JPH0558682A - Production of silica-based glass having refractive index distribution - Google Patents

Production of silica-based glass having refractive index distribution

Info

Publication number
JPH0558682A
JPH0558682A JP23884691A JP23884691A JPH0558682A JP H0558682 A JPH0558682 A JP H0558682A JP 23884691 A JP23884691 A JP 23884691A JP 23884691 A JP23884691 A JP 23884691A JP H0558682 A JPH0558682 A JP H0558682A
Authority
JP
Japan
Prior art keywords
gel
refractive index
silica
index distribution
hcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23884691A
Other languages
Japanese (ja)
Other versions
JPH0678169B2 (en
Inventor
Makoto Hori
誠 堀
Kiyoshi Nagano
清 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COLLOID RES KK
COLLOID RESEARCH
Original Assignee
COLLOID RES KK
COLLOID RESEARCH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COLLOID RES KK, COLLOID RESEARCH filed Critical COLLOID RES KK
Priority to JP23884691A priority Critical patent/JPH0678169B2/en
Publication of JPH0558682A publication Critical patent/JPH0558682A/en
Publication of JPH0678169B2 publication Critical patent/JPH0678169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To provide a process for easily and economically producing a large- sized r-GRIN glass free from fault in an easily dryable and bakable state. CONSTITUTION:A mixture containing a silicon alkoxide, a Ti compound and water is gelatinized to obtain an SiO2-TiO2 wet gel, which is immersed in an aqueous solution containing 3-30wt.% of HCl, 0.5-20wt.% of H2O2 and 1-30wt.% of one or more organic solvents to form a Ti concentration distribution in the gel by dissolving the Ti component from the outer part of the gel. The gel is dried and baked to obtain the objective glass. The effect is further improved by using acetone as the organic solvent and an alkoxide as the Ti compound and selecting super-critical drying as the drying method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はゾル・ゲル法によりTi
成分の濃度分布、即ち屈折率分布を有する大型のシリカ
系ガラスを簡便かつ安価に製作できる方法に関するもの
である。
FIELD OF THE INVENTION The present invention uses Ti-sol method
The present invention relates to a method for easily and inexpensively producing a large silica glass having a concentration distribution of components, that is, a refractive index distribution.

【0002】[0002]

【従来の技術】屈折率分布、特に半径方向に分布を有す
る棒状ガラスはr−GRIN(Radial Grad
ient Index)レンズと称され、複写機のレン
ズアレイ、光ファイバー用コネクター等の光学材料とし
て最近急速に用途が広がっている。これらのr−GRI
Nレンズの製造方法としてはイオン交換法、多孔質ガラ
スへの分子スタッフィング法、CVD法などが挙げられ
る。しかしながらこれらの方法では大型品を得るのが難
しく、またΔn(屈折率変化)の大きさにも限界があっ
た。これに対してゾル・ゲル法で作成した多成分系湿潤
ゲルを溶液に浸して外側から屈折率を高める成分(例え
ばTi、Pb等)を溶出させて分布を与え、乾燥、焼成
してガラスとする方法は、ゲルの大型化を図ることによ
り大型ロッドレンズの合成が可能であり、かつ成分濃度
の自由性が増すため大きなΔnの付与が期待される。ゾ
ル・ゲル法による代表的なr−GRINレンズの合成法
としては以下の2つが知られている。
2. Description of the Related Art A rod-shaped glass having a refractive index distribution, especially a radial distribution is r-GRIN (Radial Grad).
The present invention is rapidly expanding as an optical material such as a lens array of a copying machine and a connector for optical fiber. These r-GRI
Examples of the method for manufacturing the N lens include an ion exchange method, a molecular stuffing method for porous glass, and a CVD method. However, it is difficult to obtain a large-sized product by these methods, and the size of Δn (change in refractive index) is limited. On the other hand, a multi-component wet gel prepared by the sol-gel method is dipped in a solution to elute the components (for example, Ti, Pb, etc.) that increase the refractive index from the outside to give a distribution, and dried and fired to form glass. In this method, a large rod lens can be synthesized by increasing the size of the gel, and the flexibility of the component concentration is increased, so that a large Δn is expected to be imparted. The following two methods are known as typical methods for synthesizing a r-GRIN lens by the sol-gel method.

【0003】(1)PbO−B2 3 −SiO2 系湿潤
ゲルを硝酸カリウムに浸して、PbイオンとK イオンの相
互拡散によりPbの分布を形成し、乾燥、焼成する方法。 (2)TiO2 −SiO2 系湿潤ゲルをHCl 溶液に浸し
て、Tiを優先的に溶出させてTiの分布を形成し、乾燥、
焼成する方法。
(1) A method of immersing a PbO-B 2 O 3 -SiO 2 system wet gel in potassium nitrate to form a distribution of Pb by mutual diffusion of Pb ions and K ions, followed by drying and firing. (2) Dip a TiO 2 —SiO 2 system wet gel in an HCl solution to preferentially elute Ti to form a Ti distribution, and then dry it.
How to bake.

