JPH06245532A - Pwm waveform control system of multiple inverter - Google Patents

Pwm waveform control system of multiple inverter

Info

Publication number
JPH06245532A
JPH06245532A JP50A JP3188793A JPH06245532A JP H06245532 A JPH06245532 A JP H06245532A JP 50 A JP50 A JP 50A JP 3188793 A JP3188793 A JP 3188793A JP H06245532 A JPH06245532 A JP H06245532A
Authority
JP
Japan
Prior art keywords
waveform
inverter
pulses
output voltage
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP50A
Other languages
Japanese (ja)
Other versions
JP3309468B2 (en
Inventor
Minoru Onabe
実 大辺
Tadashi Shibuya
忠士 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP03188793A priority Critical patent/JP3309468B2/en
Publication of JPH06245532A publication Critical patent/JPH06245532A/en
Application granted granted Critical
Publication of JP3309468B2 publication Critical patent/JP3309468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To provide the PWM waveform control system of multiple inverters, in which inverters and output transformers can have the same capacity and the same specifications. CONSTITUTION:(n) multiplexed (such as quintupled) rectangular waves are expanded in Fourier series, a phase angle theta, where each order of higher harmonic quantity reaches a desired value or less, is arithmetically operated, and the output voltage waveforms of (n) multiple inverters are computed on the basis of said theta respectively. The half period of a sine wave is divided into ten at every 18 deg., pulses P1-P10 having width equal to the area ratios of each segment are arranged at a center in the theta direction, and said pulses are superposed (subtracted) to the output voltage waveforms of each inverter computed every five waveforms (at the time of the multiple number of five of the inverter).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単相大容量電力変換装
置の多重構成と、高調波低減のためのPWM波形制御方
式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiplex structure of a single-phase large-capacity power converter and a PWM waveform control system for reducing harmonics.

【0002】[0002]

【従来の技術】大容量変換装置に使用される高耐圧、大
電流用の半導体素子としては、サイリスタやゲートター
ンオフサイリスタ(GTO)が用いられる。ここで自己
消弧形素子(GTO)を使用した単相大容量変換装置の
多重構成の一例を図6に示す。図6は5多重構成の装置
を示しており、1〜5はインバータ、6〜10は出力変
圧器、11は電解コンデンサである。
2. Description of the Related Art Thyristors and gate turn-off thyristors (GTOs) are used as semiconductor elements for high withstand voltage and large currents used in large capacity converters. Here, FIG. 6 shows an example of a multiple structure of a single-phase large-capacity conversion device using a self-turn-off device (GTO). FIG. 6 shows a device having a 5-multiplex structure, in which 1 to 5 are inverters, 6 to 10 are output transformers, and 11 is an electrolytic capacitor.

【0003】各インバータ出力電圧多重化後の電圧ベク
トルは図7のとおりである。また図8に出力電圧を可変
するためのPWM波形(3パルス制御の場合)を示す。
The voltage vector after the output voltage multiplexing of each inverter is as shown in FIG. Further, FIG. 8 shows a PWM waveform for varying the output voltage (in the case of 3-pulse control).

【0004】従来の制御方式によれば、各インバータは
図8のPWM波形で駆動される。高調波を低減するため
図7に示すようにインバータの位相角を0°、±20
°、±40°とずらし、また出力変圧器6〜10の2次
巻き線の巻き数比を1:0.742:0.742:0.
395:0.395とすることにより、15次までの高
調波を除去している。この方式に於ける発生高調波の次
数は18n±1(n=1,2,3…)、すなわち17、
19、35、37…次のみとなり、それ以外の高調波は
発生しないこととなる。
According to the conventional control method, each inverter is driven by the PWM waveform shown in FIG. In order to reduce harmonics, the phase angle of the inverter is 0 °, ± 20 as shown in FIG.
, ± 40 °, and the winding ratio of the secondary windings of the output transformers 6 to 10 is 1: 0.742: 0.742: 0.
By setting 395: 0.395, harmonics up to the 15th order are removed. The order of harmonics generated in this system is 18n ± 1 (n = 1, 2, 3 ...) That is, 17,
19, 35, 37 ... Only the next harmonics are generated, and no other harmonics are generated.

