JPH05316754A - Power converter having eccentric magnetic field compensation circuit - Google Patents

Power converter having eccentric magnetic field compensation circuit

Info

Publication number
JPH05316754A
JPH05316754A JP4120341A JP12034192A JPH05316754A JP H05316754 A JPH05316754 A JP H05316754A JP 4120341 A JP4120341 A JP 4120341A JP 12034192 A JP12034192 A JP 12034192A JP H05316754 A JPH05316754 A JP H05316754A
Authority
JP
Japan
Prior art keywords
reactor
transformer
power converter
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4120341A
Other languages
Japanese (ja)
Inventor
Naotaka Honda
尚孝 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP4120341A priority Critical patent/JPH05316754A/en
Publication of JPH05316754A publication Critical patent/JPH05316754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compensate a DC component contained on the AC side of a power converter completely and to perform control stably. CONSTITUTION:A saturable reactor 15 and a reactor 16 which causes exciting current proportionate to the number of interlinking magnetic flux to flow, are connected in parallel on the primary side of a transformer 11. When DC voltage is generated in this transformer 11, the DC component, proportionate to the number of the interlinking magnetic flux, of the exciting current flowing through the reactors 15 and 16 is detected by a circuit composed of a resistor 19, a capacitor 20, and an operational amplifier 23, and the zero point of a sine-wave generator 21 is shifted, and the eccentric magnetization of the transformer 11 is completely compensated. Consequently, possibility of an unstable phenomenon by overcompensation becomes very slim, and it is possible to widen the gain tolerance of the control system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、逆変換または順変換す
る電力変換装置に係り、その交流側電圧に含まれる直流
分による変圧器の偏磁を補償するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power conversion device that performs reverse conversion or forward conversion, and relates to a device for compensating for the bias magnetization of a transformer due to the DC component contained in the AC side voltage.

【0002】[0002]

【従来の技術】従来の電力変換装置の直流分補償回路
は、特願平1−128384 号に記載のように、非線形の励磁
特性を有するリアクトルおよびダイオードによる不感帯
を設けて、偏磁を検出していた。
2. Description of the Related Art As described in Japanese Patent Application No. 1-128384, a conventional DC component compensating circuit for a power converter is provided with a dead zone formed by a reactor and a diode having a non-linear excitation characteristic to detect a demagnetization. Was there.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、リア
クトルの飽和特性を利用して偏磁の検出を行なっている
が、リアクトルの飽和時の励磁電流は鎖交磁束数に対し
て比例以上に増加するので、等価的に制御系のゲインが
急増して過補償になりやすい課題があった。また、制御
回路内のダイオードによる不感帯を設けているために励
磁電流の検出量の一部分を検出していないので、電力変
換装置に発生する直流分を完全に補償できなかった。
In the above-mentioned prior art, the bias current is detected by utilizing the saturation characteristic of the reactor. However, the exciting current when the reactor is saturated is more than proportional to the number of flux linkages. Since it increases, there is a problem that the gain of the control system rapidly increases equivalently and overcompensation is likely to occur. Further, since a part of the detected amount of the exciting current is not detected because the dead zone is provided by the diode in the control circuit, the direct current component generated in the power converter cannot be completely compensated.

【0004】本発明の目的は、逆変換または順変換する
電力変換装置の交流側に含まれる直流分を完全に補償
し、しかも、安定に制御することにある。
An object of the present invention is to completely compensate for the direct current component contained in the alternating current side of the power conversion device for reverse conversion or forward conversion and to control it stably.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
には、磁気飽和特性の異なる複数のリアクトルを直列接
続し、交流電圧に含まれる直流分を検出し、制御回路内
の基準信号の零点をずらすことで達成される。
In order to solve the above problems, a plurality of reactors having different magnetic saturation characteristics are connected in series to detect a DC component contained in an AC voltage, and a zero point of a reference signal in a control circuit is detected. It is achieved by shifting.

