH06275284A (en) 1993-03-24 1993-03-24 Solid polymer electrolyte film type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5064885A JPH06275284A (en) 1993-03-24 1993-03-24 Solid polymer electrolyte film type fuel cell

Publications (1)

Publication Number Publication Date
JPH06275284A true JPH06275284A (en) 1994-09-30

Family

ID=13271008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5064885A Withdrawn JPH06275284A (en) 1993-03-24 1993-03-24 Solid polymer electrolyte film type fuel cell

Country Status (1)

Country Link
JP (1) JPH06275284A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037920A1 (en) * 1995-05-25 1996-11-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method for its control
JPH10241709A (en) * 1997-02-28 1998-09-11 Aisin Takaoka Ltd Solid macromolecular film type fuel cell and separator for the same
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
WO1999060641A3 (en) * 1998-05-14 2000-08-10 Siemens Ag Fuel cell stack with liquid cooling and method for cooling a fuel cell stack
WO2001059865A1 (en) * 2000-02-08 2001-08-16 Honeywell International Inc. Wicking strands for a polymer electrolyte membrane fuel cell
JP2002528862A (en) * 1998-10-21 2002-09-03 インターナショナル フュエル セルズ,エルエルシー Fuel cell with seal between individual membrane assembly and plate assembly
WO2003003537A2 (en) * 2001-06-29 2003-01-09 Foamex, L.P. Capillarity structures for water and/or fuel management in fuel cells
EP1286404A2 (en) * 2001-08-21 2003-02-26 Kabushiki Kaisha Equos Research Fuel cell
JP2003508885A (en) * 1999-09-02 2003-03-04 インターナショナル フュエル セルズ,エルエルシー Porous carbon body with improved wettability to water
JP2003109648A (en) * 2001-09-28 2003-04-11 Honda Motor Co Ltd Fuel cell stack
WO2004004048A1 (en) * 2002-06-28 2004-01-08 Toyota Jidosha Kabushiki Kaisha Fuel battery
JP2005129431A (en) * 2003-10-27 2005-05-19 Toyota Motor Corp Fuel cell and gas separator for fuel cell
JP2005327655A (en) * 2004-05-17 2005-11-24 Nissan Motor Co Ltd Fuel cell system
JP2006004803A (en) * 2004-06-18 2006-01-05 Toyota Motor Corp Fuel cell
US6994932B2 (en) 2001-06-28 2006-02-07 Foamex L.P. Liquid fuel reservoir for fuel cells
DE10321916B4 (en) * 2002-05-17 2006-06-29 Honda Giken Kogyo K.K. Separator unit and fuel cell with separator unit
CN1300887C (en) * 2002-06-28 2007-02-14 丰田自动车株式会社 Fuel cell
JP2007048552A (en) * 2005-08-09 2007-02-22 Hitachi Ltd Fuel cell, fuel cell power source system, and electronic equipment using it
JP2007123123A (en) * 2005-10-28 2007-05-17 Toshiba Fuel Cell Power Systems Corp Solid polymer type fuel cell stack
US7291410B2 (en) 2002-09-18 2007-11-06 Kinkelaar Mark R Orientation independent liquid fuel reservoir
WO2007125751A1 (en) 2006-04-24 2007-11-08 Panasonic Corporation Mea member, and polyelectrolyte fuel cell
JP2008078147A (en) * 2007-10-22 2008-04-03 Honda Motor Co Ltd Attaching structure of cell voltage detecting terminal for fuel cell
KR100820448B1 (en) * 2006-10-17 2008-04-10 현대자동차주식회사 Capillary pumped loop heat pipe of proton exchange membrane fuel cell
JP2008535151A (en) * 2005-03-25 2008-08-28 ミシュラン ルシェルシェ エ テクニク ソシエテ アノニム Polymer membrane fuel cell
JP2008536287A (en) * 2005-04-15 2008-09-04 ユーティーシー パワー コーポレイション Water retention in a fuel cell stack for cooling and humidification during start-up below freezing
JP2009501421A (en) * 2005-07-15 2009-01-15 ユーティーシー パワー コーポレイション Single plate proton exchange membrane fuel cell
WO2011029512A1 (en) * 2009-09-09 2011-03-17 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Gas distributor for passively discharging water from the gas distributor channels of polymer electrolyte membrane fuel cells
KR101033885B1 (en) * 2008-12-05 2011-05-11 더 펜실바니아 스테이트 유니버시티 Separating Plate for preventing flooding in Fuel Cell
JP2011519466A (en) * 2008-04-23 2011-07-07 ユーティーシー パワー コーポレイション Separation plate configuration of fuel cell
JP2014099346A (en) * 2012-11-15 2014-05-29 Toshiba Fuel Cell Power Systems Corp Fuel cell stack and fuel cell system