【0005】[0005]

【発明が解決しようとする課題】従来の多重方式は基本
的には前述したように各インバータの位相角を必要角度
ずらし、多重用出力変圧器の巻き数比を変えることによ
り、発生高調波の次数を特定高調波に限定する方式をと
っている。この場合各インバータの出力電圧は同一であ
り、したがって出力変圧器1次電圧は等しい。また2次
側出力電流は出力変圧器2次側を直接接続しているため
2次電流は同一である。2次電圧値が異なることから、
次のような問題点があった。
In the conventional multiplexing method, basically, as described above, the phase angle of each inverter is shifted by a required angle, and the winding ratio of the multiplexing output transformer is changed to generate the generated harmonics. It uses a method that limits the order to a specific harmonic. In this case, the output voltage of each inverter is the same, and therefore the output transformer primary voltage is the same. The secondary output current is the same because the secondary side of the output transformer is directly connected. Since the secondary voltage value is different,
There were the following problems.

【0006】(1)多重用出力変圧器容量は2次巻き線
電圧比に等しくなり、5多重の場合3種類のトランスが
必要となる。 (2)インバータ容量も3種類必要となる。 (3)インバータ容量を同一とした場合、その利用率が
悪くなる。したがって装置が大きくなる欠点を有する。 (4)数種類のトランス、インバータが必要なことか
ら、コストが高い、構成が難しい、体格が大きくなる等
の欠点がある。
(1) The capacity of the output transformer for multiplexing is equal to the secondary winding voltage ratio, and three types of transformers are required in the case of 5 multiplexing. (2) Three types of inverter capacity are also required. (3) If the inverter capacities are the same, the utilization rate becomes worse. Therefore, there is a drawback that the device becomes large. (4) Since several types of transformers and inverters are required, there are drawbacks such as high cost, difficulty in configuration, and increase in size.

【0007】本発明は上記の点に鑑みてなされたもので
その目的は、インバータおよび出力変圧器を同一容量、
同一仕様にすることができる多重インバータのPWM波
形制御方式を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to make an inverter and an output transformer have the same capacity,
An object of the present invention is to provide a PWM waveform control method for multiple inverters that can have the same specifications.

【0008】[0008]

【課題を解決するための手段および作用】本発明は、
(1)1周期のスイッチング回数を1回とした時の同一
波高値の矩形波をn多重とし、該波形が偶関数および奇
関数となるように構成してフーリェ級数展開を行い、各
次高調波量が所望の値以下となるような位相角θを演算
し、該θに基づいてn個の多重インバータの出力電圧波
形を各々算出し、正弦波の半周期を、各々が同一位相角
になるようn×(m−1)分割し(ただしmはPWM波
形のパルス数)、該分割された各区分の面積比に等しい
巾を有した複数のパルスを、前記分割された各区分のθ
方向中央に各々配置し、該パルスをn個おきに前記各イ
ンバータの出力電圧波形に重畳(減算)することを特徴
とし、(2)正弦波の半周期を、各々が同一位相角にな
るようn×(m−1)分割し(ただしmはPWM波形の
パルス数)、該分割された各区分の面積比に等しい巾を
有した複数のパルスを、前記各区分の面積を2等分する
θ方向位置に各々配置し、該パルスをn個おきに前記各
インバータの出力電圧波形に重畳(減算)することを特
徴とし、(3)正弦波の半周期を、各区分の面積が同一
となるようにθ方向にn×(m−1)分割し(ただしm
はPWM波形のパルス数)、同一高さ、同一巾を有する
複数のパルスを、前記分割された各区分のθ方向中央に
各々配置し、該パルスをn個おきに前記各インバータの
出力電圧波形に重畳(減算)することを特徴とし、
(4)正弦波の半周期を、各区分の面積が同一となるよ
うにθ方向にn×(m−1)分割し(ただしmはPWM
波形のパルス数)、同一高さ、同一巾を有する複数のパ
ルスを、前記各区分の面積を2等分するθ方向位置に各
々配置し、該パルスをn個おきに前記各インバータの出
力電圧波形に重畳(減算)することを特徴としている。
Means and Actions for Solving the Problems The present invention is
(1) A rectangular wave having the same crest value when the number of times of switching in one cycle is set to 1 is n-multiplexed, the waveform is configured as an even function and an odd function, and Fourier series expansion is performed to obtain each harmonic. The phase angle θ is calculated so that the wave amount becomes equal to or smaller than a desired value, and the output voltage waveforms of the n multiple inverters are calculated based on the θ, and the half cycle of the sine wave is set to the same phase angle. N × (m−1) (where m is the number of pulses of the PWM waveform) so that a plurality of pulses having a width equal to the area ratio of each of the divided sections are divided by θ of each of the divided sections.
Each of them is arranged at the center in the direction, and the pulse is superposed (subtracted) on the output voltage waveform of each inverter every n times. (2) Half cycle of the sine wave has the same phase angle. Divide n × (m−1) (where m is the number of pulses of the PWM waveform), and divide a plurality of pulses having a width equal to the area ratio of each divided section into two equal areas. Each of the pulses is arranged at a position in the θ direction, and the pulse is superimposed (subtracted) on the output voltage waveform of each inverter every n times, and (3) the half cycle of the sine wave is equal to the area of each section. N × (m−1) division in the θ direction so that
Is the number of pulses of the PWM waveform), a plurality of pulses having the same height and the same width are respectively arranged at the center of the divided sections in the θ direction, and the output voltage waveform of each of the inverters is every n pulses. Is characterized by superimposing (subtracting) on
(4) The half cycle of the sine wave is divided into n × (m−1) in the θ direction so that the areas of the sections are the same (where m is the PWM
The number of pulses of a waveform), a plurality of pulses having the same height and the same width are arranged at θ-direction positions that divide the area of each section into two equal parts, and the output voltage of each inverter is every n pulses. It is characterized by superimposing (subtracting) on the waveform.