【0006】[0006]

【作用】制御回路内のオフセットまたは主回路内の自己
消弧形素子のオン,オフのバラツキ等で電力変換装置の
交流側に直流分が発生すると可飽和リアクトルが飽和
し、さらに、鎖交磁束数に比例した励磁電流を流すリア
クトルによって磁気飽和量に比例した偏磁量を検出し
て、過補償することなく安定に制御できる。
When the DC component is generated on the AC side of the power converter due to the offset in the control circuit or the variation of ON / OFF of the self-arc-extinguishing element in the main circuit, the saturable reactor is saturated, and the flux linkage is further increased. It is possible to detect the amount of eccentricity that is proportional to the amount of magnetic saturation with a reactor that supplies an exciting current that is proportional to the number, and to perform stable control without overcompensation.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1により説明す
る。主回路100は、自己消弧形素子1〜4とダイオー
ド5〜8からなるブリッジ回路と、変圧器11と、リア
クトル12とコンデンサ13からなる交流フィルタと、
直流電圧源9で構成され、直流電力を交流電力に変換す
る。制御回路101は、正弦波発生器21と、交流電圧
を検出する変圧器14と、正弦波発生器21と変圧器1
4の差を増幅する加算増幅器24と、加算増幅器24の
出力と三角波発生器22の出力を比較する比較器25で
構成され、PWM信号比較器25から出力される。この
PWM信号をゲート回路26で自己消弧形素子1〜4を
駆動するのに必要な信号を作成し、駆動回路10で自己
消弧形素子1〜4を駆動する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The main circuit 100 includes a bridge circuit including self-extinguishing elements 1 to 4 and diodes 5 to 8, a transformer 11, an AC filter including a reactor 12 and a capacitor 13.
The DC voltage source 9 is used to convert DC power into AC power. The control circuit 101 includes a sine wave generator 21, a transformer 14 that detects an AC voltage, a sine wave generator 21, and a transformer 1.
It is composed of a summing amplifier 24 that amplifies the difference of 4 and a comparator 25 that compares the output of the summing amplifier 24 and the output of the triangular wave generator 22, and is output from the PWM signal comparator 25. The gate circuit 26 creates a signal necessary for driving the self-extinguishing elements 1 to 4 from this PWM signal, and the drive circuit 10 drives the self-extinguishing elements 1 to 4.

【0008】また、可飽和リアクトル15と鎖交磁束数
に比例した励磁電流を流すリアクトル16の直列接続し
たものを変圧器11と並列に接続し、変流器17と抵抗
器18でリアクトル15,16に流れる電流を検出す
る。この出力を抵抗器19,コンデンサ20,演算増幅
器23からなる回路で積分し、加算増幅器24に入力す
る。
A series connection of a saturable reactor 15 and a reactor 16 for flowing an exciting current proportional to the number of flux linkages is connected in parallel with a transformer 11, and a current transformer 17 and a resistor 18 are used to connect the reactor 15, The current flowing through 16 is detected. This output is integrated by a circuit composed of the resistor 19, the capacitor 20, and the operational amplifier 23, and is input to the adding amplifier 24.

【0009】図2〜図4により、図1で示した偏磁補償
回路の動作を詳しく説明する。図2(1)は可飽和リアク
トル15およびリアクトル16の励磁特性、図2(2)は
可飽和リアクトル15とリアクトル16の直列接続によ
る励磁特性、図2(3)は変圧器11に対する可飽和リア
クトル15およびリアクトル16の励磁特性を示す。図
2(1)に示すように、可飽和リアクトル15は鎖交磁束
数Ф1 以上で飽和し、リアクトル16は鎖交磁束数Ф3
までは飽和しない。この特性の異なる2つのリアクトル
を直列に接続することにより、図2(2)のような特性を
得ることができる。また、図2(3)に示すように、変圧
器11はФ1 よりも大きく、Ф1〜Ф3の間で飽和する特
性をもたせる。つまり、リアクトル16は変圧器11の
飽和する鎖交磁束数の値よりもわずかに大きい特性をも
たせることにより、可飽和リアクトル15の飽和領域に
おいて励磁電流が鎖交磁束数に比例して増加することに
なるので、これを検出すれば変圧器11の偏磁量に比例
した量を検出することができる。
The operation of the bias compensating circuit shown in FIG. 1 will be described in detail with reference to FIGS. 2 (1) is the excitation characteristics of the saturable reactor 15 and the reactor 16, FIG. 2 (2) is the excitation characteristic of the saturable reactor 15 and the reactor 16 connected in series, and FIG. 2 (3) is the saturable reactor for the transformer 11. 15 shows the excitation characteristics of the reactor 15 and the reactor 16. As shown in FIG. 2 (1), saturable reactor 15 is saturated by the number of interlinked magnetic fluxes .PHI 1 or more, the reactor 16 is the number of interlinked magnetic fluxes .PHI 3
Does not saturate until. By connecting two reactors having different characteristics in series, the characteristics as shown in FIG. 2 (2) can be obtained. Further, as shown in FIG. 2C, the transformer 11 has a characteristic larger than Φ 1 and saturated between Φ 1 and Φ 3 . That is, the reactor 16 has a characteristic that is slightly larger than the value of the number of flux linkages that the transformer 11 saturates, so that the exciting current increases in proportion to the number of flux linkages in the saturation region of the saturable reactor 15. Therefore, if this is detected, an amount proportional to the amount of magnetic bias of the transformer 11 can be detected.