【0004】[0004]

【発明が解決しようとする課題】従来行われてきたゾル
・ゲル法によるr-GRINガラス合成には以下の問題点があ
る。即ち、ゲルが大型化するほど適性な屈折率分布の形
成に時間を要し、かつその精度も低下する。また乾燥時
に割れ等の損傷が生じ易くなり長期に渡る注意深い乾燥
工程が必要となる。更に前項(2)で示したシリカ-Ti
系に於いては、HCl 溶液でリーチングしてTiの溶出を行
う際にゲルの酸性度が増すため、浸漬中及びその後の乾
燥工程で収縮割れなどの損傷が生じ易く、この問題はゲ
ルが大型化する程深刻になる。またこれらの方法で大型
ガラスを得ようとする場合、気泡の完全除去が難しく、
光学特性を阻害する要因となる。
The conventional sol-gel method for synthesizing r-GRIN glass has the following problems. That is, the larger the gel, the longer it takes to form an appropriate refractive index distribution, and the lower its accuracy becomes. Moreover, damage such as cracks is likely to occur during drying, and a careful drying process for a long period of time is required. Furthermore, the silica-Ti shown in (2) above
In the system, since the acidity of the gel increases when leaching Ti with HCl solution to elute Ti, damage such as shrinkage cracks easily occurs during the dipping process and the subsequent drying process. The more serious Moreover, when trying to obtain a large glass by these methods, it is difficult to completely remove bubbles,
It becomes a factor that inhibits the optical characteristics.

【0005】本発明の目的は、上記問題点を解消するこ
とにあり、損傷なく、且つ容易に乾燥、焼成することが
できる簡便かつ安価に大型r-GRINガラスを作成できる方
法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and to provide a method for producing a large-sized r-GRIN glass easily and inexpensively, which can be easily dried and fired without damage. is there.

【0006】[0006]

【課題を解決するための手段】即ち、本発明は、シリコ
ンアルコキシド、Ti化合物、および水を含む混合物をゲ
ル化せしめ、SiO2 −TiO2 系湿潤ゲルを作製し、
該湿潤ゲルをHClを3〜30重量%、H2 2 を0.
5〜20重量%、一種以上の有機溶媒を1〜30重量%
を含む水溶液中に浸して、外側からTi成分を溶出させ
ることにより、ゲル中にTiの濃度分布を形成せしめる
工程を経た後にゲルを乾燥、焼成することを特徴とする
屈折率分布を有するシリカ系ガラスの製造方法であり、
これにより、上記目的を達成できる。
That is, according to the present invention, a mixture containing a silicon alkoxide, a Ti compound, and water is gelled to prepare a SiO 2 —TiO 2 wet gel.
The wet gel was treated with HCl at 3 to 30% by weight and H 2 O 2 at 0.
5 to 20% by weight, 1 to 30% by weight of one or more organic solvents
A silica-based silica having a refractive index distribution characterized by being dried and calcined after a step of forming a concentration distribution of Ti in the gel by immersing it in an aqueous solution containing Is a method of manufacturing glass,
As a result, the above object can be achieved.

【0007】本発明は、シリコンアルコキシド、Ti化合
物、および水を含む混合物を反応せしめ、生成したSi
2 −TiO2 系湿潤ゲルをHClを3〜30重量%、
2 2 を0.5〜20重量%、一種以上の有機溶媒を
1〜30重量%を含む水溶液中に浸すことによりTi成分
を溶出することを最大の特徴とするものである。本発明
において、Ti成分の溶出とは、SiO2 −TiO2 系湿
潤ゲル内のTi原子またはTiイオン及びこれを含む化合
物、誘導体が、該湿潤ゲルから溶け出すことを意味す
る。
The present invention reacts a mixture containing a silicon alkoxide, a Ti compound, and water to produce a Si produced.
O 2 —TiO 2 system wet gel is added with HCl 3 to 30 wt%,
The greatest feature is that the Ti component is eluted by immersing in an aqueous solution containing 0.5 to 20% by weight of H 2 O 2 and 1 to 30% by weight of one or more organic solvents. In the present invention, the elution of the Ti component means that Ti atoms or Ti ions in the SiO 2 —TiO 2 wet gel and compounds or derivatives containing the same are dissolved from the wet gel.