【0009】[0009]

【実施例】以下図面を参照しながら請求項1、2に記載
の発明の実施例を説明する。本発明の制御方式は何多重
にも適用が可能であるが、ここでは5多重方式を例にと
って説明を行う。装置構成は図6と同一である。この方
式は出力変圧器の1次、2次巻き数比が同一という前提
条件で計算機で高調波が最小となるPWM制御方式を求
める手法を用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the invention described in claims 1 and 2 will be described below with reference to the drawings. Although the control method of the present invention can be applied to any number of multiplexes, the five multiplex method will be described as an example. The device configuration is the same as in FIG. This method uses a method of obtaining a PWM control method that minimizes harmonics in a computer under the precondition that the primary and secondary turns ratio of the output transformer is the same.

【0010】(1)まず最初に1周期のスイッチング回
数を1回(ON,OFFを360°中各1回ずつ)とし
た場合で5多重の波形を構成する。すると図1の如き波
形が考えられる。各1段の高さは同一(直流電圧の値)
となる。図1は偶関数であり、奇関数でもある波形であ
る。
(1) First, five multiplexed waveforms are formed when the number of times of switching in one cycle is once (on / off once in 360 °). Then, the waveform as shown in FIG. 1 can be considered. The height of each step is the same (value of DC voltage)
Becomes FIG. 1 shows a waveform that is an even function and an odd function.

【0011】次に図1の90°〜180°の部分を取り
出し、フーリェ級数展開を行う。すなわち横軸を0〜9
0°にとり直し、各頂点のx,θ座標を図2のように
し、第n次高調波成分を算出する。第n次高調波成分は
次式となる。
Next, the 90 ° to 180 ° portion in FIG. 1 is taken out and subjected to Fourier series expansion. That is, the horizontal axis is 0-9
The angle is reset to 0 °, the x and θ coordinates of each vertex are set as shown in FIG. 2, and the nth harmonic component is calculated. The nth harmonic component is given by the following equation.

【0012】 en=(4/nπ){sin(nθ1)+sin(nθ2)+sin(nθ3) +sin(nθ4)+sin(nθ5)}……(1) θ1〜θ5を0〜90°の間で変え、各次高調波が所望す
る値以下の値となるθ1〜θ5を計算機で算出する。その
結果各インバータの出力電圧波形は図3のようになる。
すなわち第1のインバータINV1は−θ5〜θ1が+側
出力波形、180−θ5〜180+θ1が−側出力波形と
なる。同様にINV2〜INV5も図3に示す通流巾の
電圧波形を出力することとなる。
En = (4 / nπ) {sin (nθ 1 ) + sin (nθ 2 ) + sin (nθ 3 ) + sin (nθ 4 ) + sin (nθ 5 )} ... (1) θ 1 to θ 5 = 0 By changing between 90 °, θ 1 to θ 5 at which the respective harmonics have values not more than the desired value are calculated by a computer. As a result, the output voltage waveform of each inverter is as shown in FIG.
That is, in the first inverter INV1, −θ 5 to θ 1 has a + side output waveform, and 180−θ 5 to 180 + θ 1 has a − side output waveform. Similarly, INV2 to INV5 also output the voltage waveform having the flow width shown in FIG.