【0010】図3は変圧器の1次側交流電圧に直流分が
含まれていないときの可飽和リアクトル15とリアクト
ル16の直列接続による励磁特性を示す。図4は直流分
が含まれているときの可飽和リアクトル15とリアクト
ル16の直列接続による励磁特性を示す。図3ではリア
クトル15,16には正負対称の電流が流れ、図1の演
算増幅器23の出力は直流分は発生しない。しかし、図
4のように変圧器11の1次側に直流電圧が含まれる
と、可飽和リアクトル15とリアクトル16の直列接続
による励磁特性は磁束が正の方向に偏る。すると、リア
クトル15,16の電流は正負非対称となり、演算増幅
器23の出力には鎖交磁束数に比例した直流分が発生す
る。この直流分を加算増幅器24に入力すれば、基準電
圧の零点をずらして、変圧器11に発生する直流分を完
全に補償することができる。
FIG. 3 shows the excitation characteristics of the saturable reactor 15 and the reactor 16 connected in series when the primary side AC voltage of the transformer does not include a DC component. FIG. 4 shows the excitation characteristics of the saturable reactor 15 and the reactor 16 connected in series when a DC component is included. In FIG. 3, positive and negative symmetrical currents flow in the reactors 15 and 16, and the output of the operational amplifier 23 in FIG. 1 does not generate a DC component. However, when a DC voltage is included on the primary side of the transformer 11 as shown in FIG. 4, the excitation characteristic of the series connection of the saturable reactor 15 and the reactor 16 is such that the magnetic flux is biased in the positive direction. Then, the currents of the reactors 15 and 16 are asymmetrical in positive and negative, and a DC component proportional to the number of interlinkage magnetic flux is generated in the output of the operational amplifier 23. By inputting this DC component to the summing amplifier 24, the zero point of the reference voltage can be shifted to completely compensate the DC component generated in the transformer 11.

【0011】図1では単相インバータに適用した場合の
実施例であったが、本発明は三相インバータにも適用で
きる。図5に主回路および直流分補正値の生成回路を示
す。三相PWMインバータ28は、直流電圧源27を入
力として、出力に変圧器29を接続する。単相の場合と
同様に、可飽和リアクトル30〜32および鎖交磁束数
に比例した励磁電流を流すリアクトル33〜35を直列
接続したものを変圧器29と並列に接続する。この励磁
電流を変流器36〜38と、抵抗器39〜41で検出
し、抵抗器42〜44,コンデンサ45〜47,演算増
幅器48〜50からなる回路によって積分し、各相の励
磁電流の直流分を検出する。この演算増幅器48〜50
の出力を補正値として、PWM生成回路51内の各相の
基準電圧の零点をずらす。以上の構成により、三相PW
Mインバータ28の各相に発生する直流分を補正し、変
圧器29の偏磁を防止する。
Although FIG. 1 shows the embodiment applied to a single-phase inverter, the present invention can also be applied to a three-phase inverter. FIG. 5 shows a main circuit and a DC correction value generation circuit. The three-phase PWM inverter 28 receives the DC voltage source 27 as an input and connects a transformer 29 to the output. As in the case of the single phase, the saturable reactors 30 to 32 and the reactors 33 to 35 that flow an exciting current proportional to the number of flux linkages are connected in series and are connected in parallel with the transformer 29. This exciting current is detected by the current transformers 36 to 38 and the resistors 39 to 41, integrated by a circuit including the resistors 42 to 44, the capacitors 45 to 47, and the operational amplifiers 48 to 50, and the exciting currents of the respective phases are detected. DC component is detected. This operational amplifier 48-50
Is used as a correction value to shift the zero point of the reference voltage of each phase in the PWM generation circuit 51. With the above configuration, the three-phase PW
The DC component generated in each phase of the M inverter 28 is corrected to prevent the transformer 29 from being magnetized.