【0008】本発明に使用されるTi成分溶出用のHC
l/H2 2 /有機溶媒水溶液中へのゲル浸漬処理は、
従来知られているHCl のみを含む溶液への浸漬処理に比
べ、以下のメリットがある。
HC for elution of Ti component used in the present invention
The gel dipping treatment in 1 / H 2 O 2 / organic solvent aqueous solution is
Compared with the conventionally known dipping treatment in a solution containing only HCl, it has the following advantages.

【0009】 浸漬中におけるゲルの収縮、割れとい
った問題が少ない。 Ti成分の溶出速度が速く、短時間の浸漬で容易に目
的とするTiの濃度分布を形成することができる。
There are few problems such as gel shrinkage and cracking during immersion. The elution speed of the Ti component is high, and the target Ti concentration distribution can be easily formed by immersion for a short time.

【0010】 乾燥ゲルの焼成・ガラス化がスムーズ
に行え、結晶化、失透等のトラブルが少ない。 このうち特に過酸化水素水がへ及ぼす効果が特筆され
る。Ti成分の溶出に直接作用する成分はHClである
が、H2 2 の存在によりHClの溶出効果が著しく助
長される。また、有機溶媒の利用により、浸漬処理時、
乾燥時のゲルの収縮、クラックが抑制される。
Baking and vitrification of the dried gel can be performed smoothly, and there are few problems such as crystallization and devitrification. Of these, the effect of hydrogen peroxide water is particularly noted. The component that directly affects the elution of the Ti component is HCl, but the presence of H 2 O 2 remarkably promotes the elution effect of HCl. Also, by using an organic solvent, during immersion treatment,
Shrinkage and cracking of the gel during drying are suppressed.

【0011】本発明に使用されるTi化合物としては、特
に制限はないが、Tiアルコキシド、例えば、Tiプロポキ
シド、Tiブトキシド等が好適である。尚、四塩化チタン
などのTi塩を用いると均質で保形成の良いゲルが作成し
にくい。
The Ti compound used in the present invention is not particularly limited, but Ti alkoxides such as Ti propoxide and Ti butoxide are preferable. It should be noted that when a Ti salt such as titanium tetrachloride is used, it is difficult to form a gel that is homogeneous and has good retention.

【0012】本発明に使用されるHCl/H2 2 /有
機溶媒水溶液の内有機溶媒としては、特に制限はない
が、例示すれば、アルコール、ヘキサン、THF(テト
ラヒドロフラン)、ベンゼン、トルエン、アセトン等の
単独もしくは複数の組合せが挙げられるが、中でもアセ
トンが最も効果的である。この水溶液の好ましい重量%
組成を例示すれば、HCl/H2 2 /アセトン/水=
5〜20/1〜10/3〜15/55〜90が挙げられ
る。
The organic solvent in the HCl / H 2 O 2 / organic solvent aqueous solution used in the present invention is not particularly limited, but examples thereof include alcohol, hexane, THF (tetrahydrofuran), benzene, toluene and acetone. And the like, or a combination of two or more of them, and among them, acetone is most effective. Preferred weight% of this aqueous solution
To give an example of the composition, HCl / H 2 O 2 / acetone / water =
5-20 / 1-10 / 3-15 / 55-90 are mentioned.

【0013】本発明においてTi成分を溶出処理しゲル中
にTiの濃度分布を形成せしめた後、この湿潤ゲルを乾
燥する方法としては、特に制限はないが、大きく分け
て、常圧乾燥、超臨界乾燥が挙げられる。は、乾
燥時に気孔内に毛管応力が働くためゲルが割れたりクラ
ックが入ることが多い。これに対しては乾燥時に応力
が発生しないため、大型のゲルでも割れやクラックなく
乾燥することができる。超臨界乾燥はゲル内溶媒( 例え
ば、アルコール) そのものの超臨界条件下で溶媒を除く
方法と、CO2 −有機溶媒の混合系での超臨界条件下で溶
媒を抽出除去する方法とに大別される。前者は通常の有
機溶媒(例えば、アルコール)の臨界温度が250℃前
後と高く、処理に高温を要す。後者は原理的にCO2 の臨
界温度である31℃から処理が可能で、低温で処理する
ことができる。SiO2 −TiO2 系ゲルの場合、前者
の高温下での超臨界乾燥を行うとTiO2 が結晶化し、
焼成後も均質透明なガラスにならない。そのため後者の
低温下での超臨界乾燥法を採用することが好ましい。一
般的には、の処理を50〜100 ℃程度で行うことが望ま
しい。この場合、特にゲル中の液分の大半を所望の有機
溶媒で交換した後、当該有機溶媒とCO2 との混合系と
することが好ましい。ここで、ゲル内の液分の大半と
は、通常、液分の80重量%以上を意味する。この溶媒
の交換処理は、超臨界条件の設定を容易にしかも確実に
乾燥処理を行えるので有利である。
In the present invention, the method of drying the wet gel after elution treatment of the Ti component to form a concentration distribution of Ti in the gel and then drying the wet gel is not particularly limited, but it can be broadly classified into atmospheric drying and super-drying. Examples include critical drying. The gel often breaks or cracks because capillary stress acts on the pores during drying. On the other hand, since no stress is generated during drying, even a large gel can be dried without cracks or cracks. Supercritical drying is roughly divided into a method of removing the solvent under the supercritical conditions of the solvent in the gel (for example, alcohol) itself and a method of extracting and removing the solvent under the supercritical conditions of a CO 2 -organic solvent mixed system. To be done. In the former case, the critical temperature of an ordinary organic solvent (for example, alcohol) is as high as about 250 ° C., and a high temperature is required for the treatment. The latter can be processed from 31 ° C, which is the critical temperature of CO 2 in principle, and can be processed at a low temperature. In the case of SiO 2 —TiO 2 type gel, TiO 2 crystallizes when the former supercritical drying at high temperature is performed,
It does not become a homogeneous and transparent glass even after firing. Therefore, it is preferable to adopt the latter supercritical drying method at a low temperature. Generally, it is desirable to carry out the treatment at about 50 to 100 ° C. In this case, it is particularly preferable to replace most of the liquid content in the gel with a desired organic solvent and then use a mixed system of the organic solvent and CO 2 . Here, the majority of the liquid content in the gel usually means 80% by weight or more of the liquid content. This solvent exchange treatment is advantageous because supercritical conditions can be set easily and surely for the drying treatment.