【0013】(2)次に出力電圧を調整するためPWM
波形とする必要がある。例えば1インバータの波形を3
パルスPWMとした場合を以下に説明する。まず前述の
図8の波形が1つのインバータの3パルスPWM波形の
出力電圧波形を表す。出力電圧の+側、−側に2個の矩
形波のへこみが重畳されていると考えることができる。
5多重では合計10個のへこみが+側、−側にそれぞれ
生じることとなる。
(2) PWM for adjusting the output voltage
Must be wavy. For example, the waveform of 1 inverter is 3
The case of using pulse PWM will be described below. First, the waveform of FIG. 8 described above represents the output voltage waveform of the 3-pulse PWM waveform of one inverter. It can be considered that two dents of a rectangular wave are superimposed on the + side and the-side of the output voltage.
In the case of 5 multiplexes, a total of 10 dents will occur on the + side and the-side, respectively.

【0014】(3)このパルスの位相を以下の様にして
求める。まず図4(a)のように5多重後の出力電圧波
形が正弦波として180°を10で割り、18°ずつに
区切る。そして各面積比を算出し、その面積比と同一比
のパルスを図4(b)のように各区分の中点(9°の
所)に置く。各パルスをP1〜P10とし、図4(c)
に示す如く、INV1にはP1とP6、INV2にはP
2とP7、INV3にはP3とP8、INV4にはP4
とP9、INV5にはP5とP10のへこみを作り、3
パルスPWMとする。このようにすることにより高調波
の少ない装置を構成することができる。
(3) The phase of this pulse is obtained as follows. First, as shown in FIG. 4A, the output voltage waveform after five-multiplexing is a sine wave, and 180 ° is divided by 10 and divided into 18 °. Then, each area ratio is calculated, and a pulse having the same ratio as the area ratio is placed at the midpoint of each section (at 9 °) as shown in FIG. 4B. Each pulse is set to P1 to P10, and FIG.
As shown in, P1 and P6 for INV1 and P for INV2
2 and P7, P3 and P8 for INV3, P4 for INV4
Make a dent on P9 and P9, and P5 and P10 on INV5. 3
Pulse PWM is used. By doing so, it is possible to construct a device with less harmonics.

【0015】また他の実施例としては、出力電圧波形を
正弦波とし、18°ずつに正弦波を区切り、各区分の面
積比に比例したパルスを各区分の面積の中点に配置する
ようにしてもよい。
In another embodiment, the output voltage waveform is a sine wave, the sine wave is divided by 18 °, and a pulse proportional to the area ratio of each section is arranged at the midpoint of the area of each section. May be.

【0016】次に請求項3、4に記載の発明の実施例を
説明する。まず各インバータの出力電圧波形を図3のよ
うに求めるところまでの方式(すなわち図1、図2、図
3)は前述した方式と全く同一である。次に図5(a)
に示すように5多重後の出力電圧波形が正弦波として、
該正弦波の面積を10等分し、θ方向の中点に図5
(b)のように一定幅のパルスを配置する。このパルス
は高さが全て同一で巾も同一である。このパルスをP1
〜P10とし、図5(c)に示す如く、INV1にはP
1とP6、INV2にはP2とP7、INV3にはP3
とP8、INV4にはP4とP9、INV5にはP5と
P10のへこみを作り、各インバータのパルス波形を決
定する。このようにすることにより高調波を低減するこ
とができる。
Next, embodiments of the invention described in claims 3 and 4 will be described. First, the method until the output voltage waveform of each inverter is obtained as shown in FIG. 3 (that is, FIGS. 1, 2, and 3) is exactly the same as the method described above. Next, FIG. 5 (a)
As shown in, the output voltage waveform after 5 multiplexing is a sine wave,
The area of the sine wave is divided into 10 equal parts, and the middle point in the θ direction is shown in FIG.
A pulse having a constant width is arranged as shown in (b). This pulse has the same height and the same width. This pulse is P1
To P10, and as shown in FIG. 5 (c), INV1 has P
1 and P6, P2 and P7 for INV2, P3 for INV3
And P8, P4 and P9 are made in INV4, and P5 and P10 are made in INV5, and the pulse waveform of each inverter is determined. By doing so, harmonics can be reduced.