【0012】さらに、本発明は逆変換装置だけでなく、
順変換装置にも適用できる。図6に、コンバータに適用
した実施例を示す。主回路は、リアクトル54とダイオ
ード55〜58と自己消弧形素子59〜62とからなる
ブリッジ回路と、コンデンサ63と、負荷64と、交流
電圧源52で構成される。制御回路は、入力電流を入力
電圧と同位相の正弦波とするために、次のような制御を
行なう。入力電圧を変圧器53で検出し、入力電圧と同
位相の電流指令値を電流基準正弦波発生器72で生成す
る。そして、入力電流値を変流器68および抵抗器70
で検出し、この入力電流と電流指令値を演算増幅器77
で演算する。この出力と三角波発生器73の出力を比較
器78で比較して、PWM信号を生成する。このPWM
信号からゲート回路79で自己消弧形素子を駆動するの
に必要な信号を作成し、駆動回路80は自己消弧形素子
59〜62を駆動する。
Further, the present invention is not limited to the inverse conversion device,
It can also be applied to a forward conversion device. FIG. 6 shows an embodiment applied to the converter. The main circuit includes a bridge circuit including a reactor 54, diodes 55 to 58, and self-extinguishing elements 59 to 62, a capacitor 63, a load 64, and an AC voltage source 52. The control circuit performs the following control in order to make the input current a sine wave having the same phase as the input voltage. The transformer 53 detects the input voltage, and the current reference sine wave generator 72 generates a current command value in phase with the input voltage. Then, the input current value is changed to the current transformer 68 and the resistor 70.
Detected by and the input current and the current command value are detected by the operational amplifier 77.
Calculate with. A comparator 78 compares this output with the output of the triangular wave generator 73 to generate a PWM signal. This PWM
The gate circuit 79 creates from the signals the signals needed to drive the self-turn-off elements, and the drive circuit 80 drives the self-turn-off elements 59-62.

【0013】変圧器27と可飽和リアクトル65および
鎖交磁束数に比例した励磁電流を流すリアクトル66を
交流電圧源52と並列に接続し、励磁電流の直流分を検
出する。この励磁電流を変流器67と抵抗器69で検出
して抵抗器71,コンデンサ74,演算増幅器75から
なる回路によって積分し、この出力を補償値として電流
指令値に演算増幅器76で加える。
A transformer 27, a saturable reactor 65, and a reactor 66 for supplying an exciting current proportional to the number of interlinking magnetic fluxes are connected in parallel with an AC voltage source 52 to detect a direct current component of the exciting current. This exciting current is detected by the current transformer 67 and the resistor 69, integrated by the circuit consisting of the resistor 71, the capacitor 74, and the operational amplifier 75, and this output is added as a compensation value to the current command value by the operational amplifier 76.

【0014】このPWMコンバータ装置は、電源電圧V
sとコンバータ電圧Vconの電圧差がリアクトル54に印
加し、この電圧の大きさと位相で入力電流を制御する。
ここで、PWMコンバータに直流分が発生しても以上の
構成で直流分を補償し、電源側の変圧器の偏磁を防止す
ることができる。ここでは単相コンバータの実施例を示
したが、インバータの場合と同様に三相コンバータへ適
用しても同じ効果が得られる。
This PWM converter device has a power supply voltage V
The voltage difference between s and the converter voltage Vcon is applied to the reactor 54, and the input current is controlled by the magnitude and phase of this voltage.
Here, even if a direct current component is generated in the PWM converter, the direct current component can be compensated by the above configuration, and the magnetic bias of the transformer on the power supply side can be prevented. Although the embodiment of the single-phase converter is shown here, the same effect can be obtained by applying it to the three-phase converter as in the case of the inverter.