【0014】この場合、超臨界条件における混合系とし
ては、特に制限はないが、エタノール−CO2 系が好ま
しい。例えば、温度35〜80℃、圧力130〜160
kg/m2 の条件が挙げられる。
In this case, the mixed system under supercritical conditions is not particularly limited, but an ethanol-CO 2 system is preferable. For example, a temperature of 35 to 80 ° C. and a pressure of 130 to 160
The condition is kg / m 2 .

【0015】乾燥ゲルの焼成は、特に制限なく任意の温
度、雰囲気条件等を選択できるが、例えば、酸素雰囲気
下常温〜800℃で10時間、ヘリウム雰囲気下800
〜1250℃で8時間が挙げられる。
There are no particular restrictions on the firing of the dried gel, and any temperature and atmospheric conditions can be selected. For example, the temperature is 800 ° C. to 800 ° C. in an oxygen atmosphere for 10 hours and 800 in a helium atmosphere.
8 hours at ˜1250 ° C.

【0016】該SiO2 −TiO2 系湿潤ゲルのTiO
2 成分は、3〜20モル% の範囲が好ましい。本発明に使
用されるシリコンアルコキシドとしては、式Si(O
R)4 (Rは、メチル、エチル、プロピル、ブチル等を
表す) で表される化合物、およびこれらの部分加水分解
により生成されるオリゴマーが挙げられる。該オリゴマ
ーとしては、平均3〜6量体が好ましい。
TiO 2 of the SiO 2 —TiO 2 system wet gel
The two components are preferably in the range of 3 to 20 mol%. The silicon alkoxide used in the present invention has the formula Si (O
R) 4 (R represents methyl, ethyl, propyl, butyl and the like), and oligomers formed by partial hydrolysis of these compounds. The oligomer preferably has an average of 3 to 6 mers.

【0017】本発明は、シリコンアルコキシド、Ti化
合物の金属成分の他に適宜他の金属原子を使用できる。
例えば、金属アルコキシド、例示すれば、トリエトキシ
ボラン〔B(OC2 5 3 〕等のアルコキシド、金属
塩、金属単体、例えば、Na、Mg、Ba、Sr等のアルカリ、
アルカリ土類金属等、その他、ホウ酸(H3 BO3 )等
のB 含有化合物を挙げることができる。これら金属原子
は、湿潤ゲルの前駆体となるシリコンアルコキシド、T
i化合物、水を含む混合物に適時添加することができ
る。また上述の様にTi成分を溶出する際に使用するH
Cl含有溶液に存在させて添加してよい。
In the present invention, in addition to the metal component of the silicon alkoxide and the Ti compound, other metal atom can be appropriately used.
For example, a metal alkoxide, for example, an alkoxide such as triethoxyborane [B (OC 2 H 5 ) 3 ], a metal salt, a metal simple substance, for example, an alkali such as Na, Mg, Ba or Sr,
Examples thereof include alkaline earth metals and the like, and B-containing compounds such as boric acid (H 3 BO 3 ). These metal atoms are silicon alkoxide, T, which is a precursor of the wet gel.
It can be added to a mixture containing the i compound and water at appropriate times. In addition, as described above, H used when eluting the Ti component
It may be added by being present in a Cl-containing solution.