【0017】また他の実施例としては、図5(a)のよ
うに正弦波の面積を10等分し、各区分の面積を2分す
るθ方向の位置に高さ、巾が同じパルスを配列するよう
にしても良い。
In another embodiment, as shown in FIG. 5 (a), a sine wave area is divided into 10 equal parts, and a pulse having the same height and width is placed at a position in the θ direction where the area of each section is divided into two parts. It may be arranged.

【0018】[0018]

【発明の効果】以上のように本発明によればインバータ
および出力変圧器を同一容量、同一仕様にすることがで
きるので、次のような優れた効果が得られる。 (1)設計、試験、製造工数が低減でき、安価とするこ
とができる。 (2)インバータの利用率は100%であり、従来方式
に比べ装置を小形化することが可能となる。 (3)インバータ利用率が100%のため素子数が低減
でき、スナバ損失等の損失が減り効率向上が図れる。 (4)インバータの責務が同一であり、評価が容易であ
る。 (5)万一のトラブル時の対応にさいして、全て同一仕
様であるためその対処が容易である(予備ユニットは1
つで良い)。
As described above, according to the present invention, since the inverter and the output transformer can have the same capacity and the same specification, the following excellent effects can be obtained. (1) The number of designing, testing, and manufacturing steps can be reduced, and the cost can be reduced. (2) The utilization factor of the inverter is 100%, which makes it possible to downsize the device as compared with the conventional system. (3) Since the inverter utilization rate is 100%, the number of elements can be reduced, snubber loss and other losses are reduced, and efficiency can be improved. (4) The responsibility of the inverter is the same and the evaluation is easy. (5) In case of trouble, it is easy to deal with it because all the specifications are the same.
One is good).

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1〜4の発明の実施例を示し、5多重の
場合の電圧波形図。
FIG. 1 is a voltage waveform diagram showing an embodiment of the present invention as claimed in claims 1 to 4 in the case of 5 multiplexing.

【図2】請求項1〜4の発明の実施例を示し、図1の波
形の一部をフーリェ級数展開したときの説明図。
FIG. 2 is an explanatory view showing an embodiment of the inventions of claims 1 to 4, and showing a Fourier series expansion of a part of the waveform of FIG.

【図3】請求項1〜4の発明の実施例を示し、各インバ
ータの出力電圧波形図。
FIG. 3 is a diagram showing an output voltage waveform of each inverter, showing an embodiment of the invention of claims 1 to 4.

【図4】請求項1、2の発明の実施例を示し、(a)は
分割方法の説明図、(b)はパルス波形図、(c)は3
パルスPWMの波形図。
FIG. 4 shows an embodiment of the invention of claims 1 and 2, (a) is an explanatory diagram of a dividing method, (b) is a pulse waveform diagram, and (c) is 3
Waveform diagram of pulse PWM.

【図5】請求項3、4の発明の実施例を示し、(a)は
分割方法の説明図、(b)はパルス波形図、(c)は3
パルスPWMの波形図。
5A and 5B show an embodiment of the invention of claims 3 and 4, (a) is an explanatory diagram of a dividing method, (b) is a pulse waveform diagram, and (c) is 3
Waveform diagram of pulse PWM.

【図6】一般的な5多重構成の電力変換装置の構成図。FIG. 6 is a configuration diagram of a general five-multiplex power conversion device.

【図7】インバータの電圧ベクトル図。FIG. 7 is a voltage vector diagram of the inverter.

【図8】インバータのPWM波形を示す電圧波形図。FIG. 8 is a voltage waveform diagram showing a PWM waveform of the inverter.