【0015】[0015]

【発明の効果】本発明により、逆変換または順変換を行
なう電力変換装置において、励磁電流が鎖交磁束数に比
例したリアクトルと可飽和リアクトルを直列接続するこ
とにより、過補償することなく安定に制御でき、また、
リアクトルの製作のバラツキが比較的大きくても制御が
うまくいき、制御系のゲインの許容範囲をはるかに広く
とることができる。
According to the present invention, in a power converter that performs reverse conversion or forward conversion, by connecting a reactor whose exciting current is proportional to the number of flux linkages and a saturable reactor in series, it is possible to stabilize without overcompensating. Controllable,
Even if there are relatively large variations in the manufacturing of the reactor, the control works well, and the allowable range of the gain of the control system can be made much wider.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を単相インバータに適用した場合の実施
例を示す図である。
FIG. 1 is a diagram showing an embodiment when the present invention is applied to a single-phase inverter.

【図2】リアクトルの励磁特性図である。FIG. 2 is an excitation characteristic diagram of a reactor.

【図3】過飽和リアクトル15とリアクトル16の直列
接続による励磁特性(変圧器の1次側交流電圧に直流分
が含まれていないとき)を示す図である。
FIG. 3 is a diagram showing an excitation characteristic (when a DC component is not included in a primary side AC voltage of a transformer) due to a series connection of a supersaturated reactor 15 and a reactor 16.

【図4】過飽和リアクトル15とリアクトル16の直列
接続による励磁特性(変圧器の1次側交流電圧に直流分
が含まれているとき)を示す図である。
FIG. 4 is a diagram showing an excitation characteristic (when a DC component is included in a primary side AC voltage of a transformer) due to a series connection of a supersaturated reactor 15 and a reactor 16.

【図5】本発明を三相インバータに適用した実施例を示
す図である。
FIG. 5 is a diagram showing an embodiment in which the present invention is applied to a three-phase inverter.

【図6】本発明をコンバータに適用した実施例を示す図
である。
FIG. 6 is a diagram showing an embodiment in which the present invention is applied to a converter.

【符号の説明】[Explanation of symbols]

1〜4,59〜62…自己消弧形素子、5〜8,55〜
58…ダイオード、9…直流電圧源、10…駆動回路、
11,14,29,53…変圧器、12,16,33〜
35,54,66…リアクトル、13,20,45〜4
7,63,74…コンデンサ、15,30〜32…可飽
和リアクトル、17,36〜38,67〜68…変流
器、18〜19,39〜44,67〜71…抵抗器、2
1…正弦波発生器、22,73…三角波発生器、23,
48〜50,75〜77…演算増幅器、24…加算増幅
器、25,78…比較器、26,79…ゲート回路、2
7…直流電圧源、28…三相PWMインバータ、51…
PWM生成回路、52…交流電圧源、64…負荷、65
…可飽和リアクトル、72…電流基準正弦波発生器、8
0…駆動回路、100…主回路、101…制御回路。
1-4, 59-62 ... Self-extinguishing element, 5-8, 55-
58 ... Diode, 9 ... DC voltage source, 10 ... Driving circuit,
11, 14, 29, 53 ... Transformer, 12, 16, 33-
35, 54, 66 ... Reactor, 13, 20, 45-4
7, 63, 74 ... Capacitor, 15, 30-32 ... Saturable reactor, 17, 36-38, 67-68 ... Current transformer, 18-19, 39-44, 67-71 ... Resistor, 2
1 ... Sine wave generator, 22, 73 ... Triangle wave generator, 23,
48 to 50, 75 to 77 ... Operational amplifier, 24 ... Summing amplifier, 25, 78 ... Comparator, 26, 79 ... Gate circuit, 2
7 ... DC voltage source, 28 ... Three-phase PWM inverter, 51 ...
PWM generation circuit, 52 ... AC voltage source, 64 ... Load, 65
... Saturable reactor, 72 ... Current reference sine wave generator, 8
0 ... Drive circuit, 100 ... Main circuit, 101 ... Control circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基準信号波を発生する信号発生装置と、搬
送波を発生する搬送波発生装置と、これら2つを比較す
る比較器と、この比較器出力の信号によって駆動される
逆変換または順変換する電力変換装置において、交流側
に特性の異なる複数のリアクトルを直列に接続し、その
接続線に取り付けた変流器と、その変流器2次側に取り
付けた抵抗器と、その抵抗器の両端電圧を積分する回路
と、その積分値と基準信号波を演算する演算器とを設け
たことを特徴とする偏磁補償回路を用いた電力変換装
置。
1. A signal generator for generating a reference signal wave, a carrier wave generator for generating a carrier wave, a comparator for comparing these two, and an inverse conversion or forward conversion driven by a signal at the output of the comparator. In the power converter, a plurality of reactors having different characteristics are connected in series on the AC side, the current transformer attached to the connection line, the resistor attached to the secondary side of the current transformer, and the resistor A power converter using a bias magnetic compensating circuit, comprising a circuit for integrating a voltage across both ends and a calculator for calculating the integrated value and a reference signal wave.
【請求項2】請求項1における偏磁補償回路およびそれ
を用いた電力変換装置において、交流側に可飽和リアク
トルと鎖交磁束数に比例した励磁電流を流すリアクトル
とを設けたことを特徴とする偏磁補償回路を用いた電力
変換装置。
2. The bias compensating circuit and the power converter using the same according to claim 1, wherein a saturable reactor and a reactor for supplying an exciting current proportional to the number of flux linkages are provided on the AC side. Converter using a bias magnetic compensating circuit.
【請求項3】請求項1における偏磁補償回路およびそれ
を用いた電力変換装置において、交流側に接続されるリ
アクトルを電力変換装置の内部または外部に接続される
変圧器よりも飽和しやすいリアクトルと、飽和しにくい
リアクトルにすることを特徴とする偏磁補償回路を用い
た電力変換装置。
3. A bias magnetic compensating circuit according to claim 1, and a power converter using the same, wherein a reactor connected to an alternating current side is more likely to be saturated than a transformer connected inside or outside the power converter. And a power converter using a bias magnetic compensating circuit, which is characterized in that the reactor is hard to saturate.
JP4120341A 1992-05-13 1992-05-13 Power converter having eccentric magnetic field compensation circuit Pending JPH05316754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120341A JPH05316754A (en) 1992-05-13 1992-05-13 Power converter having eccentric magnetic field compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120341A JPH05316754A (en) 1992-05-13 1992-05-13 Power converter having eccentric magnetic field compensation circuit