【0018】本発明において、SiO2 −TiO2 湿潤
ゲルを形成するめの方法は特に制限なく、任意の公知手
段を使用することができる。そのための少なくともシリ
コンアルコキシドを含む加水分解されるゲル形成材料の
その加水分解反応およびそれら加水分解生成物間の重合
反応条件(熟成等を含む)等は、適宜所望の条件が選定
でき最適な条件を設定できる。このような反応系の条件
としては、温度、圧力、加水分解のための水量、pH等
が挙げられる。
In the present invention, the method for forming the SiO 2 —TiO 2 wet gel is not particularly limited, and any known means can be used. Therefore, the hydrolysis reaction of the gel-forming material to be hydrolyzed containing at least silicon alkoxide and the polymerization reaction conditions (including aging etc.) between the hydrolysis products can be appropriately selected as desired conditions Can be set. The conditions of such a reaction system include temperature, pressure, amount of water for hydrolysis, pH and the like.

【0019】本発明においてゲル形成のための加水分解
に用いられる水の量は、シリコンアルコキシド等の加水
分解可能な化合物の種類によって異なるが、通常、それ
ら化合物の加水分解可能な基に対して0.2〜5倍モ
ル、好ましくは、0.5〜1.5倍モルの範囲である。
In the present invention, the amount of water used for hydrolysis for gel formation varies depending on the type of hydrolyzable compound such as silicon alkoxide, but it is usually 0 with respect to the hydrolyzable group of those compounds. .2 to 5 times mol, preferably 0.5 to 1.5 times mol.

【0020】また、本発明におけるSiO2 −TiO2
系湿潤ゲルの形成においては、上記必須金属成分の他、
ゲルの形成を調整する機能を有する任意の調整剤を添加
することができ、例えば、アセチルアセトン等のβジケ
トン化合物、ピペリジン等の塩基等が挙げられる。
Further, in the present invention, SiO 2 --TiO 2
In forming the system wet gel, in addition to the above essential metal components,
Any regulator having a function of regulating gel formation can be added, and examples thereof include β-diketone compounds such as acetylacetone and bases such as piperidine.

【0021】また、本発明のHCl/H2 2 /有機溶
媒水溶液を使用して、Ti成分をSiO2 −TiO2
ゲルから溶出すると言う技術は、SiO2 −TiO2
のTi以外にシリカに対して屈折率を高める金属元素(Ge
、Ta、Pb、Al等) を成分に有するSiO2 系ゲルにも
適用し得る。
The technique of eluting Ti component from SiO 2 --TiO 2 type gel using the HCl / H 2 O 2 / organic solvent aqueous solution of the present invention is not limited to SiO 2 --TiO 2 type Ti. Metallic element (Ge
, Ta, Pb, may be applied to SiO 2 based gel with Al, etc.) to the component.

【0022】[0022]

【作用】本発明で使用するTi成分溶出用水溶液は、H
Clの他、H2 2 、及びアセトン等の有機溶媒を所定
組成に混和調整した独自のものである。
The aqueous solution for elution of the Ti component used in the present invention is H
In addition to Cl, H 2 O 2 and an organic solvent such as acetone are mixed and adjusted to have a predetermined composition.

【0023】この水溶液に含まれるH2 2 は、Tiの
溶出効果を高める作用を有するが、これはSiO2 −T
iO2 ゲルにおける未反応アルコキシド基等を分解し、
塩素のTiサイトへの攻撃が容易になるためと考えられ
る。また、有機溶媒、特にアセトンを使用したことで、
ゲルの割れ、乾燥が改善されるのは、Ti濃度勾配生成
後のゲル孔内に存在する液分がゲルのバランスを保って
所望の有機溶媒と容易に交換でき、最適な超臨界条件が
設定できるためと考えられる。
H 2 O 2 contained in this aqueous solution has a function of enhancing the elution effect of Ti, which is SiO 2 -T.
decomposes unreacted alkoxide groups and the like in the iO 2 gel,
It is considered that this is because chlorine easily attacks the Ti site. Also, by using an organic solvent, especially acetone,
The gel cracking and drying are improved because the liquid content inside the gel pores after Ti concentration gradient generation can be easily exchanged with a desired organic solvent while maintaining the balance of the gel, and the optimum supercritical conditions are set. It is thought to be possible.

【0024】[0024]

【実施例】以下、本発明の具体的実施例を説明するが、
本発明はこれに限定されるものではない。
EXAMPLES Hereinafter, specific examples of the present invention will be described.
The present invention is not limited to this.

【0025】実施例1 Siエトキシドの平均5量体オリゴマー44.5gに対
し、Tiブトキシド13.2g、アセチルアセトン2.5g、エタ
ノール19.4gを加えて均質な溶液とした。これにピペリ
ジン0.55g 、水16.3g との混合溶液を加え、35mmφのポ
リプロリレン円筒容器中でゲル化させてTiO2 を11.6
% 含む均質、透明なSiO2 −TiO2 系円柱ゲルを得
た。この湿潤ゲルを60℃3 日熟成した後、容器から取り
出して濃HCl水溶液(36重量%HCl)30ml/
過酸化水素水(30重量%H2 2 )10ml/アセト
ン10ml/水77mlを混合した溶液(HCl 9.
7重量%、H2 2 2.5重量%、アセトン 6重量
%、水 81.8重量%)に8時間浸漬処理した。その
後エタノールにより十分ゲルを洗浄すると共にゲル気孔
内の液分の大半をエタノールで交換した後、エタノール
に浸した状態で高圧抽出セルに入れて60℃、160k
g/m2 下でCO2 を流し、エタノールの抽出除去を行っ
て33mmφ×100mmhの円柱状乾燥ゲルを得た。
これを800℃まで酸素雰囲気、800℃以降はヘリウ
ム雰囲気で加熱し、最終的に1250℃で5時間キープ
して13mmφ×40mmhの大きさの透明な無気孔ガ
ラスを得た。このガラスの両端をカットし、径方向のT
i分布を調査した結果、中央を頂点とする放物線状のTi
濃度分布を形成しており、r−GRINレンズとしての
性能を有することが確認された。
Example 1 To 44.5 g of an average pentamer oligomer of Si ethoxide, 13.2 g of Ti butoxide, 2.5 g of acetylacetone and 19.4 g of ethanol were added to obtain a homogeneous solution. To this, a mixed solution of 0.55 g of piperidine and 16.3 g of water was added, and gelled in a polypropylene container of 35 mmφ to make TiO 2 11.6.
A homogeneous and transparent SiO 2 —TiO 2 -based cylindrical gel containing 10% was obtained. This wet gel was aged at 60 ° C for 3 days, then taken out from the container and concentrated HCl aqueous solution (36 wt% HCl) 30 ml /
Hydrogen peroxide solution (30 wt% H 2 O 2 ) 10 ml / acetone 10 ml / water 77 ml mixed solution (HCl 9.
7% by weight, H 2 O 2 2.5% by weight, acetone 6% by weight, water 81.8% by weight) for 8 hours. After that, the gel was thoroughly washed with ethanol, and most of the liquid content in the gel pores was exchanged with ethanol.
CO 2 was flown under g / m 2 to extract and remove ethanol to obtain a cylindrical dry gel of 33 mmφ × 100 mmh.
This was heated to 800 ° C. in an oxygen atmosphere, and after 800 ° C. in a helium atmosphere, and finally kept at 1250 ° C. for 5 hours to obtain a transparent non-porous glass having a size of 13 mmφ × 40 mmh. Cut both ends of this glass to make a radial T
As a result of investigating the i distribution, Ti in a parabolic shape with the center at the top
It was confirmed that it has a density distribution and has the performance as an r-GRIN lens.

【0026】実施例2 テトラエトキシオルソシリケート〔Si(OC2 5
4 …TEOSと略す〕41.2gとエタノール50gの混合
溶液に対しpH2に調整したHCl水溶液を2.8g
(TEOSに対し、0.8倍モル)加え、部分的に加水分解
した後、Tiブトキシド12gを混合し、20Torr
の減圧下、80℃で溶媒の一部を除いた後、新たにエタ
ノールを加え総量60mlの均質な溶液を得た。この溶
液にpHを11.5に調整したピペリジン水溶液を14
g加えて攪拌した後、35mmφのポリプロリレン円筒容
器中でゲル化させてTiO2 を15モル% 含む均質、透明
なSiO2 −TiO2 系円柱状ゲルを得た。この湿潤ゲ
ルを60℃3 日熟成した後、容器から取り出して、濃HC
l水溶液(36重量%HCl)30ml/過酸化水素水
(30重量%H2 2 )10ml/アセトン20ml/
水90mlを混合した溶液(HCl 8.4重量%、H
2 2 2.2重量%、アセトン 10.4重量%、水
79重量%)に8時間浸漬処理した。その後エタノール
により十分ゲルを洗浄すると共にゲル気孔内の液分の大
半をエタノールで交換した後、エタノールに浸した状態
で高圧抽出セルに入れて50℃、140kg/m2 下で
CO2 を流し、エタノールの抽出除去を行って33mmφ
×73mmhの円柱状乾燥ゲルを得た。これを800℃
まで酸素雰囲気、800℃以降はヘリウム雰囲気で加熱
し、最終的に1250℃で5時間キープして13mmφ
×30mmhの大きさの透明な無気孔ガラスを得た。こ
のガラスの両端をカットし、径方向のTi分布を調査し
た結果、中央を頂点とする放物線状のTi濃度分布を形成
しており、r−GRINレンズとしての性能を有するこ
とが確認された。
Example 2 Tetraethoxy orthosilicate [Si (OC 2 H 5 )]
4 ... Abbreviated as TEOS] 2.8 g of an aqueous solution of HCl adjusted to pH 2 for a mixed solution of 41.2 g and ethanol 50 g
(0.8 times the mole of TEOS) and after partially hydrolyzing, mix with 12 g of Ti butoxide to 20 Torr.
After removing a part of the solvent at 80 ° C. under reduced pressure, ethanol was newly added to obtain a homogeneous solution with a total volume of 60 ml. To this solution, add an aqueous solution of piperidine whose pH is adjusted to 11.5.
After adding g and stirring, gelation was performed in a 35 mmφ polypropylene container to obtain a homogeneous and transparent SiO 2 —TiO 2 columnar gel containing 15 mol% of TiO 2 . After aging this wet gel for 3 days at 60 ° C, remove it from the container and
1 aqueous solution (36 wt% HCl) 30 ml / hydrogen peroxide water (30 wt% H 2 O 2 ) 10 ml / acetone 20 ml /
A mixed solution of 90 ml of water (HCl 8.4% by weight, H
2.2% by weight of 2 O 2 , 10.4% by weight of acetone, water
79% by weight) for 8 hours. After that, the gel was thoroughly washed with ethanol, and most of the liquid content in the gel pores was replaced with ethanol, and then placed in a high-pressure extraction cell while immersed in ethanol at 50 ° C. under 140 kg / m 2 .
Flush CO 2 and extract and remove ethanol to 33mmφ
A columnar dry gel of 73 mmh was obtained. 800 ° C
Oxygen atmosphere up to 800 ° C, helium atmosphere after 800 ° C, and finally keep at 1250 ° C for 5 hours, 13mmφ
A transparent, non-porous glass having a size of × 30 mmh was obtained. As a result of cutting the both ends of this glass and investigating the Ti distribution in the radial direction, it was confirmed that a parabolic Ti concentration distribution with the center at the apex was formed, and that it had the performance as an r-GRIN lens.

【0027】比較例1 実施例1で作製した湿潤ゲルを濃HCl水溶液(36重
量%HCl)30ml/過酸化水素水(30重量%H2
2 )10ml/水87mlを混合した溶液中に8時間
浸漬したところ、ゲルにクラックが生じ、一体性の確保
が困難であった。また濃HCl水溶液(36重量%HC
l)30ml/アセトン10ml/水87mlを混合し
た溶液中に8時間浸漬したゲルを実施例1と同様な手順
で乾燥、焼成して得られたガラスのTi濃度分布を調べ
た結果、Ti成分の溶出が不十分で、外側と中央部の差
が小さく、r−GRINレンズに必要とされる屈折率分
布は得られなかった。
Comparative Example 1 The wet gel prepared in Example 1 was treated with concentrated HCl aqueous solution (36 wt% HCl) 30 ml / hydrogen peroxide water (30 wt% H 2
O 2) was immersed for 8 hours in a solution prepared by mixing 10 ml / water 87 ml, cracks gel occurs, it was difficult to ensure the integrity. Also, concentrated HCl aqueous solution (36 wt% HC
1) The gel obtained by immersing the gel in a mixed solution of 30 ml / acetone 10 ml / 87 ml of water for 8 hours in the same manner as in Example 1 was dried and calcined to examine the Ti concentration distribution of the glass. The elution was insufficient, the difference between the outside and the center was small, and the refractive index profile required for the r-GRIN lens was not obtained.

【0028】[0028]

【発明の効果】本発明は、SiO2 −TiO2 系湿潤ゲ
ルの収縮、割れ等の損傷を防止し、且つその管理を緩和
するだけでなく、短時間で容易にTiの濃度分布を形成、
そして乾燥できるので、これを焼成することにより大型
で残存気泡、失透のない良好な屈折率分布を有するシリ
カ系ガラスが容易に製造できる。
INDUSTRIAL APPLICABILITY The present invention not only prevents damage such as shrinkage and cracking of the SiO 2 —TiO 2 system wet gel and eases the management thereof, but also easily forms a Ti concentration distribution in a short time,
Since it can be dried, a large size silica glass having a good refractive index distribution free from residual bubbles and devitrification can be easily manufactured by baking this.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコンアルコキシド、Ti化合物、およ
び水を含む混合物をゲル化せしめ、SiO2 −TiO2
系湿潤ゲルを作製し、該湿潤ゲルをHClを3〜30重
量%、H2 2 を0.5〜20重量%、一種以上の有機
溶媒を1〜30重量%を含む水溶液中に浸して、外側か
らTi成分を溶出させることにより、ゲル中にTiの濃
度分布を形成せしめる工程を経た後にゲルを乾燥、焼成
することを特徴とする屈折率分布を有するシリカ系ガラ
スの製造方法。
1. A mixture containing a silicon alkoxide, a Ti compound, and water is gelled, and SiO 2 --TiO 2 is used.
System wet gel is prepared, and the wet gel is immersed in an aqueous solution containing 3 to 30% by weight of HCl, 0.5 to 20% by weight of H 2 O 2 and 1 to 30% by weight of one or more organic solvents. A method for producing a silica-based glass having a refractive index distribution, which comprises drying and firing the gel after a step of forming a Ti concentration distribution in the gel by eluting the Ti component from the outside.
【請求項2】 前記Ti化合物がTiアルコキシドであるこ
とを特徴とする請求項1記載の屈折率分布を有するシリ
カ系ガラスの製造方法。
2. The method for producing a silica-based glass having a refractive index distribution according to claim 1, wherein the Ti compound is a Ti alkoxide.
【請求項3】 前記水溶液中の有機溶媒の内の一種がア
セトンであることを特徴とする請求項1または2記載の
屈折率分布を有するシリカ系ガラスの製造方法。
3. The method for producing a silica-based glass having a refractive index distribution according to claim 1, wherein one of the organic solvents in the aqueous solution is acetone.
【請求項4】 前記工程を経た後のゲル中の液分の大半
を有機溶媒で交換した後、当該有機溶媒とCO2 との混合
系の超臨界条件下においてゲルの乾燥を行うことを特徴
とする請求項1〜3の何れか1項記載の屈折率分布を有
するシリカ系ガラスの製造方法。
4. The gel is dried under a supercritical condition of a mixed system of the organic solvent and CO 2 after exchanging most of the liquid content in the gel after the step with an organic solvent. The method for producing a silica-based glass having the refractive index distribution according to claim 1.
JP23884691A 1991-08-27 1991-08-27 Method for producing silica-based glass having a refractive index distribution Expired - Lifetime JPH0678169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23884691A JPH0678169B2 (en) 1991-08-27 1991-08-27 Method for producing silica-based glass having a refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23884691A JPH0678169B2 (en) 1991-08-27 1991-08-27 Method for producing silica-based glass having a refractive index distribution

Publications (2)

Publication Number Publication Date
JPH0558682A true JPH0558682A (en) 1993-03-09
JPH0678169B2 JPH0678169B2 (en) 1994-10-05

Family

ID=17036140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23884691A Expired - Lifetime JPH0678169B2 (en) 1991-08-27 1991-08-27 Method for producing silica-based glass having a refractive index distribution

Country Status (1)

Country Link
JP (1) JPH0678169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390474B2 (en) 2002-09-30 2008-06-24 Matsushita Electric Industrial Co., Ltd. Porous material and method for manufacturing same, and electrochemical element made using this porous material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390474B2 (en) 2002-09-30 2008-06-24 Matsushita Electric Industrial Co., Ltd. Porous material and method for manufacturing same, and electrochemical element made using this porous material

Also Published As

Publication number Publication date
JPH0678169B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
JPH0118007B2 (en)
JPS632901B2 (en)
JP2538527B2 (en) Method for producing metal oxide glass film and spherical fine particles
JPH0558682A (en) Production of silica-based glass having refractive index distribution
US5294573A (en) Sol-gel process of making gradient-index glass
KR100979119B1 (en) Method for manufacturing grin lens
US8763430B2 (en) Method for manufacturing grin lens
JP3476864B2 (en) Glass manufacturing method
JPH0977518A (en) Production of distributed index optical element
JPH09202652A (en) Production of refractive distribution type optical element
EP2123610B1 (en) Process for production of grin lenses
JPH0483719A (en) Production of silica-based glass having refractive index distribution
CA2009672C (en) Glass-like monoliths constituted by silicon oxide and titanium oxide and process for preparing them
JPH0416519A (en) Production of silica-based glass
KR100549422B1 (en) silica glass composition and manufacturing method of silica glass using the same
JPS6117443A (en) Porous glass and its production
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JPH06115949A (en) Production of silica glass form with refractive index distribution
JPS63295455A (en) Manufacture of silica glass-containing glass product
JP4790763B2 (en) GRIN lens
JP3519012B2 (en) Method for producing multi-component glass
JPS62187132A (en) Production of glass for optical fiber
JPH03187935A (en) Production of quartz glass material
JPH11343125A (en) Production of glass with distributed refractive indices
JPH04254420A (en) Production of quartz base glass body having refractive index distribution