【符号の説明】[Explanation of symbols]

1〜5…インバータ 6〜10…出力変圧器 11…電解コンデンサ 1-5 ... Inverter 6-10 ... Output transformer 11 ... Electrolytic capacitor

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月27日[Submission date] December 27, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 1周期のスイッチング回数を1回とした
時の同一波高値の矩形波をn多重とし、該波形が偶関数
および奇関数となるように構成してフーリェ級数展開を
行い、各次高調波量が所望の値以下となるような位相角
θを演算し、該θに基づいてn個の多重インバータの出
力電圧波形を各々算出し、 正弦波の半周期を、各々が同一位相角になるようn×
(m−1)分割し(ただしmはPWM波形のパルス
数)、該分割された各区分の面積比に等しい巾を有した
複数のパルスを、前記分割された各区分のθ方向中央に
各々配置し、該パルスをn個おきに前記各インバータの
出力電圧波形に重畳することを特徴とする多重インバー
タのPWM波形制御方式。
1. A rectangular wave having the same crest value when the number of times of switching in one cycle is once is n-multiplexed, and the waveform is configured as an even function and an odd function to perform Fourier series expansion, and The phase angle θ is calculated so that the amount of the next harmonic becomes equal to or less than the desired value, and the output voltage waveforms of the n multiple inverters are calculated based on the θ, and the half cycle of the sine wave is the same phase. N × to be a corner
(M-1) divided (where m is the number of pulses of the PWM waveform), and a plurality of pulses having a width equal to the area ratio of each divided section are respectively provided at the center in the θ direction of each divided section. A PWM waveform control system for a multi-inverter, characterized in that the pulse is arranged and the pulse is superposed on the output voltage waveform of each inverter every n times.
【請求項2】 1周期のスイッチング回数を1回とした
時の同一波高値の矩形波をn多重とし、該波形が偶関数
および奇関数となるように構成してフーリェ級数展開を
行い、各次高調波量が所望の値以下となるような位相角
θを演算し、該θに基づいてn個の多重インバータの出
力電圧波形を各々算出し、 正弦波の半周期を、各々が同一位相角になるようn×
(m−1)分割し(ただしmはPWM波形のパルス
数)、該分割された各区分の面積比に等しい巾を有した
複数のパルスを、前記各区分の面積を2等分するθ方向
位置に各々配置し、該パルスをn個おきに前記各インバ
ータの出力電圧波形に重畳することを特徴とする多重イ
ンバータのPWM波形制御方式。
2. A rectangular wave having the same crest value when the number of times of switching in one cycle is once is n-multiplexed, the waveform is configured as an even function and an odd function, and Fourier series expansion is performed, The phase angle θ is calculated so that the amount of the next harmonic becomes equal to or less than the desired value, and the output voltage waveforms of the n multiple inverters are calculated based on the θ, and the half cycle of the sine wave is the same phase. N × to be a corner
(M-1) division (where m is the number of pulses of the PWM waveform), and a plurality of pulses having a width equal to the area ratio of each divided section divides the area of each section into halves. A PWM waveform control method for a multiple inverter, wherein the PWM waveform control method is characterized by arranging the pulses at respective positions and superposing the pulses every n times on the output voltage waveform of each inverter.
【請求項3】 1周期のスイッチング回数を1回とした
時の同一波高値の矩形波をn多重とし、該波形が偶関数
および奇関数となるように構成してフーリェ級数展開を
行い、各次高調波量が所望の値以下となるような位相角
θを演算し、該θに基づいてn個の多重インバータの出
力電圧波形を各々算出し、 正弦波の半周期を、各区分の面積が同一となるようにθ
方向にn×(m−1)分割し(ただしmはPWM波形の
パルス数)、同一高さ、同一巾を有する複数のパルス
を、前記分割された各区分のθ方向中央に各々配置し、
該パルスをn個おきに前記各インバータの出力電圧波形
に重畳することを特徴とする多重インバータのPWM波
形制御方式。
3. A rectangular wave having the same crest value when the number of times of switching in one cycle is set to 1 is n-multiplexed, and the waveform is configured as an even function and an odd function, and Fourier series expansion is performed. The phase angle θ is calculated so that the amount of the next harmonic becomes equal to or less than the desired value, and the output voltage waveforms of the n multiple inverters are calculated based on the θ, and the half cycle of the sine wave is calculated as the area of each section. So that
Direction is divided into n × (m−1) (where m is the number of pulses of the PWM waveform), and a plurality of pulses having the same height and the same width are arranged at the center of each divided section in the θ direction,
A PWM waveform control system for a multi-inverter, characterized in that the pulse is superimposed on the output voltage waveform of each inverter every n times.
【請求項4】 1周期のスイッチング回数を1回とした
時の同一波高値の矩形波をn多重とし、該波形が偶関数
および奇関数となるように構成してフーリェ級数展開を
行い、各次高調波量が所望の値以下となるような位相角
θを演算し、該θに基づいてn個の多重インバータの出
力電圧波形を各々算出し、 正弦波の半周期を、各区分の面積が同一となるようにθ
方向にn×(m−1)分割し(ただしmはPWM波形の
パルス数)、同一高さ、同一巾を有する複数のパルス
を、前記各区分の面積を2等分するθ方向位置に各々配
置し、該パルスをn個おきに前記各インバータの出力電
圧波形に重畳することを特徴とする多重インバータのP
WM波形制御方式。
4. A rectangular wave having the same crest value when the number of times of switching in one cycle is set to 1 is n-multiplexed, and the waveform is configured as an even function and an odd function, and Fourier series expansion is performed. The phase angle θ is calculated so that the amount of the next harmonic becomes equal to or smaller than the desired value, and the output voltage waveforms of the n multiple inverters are calculated based on the θ, and the half cycle of the sine wave is calculated as the area of each section. So that
Direction is divided into n × (m−1) (where m is the number of pulses of the PWM waveform), and a plurality of pulses having the same height and the same width are respectively divided into the θ direction positions which divide the area of each section into two equal parts. P of a multiple inverter, which is arranged and superimposes every nth pulse on the output voltage waveform of each inverter.
WM waveform control method.
JP03188793A 1993-02-22 1993-02-22 PWM waveform control method for multiple inverters Expired - Fee Related JP3309468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03188793A JP3309468B2 (en) 1993-02-22 1993-02-22 PWM waveform control method for multiple inverters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03188793A JP3309468B2 (en) 1993-02-22 1993-02-22 PWM waveform control method for multiple inverters