Publications (1)

Publication Number Publication Date
JPH05316754A true JPH05316754A (en) 1993-11-26

Family

ID=14783852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120341A Pending JPH05316754A (en) 1992-05-13 1992-05-13 Power converter having eccentric magnetic field compensation circuit

Country Status (1)

Country Link
JP (1) JPH05316754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184282B2 (en) 2005-03-11 2007-02-27 Origin Electric Company, Limited Single-phase power conversion device and three-phase power conversion device
WO2010110342A1 (en) * 2009-03-25 2010-09-30 株式会社 明電舎 Power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184282B2 (en) 2005-03-11 2007-02-27 Origin Electric Company, Limited Single-phase power conversion device and three-phase power conversion device
WO2010110342A1 (en) * 2009-03-25 2010-09-30 株式会社 明電舎 Power conversion device

Similar Documents

Publication Publication Date Title
Hur et al. A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter system
US3970916A (en) Circuit arrangement for producing an alternating voltage
KR900004349B1 (en) Dc component corrector for inverter output voltage
JP3311743B2 (en) Control method of resonant inverter
US20130163292A1 (en) Mid-point voltage control
KR100233956B1 (en) Voltage type inverter and that control method
Thorborg Staircase PWM an uncomplicated and efficient modulation technique for ac motor drives
JP5323426B2 (en) Power converter
JP2607648B2 (en) Power converter
JP3167936B2 (en) Power converter
JPH0777516B2 (en) Output DC component prevention device for multi-phase inverter
JPH05316754A (en) Power converter having eccentric magnetic field compensation circuit
JP2527911B2 (en) PWM converter
US4764859A (en) Method and apparatus for controlling circulating-current type cycloconverter
JP3222489B2 (en) Control method of three-phase three-wire neutral point-clamped inverter
JPH0628517B2 (en) Power converter
JP3070314B2 (en) Inverter output voltage compensation circuit
JPH05111164A (en) Power converter
JPH0728538B2 (en) PWM inverter control device
JPH0748951B2 (en) Power converter
JP3274208B2 (en) Deflection control method
JP3590175B2 (en) PWM converter
JPS63245268A (en) Controlling method for current type pwm converter
JPH05184150A (en) Series voltage compensator
JP3049673B2 (en) Switching power supply