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037920A1 (en) * 1995-05-25 1996-11-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method for its control
JPH10241709A (en) * 1997-02-28 1998-09-11 Aisin Takaoka Ltd Solid macromolecular film type fuel cell and separator for the same
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6630258B1 (en) 1998-04-30 2003-10-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Process for wetting at least one of the surfaces of an electrolyte in a fuel cell
WO1999060641A3 (en) * 1998-05-14 2000-08-10 Siemens Ag Fuel cell stack with liquid cooling and method for cooling a fuel cell stack
JP2002528862A (en) * 1998-10-21 2002-09-03 インターナショナル フュエル セルズ,エルエルシー Fuel cell with seal between individual membrane assembly and plate assembly
JP2003508885A (en) * 1999-09-02 2003-03-04 インターナショナル フュエル セルズ,エルエルシー Porous carbon body with improved wettability to water
US6555262B1 (en) 2000-02-08 2003-04-29 Hybrid Power Generation Systems, Llc Wicking strands for a polymer electrolyte membrane
WO2001059865A1 (en) * 2000-02-08 2001-08-16 Honeywell International Inc. Wicking strands for a polymer electrolyte membrane fuel cell
US6994932B2 (en) 2001-06-28 2006-02-07 Foamex L.P. Liquid fuel reservoir for fuel cells
KR20030003119A (en) * 2001-06-29 2003-01-09 포멕스 엘. 피. Wicking structures for water and/or fuel management in fuel cells
WO2003003537A3 (en) * 2001-06-29 2003-03-27 Foamex Lp Capillarity structures for water and/or fuel management in fuel cells
WO2003003537A2 (en) * 2001-06-29 2003-01-09 Foamex, L.P. Capillarity structures for water and/or fuel management in fuel cells
EP1286404A2 (en) * 2001-08-21 2003-02-26 Kabushiki Kaisha Equos Research Fuel cell
EP1286404A3 (en) * 2001-08-21 2006-11-15 Kabushiki Kaisha Equos Research Fuel cell
JP2003109648A (en) * 2001-09-28 2003-04-11 Honda Motor Co Ltd Fuel cell stack
DE10321916B4 (en) * 2002-05-17 2006-06-29 Honda Giken Kogyo K.K. Separator unit and fuel cell with separator unit
US7195837B2 (en) 2002-05-17 2007-03-27 Honda Giken Kogyo Kabushiki Kaisha Separator unit and fuel cell with separator unit
US7531266B2 (en) 2002-06-28 2009-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP4706167B2 (en) * 2002-06-28 2011-06-22 トヨタ自動車株式会社 Fuel cell
JP2004241367A (en) * 2002-06-28 2004-08-26 Toyota Motor Corp Fuel cell
WO2004004048A1 (en) * 2002-06-28 2004-01-08 Toyota Jidosha Kabushiki Kaisha Fuel battery
CN1300887C (en) * 2002-06-28 2007-02-14 丰田自动车株式会社 Fuel cell
US7291410B2 (en) 2002-09-18 2007-11-06 Kinkelaar Mark R Orientation independent liquid fuel reservoir
JP2005129431A (en) * 2003-10-27 2005-05-19 Toyota Motor Corp Fuel cell and gas separator for fuel cell
JP2005327655A (en) * 2004-05-17 2005-11-24 Nissan Motor Co Ltd Fuel cell system
JP4645063B2 (en) * 2004-05-17 2011-03-09 日産自動車株式会社 Fuel cell system
JP2006004803A (en) * 2004-06-18 2006-01-05 Toyota Motor Corp Fuel cell
JP2008535151A (en) * 2005-03-25 2008-08-28 ミシュラン ルシェルシェ エ テクニク ソシエテ アノニム Polymer membrane fuel cell
JP2008536287A (en) * 2005-04-15 2008-09-04 ユーティーシー パワー コーポレイション Water retention in a fuel cell stack for cooling and humidification during start-up below freezing
JP2009501421A (en) * 2005-07-15 2009-01-15 ユーティーシー パワー コーポレイション Single plate proton exchange membrane fuel cell
JP2007048552A (en) * 2005-08-09 2007-02-22 Hitachi Ltd Fuel cell, fuel cell power source system, and electronic equipment using it
US7803496B2 (en) 2005-08-09 2010-09-28 Hitachi, Ltd. Fuel cell, fuel cell power source system and electronic devices using the same
JP2007123123A (en) * 2005-10-28 2007-05-17 Toshiba Fuel Cell Power Systems Corp Solid polymer type fuel cell stack
WO2007125751A1 (en) 2006-04-24 2007-11-08 Panasonic Corporation Mea member, and polyelectrolyte fuel cell
KR100820448B1 (en) * 2006-10-17 2008-04-10 현대자동차주식회사 Capillary pumped loop heat pipe of proton exchange membrane fuel cell
JP2008078147A (en) * 2007-10-22 2008-04-03 Honda Motor Co Ltd Attaching structure of cell voltage detecting terminal for fuel cell
JP2011519466A (en) * 2008-04-23 2011-07-07 ユーティーシー パワー コーポレイション Separation plate configuration of fuel cell
US8507137B2 (en) 2008-04-23 2013-08-13 Utc Power Corporation Separator plate configuration for a fuel cell
KR101033885B1 (en) * 2008-12-05 2011-05-11 더 펜실바니아 스테이트 유니버시티 Separating Plate for preventing flooding in Fuel Cell
WO2011029512A1 (en) * 2009-09-09 2011-03-17 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung Gas distributor for passively discharging water from the gas distributor channels of polymer electrolyte membrane fuel cells
JP2014099346A (en) * 2012-11-15 2014-05-29 Toshiba Fuel Cell Power Systems Corp Fuel cell stack and fuel cell system

Similar Documents

Publication Publication Date Title
JPH06275284A (en) Solid polymer electrolyte film type fuel cell
JP4922933B2 (en) Fuel cell with electroosmotic pump
JPH06231793A (en) Solid high polymer electrolytic type fuel cell
US6779351B2 (en) Fuel cell systems with evaporative cooling and methods for humidifying and adjusting the temperature of the reactant streams
JP2000090954A (en) Fuel cell stack
JP2003505824A (en) Humidifier for fuel cell power equipment
US7820334B2 (en) Fuel cell and oxidant distribution plate for fuel cell
US20090053568A1 (en) Evaporative Cooling of Fuel Cells Employing Antifreeze Solution
JPH07320753A (en) Solid polymer electrolyte membrane type fuel cell
JPH06325780A (en) Fuel cell system
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JPH09283162A (en) Solid high molecular fuel cell
JP3106554B2 (en) Solid polymer electrolyte fuel cell and method for supplying water and gas contained in the membrane
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JP2001176529A (en) Solid high molecular fuel cell body and solid high molecular fuel cell power generating system
JPH0689730A (en) Fuel cell with high polymer solid electrolyte
US20040115500A1 (en) Polymer electrolyte fuel cell and power-generating system with polymer electrolyte fuel cells
JPH0668886A (en) Cell structure of solid polymer electrolytic fuel cell
JP2004529458A (en) Method for improving the moisture balance of a fuel cell
US20110003216A1 (en) Fuel cell and fuel cell system
US20060115696A1 (en) Hydrogen gas humidity control apparatus, fuel cell, hydrogen gas humidity controlling method, and humidity control method for fuel cell
JP2001185169A (en) Solid polymeric fuel cell
JP4177291B2 (en) Fuel cell system
JPH11111311A (en) Solid polymer type fuel cell
US7063907B2 (en) Passive water management system for a fuel cell power plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530