Publications (2)

Publication Number Publication Date
JPH06245532A true JPH06245532A (en) 1994-09-02
JP3309468B2 JP3309468B2 (en) 2002-07-29

Family

ID=12343549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03188793A Expired - Fee Related JP3309468B2 (en) 1993-02-22 1993-02-22 PWM waveform control method for multiple inverters

Country Status (1)

Country Link
JP (1) JP3309468B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219265A (en) * 2008-03-11 2009-09-24 Tokyo Electric Power Co Inc:The Series multiplex converter and power converter
US11349410B2 (en) 2018-01-30 2022-05-31 Mitsubishi Electric Corporation Series multiplex inverter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219265A (en) * 2008-03-11 2009-09-24 Tokyo Electric Power Co Inc:The Series multiplex converter and power converter
US11349410B2 (en) 2018-01-30 2022-05-31 Mitsubishi Electric Corporation Series multiplex inverter

Also Published As

Publication number Publication date
JP3309468B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
US5515264A (en) Optimized high power voltage sourced inverter system
Menzies et al. Advanced static compensation using a multilevel GTO thyristor inverter
US5886888A (en) Voltage source type power converting apparatus
US4204264A (en) Harmonic cancellation for multi-bridge, three-phase converters
US5337227A (en) Harmonic neutralization of static inverters by successive stagger
US8130518B2 (en) Multiphase grid synchronized regulated current source inverter systems
US3431483A (en) Cycloconverter power circuits
US4225914A (en) Frequency converters
US5212629A (en) Voltage and harmonic control of a multi-pole inverter
Mcmurray A study of asymmetrical gating for phase-controlled converters
US4797801A (en) Plural polyphase inverter units having toned input filters
JPH06245532A (en) Pwm waveform control system of multiple inverter
US5852553A (en) Harmonic neutralized voltage sourced inverter employing phase shifting interphase transformers
Hou et al. A novel general space vector modulation algorithm for multilevel inverter based on imaginary coordination
Wang et al. High-power multi-modular matrix converters with sinusoidal input/output waveforms
de Lacerda et al. Single-phase five-leg ac-dc-ac multilevel converter to enhance power quality
CN111865098A (en) Regenerative cascade H-bridge power supply device
JP2561918B2 (en) PWM method for transformer multiple inverter
SU1001396A1 (en) Method and apparatus for forming quasisinusoidal staircase voltage
JP2510116B2 (en) 3-phase rectifier circuit
JPH08266063A (en) Pwm waveform control method for multiple inverter
US3470448A (en) Control system for a frequency converter
GB2242792A (en) Reactive power generator
JP2001161073A (en) Voltage converter for multiplexing
Durán et al. Novel continous space vector modulation in cascaded multilevel converters

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees