JPH05316734A - Dc power source - Google Patents

Dc power source

Info

Publication number
JPH05316734A
JPH05316734A JP4119330A JP11933092A JPH05316734A JP H05316734 A JPH05316734 A JP H05316734A JP 4119330 A JP4119330 A JP 4119330A JP 11933092 A JP11933092 A JP 11933092A JP H05316734 A JPH05316734 A JP H05316734A
Authority
JP
Japan
Prior art keywords
iron core
terminals
plane
terminal
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4119330A
Other languages
Japanese (ja)
Inventor
Tatsuyoshi Sueishi
辰義 居石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4119330A priority Critical patent/JPH05316734A/en
Publication of JPH05316734A publication Critical patent/JPH05316734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PURPOSE:To reduce a voltage drop and an eddy current loss by improving utilization rate of a primary winding provided on a core leg of a two-leg core and reducing a magnetic flux and an inductance generated due to a commutating current. CONSTITUTION:Secondary windings of core legs are formed of divided windings 531, 532, 541, 542. Rectifiers 61, 63 and 62, 64 are so connected that currents flowing to the windings 513, 541 and 532, 542 become reverse to constitute transformer rectifiers independent for the legs so that AC currents flow to primary windings of the respective legs. A combination of terminals in which communicating currents simultaneously flow reversely of terminals u1, x1, y1, v1, u2, x2, y2, v2 are set to one, directly opposed to be extended thereby to reduce magnetic flux and commutating inductance to be generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、アルミ表面処理や電
解などに必要な低電圧大電流の直流を得るための直流電
源装置、特に商用周波の交流電力を整流器で整流して得
られる直流電力をパワートランジスタなどの高速スイッ
チング素子を使用したインバータによってkHzレベルの
高周波交流に変換しこれを改めて整流器によって整流し
て直流電力を得る直流電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power supply device for obtaining a direct current of a low voltage and a large current necessary for aluminum surface treatment, electrolysis, etc., and particularly DC power obtained by rectifying commercial frequency AC power with a rectifier. The present invention relates to a direct-current power supply device for converting direct current into high-frequency alternating current at a kHz level by an inverter using a high-speed switching element such as a power transistor, and rectifying this by a rectifier to obtain direct-current power.

【0002】[0002]

【従来の技術】近年の電力用半導体素子の性能向上によ
り大電流を高周波でスイッチングすることが可能とな
り、変圧器やリアクトルの小型軽量化を目的としたイン
バータスイッチング式直流電源装置の開発が盛んに行わ
れている。図4はこのような方式による従来の直流電源
装置の回路図である。この図において、50Hz又は60
Hzの商用周波の三相電源1から得られる三相交流電力を
整流器2で整流し平滑コンデンサ3によって整流器2の
出力電圧に含まれる脈流成分を低減した直流電力を得、
この直流電力をインバータ4で数kHzの高周波単相交流
に変換した上で一次側が並列接続された整流器用変圧器
5Aで所定の低電圧に降圧して整流器6Aで整流して直
流電力が得られ、これが負荷9に供給される。
2. Description of the Related Art Recent improvements in the performance of power semiconductor devices have made it possible to switch large currents at high frequencies, and active development of inverter switching DC power supply devices aimed at reducing the size and weight of transformers and reactors. Has been done. FIG. 4 is a circuit diagram of a conventional DC power supply device of such a system. In this figure, 50Hz or 60
The three-phase AC power obtained from the three-phase power source 1 having a commercial frequency of Hz is rectified by the rectifier 2 and the smoothing capacitor 3 obtains the DC power in which the pulsating current component included in the output voltage of the rectifier 2 is reduced,
This DC power is converted into a high-frequency single-phase AC of several kHz by the inverter 4, and then it is stepped down to a predetermined low voltage by the rectifier transformer 5A whose primary side is connected in parallel and rectified by the rectifier 6A to obtain DC power. , Which is supplied to the load 9.

【0003】インバータ4は図示しない制御回路が出力
する制御パルスによって符号を付さない4つのパワトラ
ンジスタのオン、オフを制御して正負が交互に入れ代わ
る高周波の交流を出力するものなので、この直流電源装
置は負荷直流電圧又は電流を高速度かつ高精度に制御す
ることが可能であるという特長も持っている。整流器用
変圧器5Aは2脚鉄心50と2本の鉄心脚501,50
2にそれぞれ設けられた一次巻線と二次巻線とからなっ
ており、第1の鉄心脚501には一次巻線51Aと二次
巻線53、第2の鉄心脚502には一次巻線52Aと二
次巻線54がそれぞれ設けられており、図の・印で示す
極性から判るようにそれぞれ減極性になっている。
Since the inverter 4 controls ON / OFF of four power transistors which are not designated by a control pulse output from a control circuit (not shown) and outputs a high frequency AC alternating positive and negative, this DC power source The device also has the feature that it can control the load DC voltage or current at high speed and with high accuracy. The rectifier transformer 5A includes a two-leg iron core 50 and two iron leg legs 501 and 50.
2 is composed of a primary winding and a secondary winding, each of which has a primary winding 51A and a secondary winding 53 on the first iron core leg 501, and a primary winding on the second iron core leg 502. 52A and a secondary winding 54 are provided, respectively, and each has a depolarization, as can be seen from the polarity indicated by a mark in the figure.

【0004】二次巻線52Aの端子を図示のようにu,
x、二次巻線54の端子をy,vとする。端子uには整
流素子61Aのアノード側が、端子vには整流素子62
Aのアノード側がそれぞれ接続されていてこれら整流素
子61A,62Aのカソード側がP極である直流リード
81に接続される。また、端子xとyは接続されてN極
である直流リード82に接続される。それぞれの巻線の
極性は図示のように減極性になっているので、直流リー
ド82を基準にすると端子uとvに誘起される電圧は互
いに極性が反対、すなわち、位相にして180°異なっ
ている。したがって、これらの端子u,vに接続された
整流器6Aの整流素子61A,62Aは、二次巻線5
3,54に誘起される電圧が零でないときにはどちらか
一方だけがオンの状態になって二次巻線53,54の一
方にだけ負荷9に流れる負荷電流が流れ、零の場合には
負荷電流の2分の1ずつを分担して流れ、結果的に整流
器6Aは全波整流波形を出力することになる。
The terminal of the secondary winding 52A is connected to u,
x, and the terminals of the secondary winding 54 are y and v. The anode side of the rectifying element 61A is connected to the terminal u, and the rectifying element 62A is connected to the terminal v.
The anode sides of A are connected to each other, and the cathode sides of these rectifying elements 61A and 62A are connected to a DC lead 81 which is a P pole. Further, the terminals x and y are connected to each other and connected to the DC lead 82 which is an N pole. Since the polarity of each winding is depolarized as shown in the figure, the voltages induced at the terminals u and v have opposite polarities with respect to the DC lead 82, that is, they differ in phase by 180 °. There is. Therefore, the rectifying elements 61A and 62A of the rectifier 6A connected to these terminals u and v are
When the voltage induced in 3, 54 is not zero, only one of them is in the ON state and the load current flowing in the load 9 flows in only one of the secondary windings 53, 54. Halves of the rectifier 6A flow in a shared manner, and as a result, the rectifier 6A outputs a full-wave rectified waveform.

【0005】周知のように整流素子61A,整流素子6
2Aがオフからオン又はオンからオフに移行する過程で
両方の整流素子61A,62Aがオンの状態になって循
環電流が流れる期間があり、転流期間、この循環電流は
転流電流と呼ばれている。この転流電流は後述するよう
に、時間的に急激に変化する波形であり、その循環回路
は、端子uから始めると整流素子61A、整流素子62
A、端子v、二次巻線54、端子y、端子x、二次巻線
53を経て端子uに戻る閉回路である。二次巻線53,
54に流れる電流に対応して一次巻線51A,52Aに
も電流が流れてイバータ4を含む一次側回路を流れる。
このような循環回路及び一次側回路のインダクタンスと
循環電流の時間微分との積に相当する電圧降下が生じて
直流電源装置の出力電圧としての直流電圧が小さくな
り、更には、急激に時間変化する循環電流によって生ず
る漏れ磁束が電磁誘導作用によって接続リード及び近傍
の金属性構造物に漂遊損を発生させ、効率の低下と局部
加熱による装置寿命低下の原因になる。なお、一次巻線
51A,52Aに対して二次巻線53,54の巻数はは
るかに小さいので、実際には転流に影響するインダクタ
ンスは整流器用変圧器5Aの漏れインダクタンスと二次
側回路の漂遊インダクタンスであり、一次側回路のイン
ダクタンスは実質的に無視できるのが普通である。
As is well known, the rectifying element 61A and the rectifying element 6
There is a period in which both the rectifying elements 61A and 62A are in the on state and a circulating current flows in the process in which 2A shifts from off to on or from on to off. The commutation period is called the commutation current. ing. As will be described later, this commutation current has a waveform that changes abruptly with time, and the circulation circuit thereof starts from the terminal u and has a rectifying element 61A and a rectifying element 62.
It is a closed circuit that returns to terminal u via A, terminal v, secondary winding 54, terminal y, terminal x, secondary winding 53. Secondary winding 53,
A current also flows in the primary windings 51A and 52A corresponding to the current flowing in 54, and flows in the primary side circuit including the inverter 4.
A voltage drop corresponding to the product of the inductance of the circulation circuit and the primary circuit and the time derivative of the circulation current occurs, the DC voltage as the output voltage of the DC power supply device becomes small, and further, the time changes rapidly. The leakage magnetic flux generated by the circulating current causes stray loss in the connecting leads and the metallic structure in the vicinity due to the electromagnetic induction effect, which causes a decrease in efficiency and a decrease in device life due to local heating. Since the number of turns of the secondary windings 53 and 54 is much smaller than that of the primary windings 51A and 52A, the inductance that affects commutation is actually the leakage inductance of the rectifier transformer 5A and the secondary side circuit. It is a stray inductance, and the inductance of the primary circuit is usually substantially negligible.

【0006】図5は図4の回路図に基づいて構成された
従来の直流電源装置の2面図であり、図5(a)は正面
図、図5(b)は側面図である。この図において、直流
リード81,82は平角導体からなっていて互いに平行
に配置され図の上側の直流リード82がN極、下の直流
リード81がP極であり、整流器用変圧器5Aはこれら
2本の直流リード81,82の間に配置されている。整
流器6Aの整流素子61A,62Aは半導体素子を図の
ような形状にモールドして1つの面に両端子を引き出し
ボルト締めで接続リードに接続する構成のもので、直流
リード81の一方の幅面にこの図ではそれぞれが整流要
素の記号を模式的に図示してある3つの半導体素子から
なる整流素子61A,62Aが取付けられている。モー
ルド樹脂部を取付けてあるので電気的には整流素子61
A,62Aは直流リード81に対して絶縁されている。
整流素子の数は直流電源装置の定格電流と採用される整
流素子の電流容量との関係から決まるものであり3つと
いう数に限定されるものではない。
FIG. 5 is a two-sided view of a conventional DC power supply device constructed on the basis of the circuit diagram of FIG. 4, FIG. 5 (a) is a front view, and FIG. 5 (b) is a side view. In this figure, the DC leads 81 and 82 are made of rectangular conductors and are arranged in parallel to each other. The upper DC lead 82 in the figure is the N pole, the lower DC lead 81 is the P pole, and the rectifier transformer 5A is It is arranged between two DC leads 81, 82. The rectifiers 61A and 62A of the rectifier 6A have a structure in which a semiconductor element is molded into a shape as shown in the figure and both terminals are drawn out on one surface and connected to a connection lead by tightening bolts. In this figure, rectifying elements 61A and 62A made up of three semiconductor elements, each of which schematically shows the symbol of the rectifying element, are attached. Since the molded resin part is attached, the rectifying element 61 is electrically connected.
A and 62A are insulated from the DC lead 81.
The number of rectifying elements is determined by the relationship between the rated current of the DC power supply device and the current capacity of the rectifying elements used, and is not limited to three.

【0007】2脚鉄心50の一方の鉄心脚501に設け
られた二次巻数53の上部から端子xを介して接続リー
ド731が引き出されて直流リード82にボルト締めで
接続され、下部から端子uを介して接続リード711が
引き出されて整流素子61Aのアノード側に接続されて
おり、整流素子61Aのカソード側は接続リード721
を介して直流リード81に接続されている。鉄心脚50
2に設けられている二次巻線54の上部から端子yを介
して引き出された上部の接続リード732、下部の端子
vを介して接続リード721及び整流素子62Aの構成
も同様であり、図5(a)に示すように左右対称になっ
ている。
The connecting lead 731 is drawn out from the upper part of the secondary winding number 53 provided on one iron core leg 501 of the two-leg iron core 50 through the terminal x and connected to the DC lead 82 by bolting, and the terminal u from the lower part. The connecting lead 711 is drawn out through the connection lead 711 and is connected to the anode side of the rectifying element 61A, and the cathode side of the rectifying element 61A is connected to the connecting lead 721.
It is connected to the DC lead 81 via. Iron core leg 50
The configuration of the upper connection lead 732 drawn out from the upper part of the secondary winding 54 provided at 2 via the terminal y, the connection lead 721 via the lower terminal v, and the rectifying element 62A is also the same. As shown in FIG. 5 (a), it is symmetrical.

【0008】前述の転流電流の経路を図5(a)に矢印
で示してあるが、概略長方形の辺に沿った経路となって
いる。図6は図4に示した各部の電圧、電流の時間的変
化を示す波形図である。この図において、横軸は時間て
あり、インバータ4が生成する交流の2周期分を図示し
てあり、最上段の図は整流器用変圧器5Aの一次電圧V
1 で方形波交流であり、時点t1 〜t2 の正の期間と時
点t3 〜t4 の負の期間の間に時点t2 〜t3の零の期
間があり、インバータ4の制御信号でこれらの期間の幅
を変化させることによって負荷9に供給される電圧又は
電流が制御される。上から2段目の図は一次電流I2
波形であり、一次電圧V1 が正の期間では徐々に値が大
きくなる台形状の波形であり、立ち上がり部、立ち下が
り部の傾斜は後述するように転流部であり、正の期間と
負の期間との間には電流が流れない期間が存在する。
The path of the above-mentioned commutation current is shown by an arrow in FIG. 5A, but it is a path along the side of a substantially rectangular shape. FIG. 6 is a waveform diagram showing changes over time in the voltage and current of each part shown in FIG. In this figure, the horizontal axis represents time, and two cycles of alternating current generated by the inverter 4 are shown. The uppermost figure shows the primary voltage V of the rectifier transformer 5A.
1 in a square wave alternating current, there is a period of zero point t 2 ~t 3 during the negative period of time t 1 ~t positive period of 2 and the time point t 3 ~t 4, the control signal of the inverter 4 The voltage or current supplied to the load 9 is controlled by changing the width of these periods. The second diagram from the top shows the waveform of the primary current I 2 , which is a trapezoidal waveform whose value gradually increases during the positive period of the primary voltage V 1 , and the slopes of the rising and falling portions will be described later. Thus, there is a commutation portion, and there is a period during which no current flows between the positive period and the negative period.

【0009】下から2段目の図は二次巻線53や整流素
子61Aに流れる二次電流I21で、整流素子61Aは正
方向の電流しか流さないので半周期ごとに略台形状の電
流が流れる。時点t1 〜t2 の期間では一次電流I1
略同じ波形であり、時点t2〜t3 では値が約2分の1
になって流れが継続する。一次巻線51は二次巻線53
とアンペアターンが一致しているので電流値は巻数比に
基づく違いはあるが波形は同じである。
The second diagram from the bottom shows the secondary current I 21 flowing through the secondary winding 53 and the rectifying element 61A. Since the rectifying element 61A only sends a current in the forward direction, a current having a substantially trapezoidal shape is formed every half cycle. Flows. The period of time t 1 ~t 2 is substantially the same waveform as the primary current I 1, 1 at the time point t 2 ~t 3 value of about 2 minutes
The flow continues. The primary winding 51 is the secondary winding 53
, And the ampere-turn are the same, the current value is the same though there is a difference based on the turns ratio.

【0010】最下段の図は二次巻線54や整流素子62
Aに流れる二次電流I22であり、二次電流21とは半周期
ずれて二次電流I21とは反対方向の負の電流が流れる。
時点t2 〜t3 では二次電流I21と正負が異なるだけで
同じ波形と大きさの電流が流れる。これはこの期間では
一次電流が零なので2つの回路で平等に負荷電流を分担
しているからである。
The lowermost drawing shows the secondary winding 54 and the rectifying element 62.
A secondary current I 22 flowing in the A, a negative current in the opposite direction flows through the secondary current I 21 shifted by half cycle and the secondary current 21.
Time t 2 ~t current having the same waveform and magnitude flow in different only 3, the secondary current I 21 and negative. This is because the primary current is zero during this period and the two circuits share the load current evenly.

【0011】時点t2 からの転流は、一次電圧V1 が波
高値から零になったために、整流素子61Aだけに流れ
ていた電流が整流素子61Aと62Aに2分の1ずつ分
流する過程に生ずるものであり、時点t3 からの転流
は、一次電圧が零から負の波高値になったために、整流
素子61Aと62Aに分流していた電流が整流素子62
Aだけに集中する過程に生ずるものである。
The commutation from the time point t 2 is a process in which the current flowing only in the rectifying element 61A is halved into the rectifying elements 61A and 62A because the primary voltage V 1 becomes zero from the peak value. The commutation from the time point t 3 occurs in the rectifying element 62A because the primary voltage has changed from zero to a negative peak value.
It occurs in the process of concentrating only on A.

【0012】[0012]

【発明が解決しようとする課題】周知のように、交流の
正の部分と負の部分とが別々に2つの巻線に流れる構成
の場合には、巻線の体格と発生損失はともに2の平方根
倍になる。更に、時点t 2 〜t3 の一次電流が零の期間
でも二次電流I21,I22は2分の1ずつの電流が流れる
のでこの期間が長いとその分発生損失も増大する。この
ことは前述のように一次巻線51A,52Aでも同じで
ある。整流素子61A,62Aが接続される二次巻線5
3,54では止むを得ないが、一次巻線51A,52A
でもそれぞれが正又は負だけの電流が流れしかも一次電
圧が零の期間でも半分の電流が流れるために一次巻線の
巻線体格を大きくする必要があるとともに発生損失も大
きくなっているという問題がある。
As is well known, the
Configuration in which the positive part and the negative part separately flow in two windings
In the case of, both the physique of the winding and the generated loss are the square root of 2.
Double. Furthermore, at time t 2~ T3The period when the primary current is zero
But the secondary current Itwenty one, Itwenty twoThe current of each half flows
Therefore, if this period is long, the generated loss increases accordingly. this
The same applies to the primary windings 51A and 52A as described above.
is there. Secondary winding 5 to which the rectifying elements 61A and 62A are connected
It is unavoidable with 3, 54, but the primary winding 51A, 52A
However, only positive or negative current flows through each and the primary
Since half the current flows even when the pressure is zero, the primary winding
Large winding size and large loss
There is a problem of becoming harder.

【0013】また、これらの図で前述の転流時の循環電
流が流れる経路は図5(a)に矢印で示す経路であり、
二次巻線53,54を除けばおおよそ長方形の周辺の形
状をしており、よく知られているように電流経路が囲む
面積が大きいいほどその回路のインダクタンスと漏れ磁
束量が大きくなることから、この転流時の循環電流が流
れる経路のインダクタンスも大きいという問題がある。
前述のように、循環回路のインダクタンスが大きいと転
流期間が大きくなって直流電圧の電圧降下値が大きくな
り、漏れ磁束が大きいために周辺の金属構造物、特に図
示の整流器用変圧器5Aの鉄心脚501,502に渦電
流が流れて局部加熱が発生するという問題もある。
The path through which the circulating current flows at the time of commutation described above in these figures is the path indicated by the arrow in FIG.
Except for the secondary windings 53 and 54, it has a substantially rectangular peripheral shape, and as is well known, the larger the area surrounded by the current path, the larger the inductance and leakage flux of the circuit. However, there is a problem that the inductance of the path through which the circulating current flows during this commutation is also large.
As described above, when the inductance of the circulation circuit is large, the commutation period is long, the voltage drop value of the DC voltage is large, and the leakage magnetic flux is large, so that the surrounding metal structure, especially the transformer 5A for the rectifier shown in the drawing. There is also a problem that eddy currents flow through the iron core legs 501 and 502 and local heating occurs.

【0014】この発明の目的はこのような問題を解決
し、一次巻線の巻線体格が小さく発生損失を低減される
とともに、転流電流の循環回路のインダクタンス及び発
生磁束を減らすことによって直流電圧の電圧降下を低減
しかつ周辺の金属構造物の局部加熱を抑制することので
きる整流器用変圧器の二次側回路を持つ直流電源装置を
提供することにある。
The object of the present invention is to solve such a problem, to reduce the generated loss by reducing the winding size of the primary winding, and to reduce the inductance and the generated magnetic flux of the circulating circuit of the commutation current to reduce the DC voltage. Another object of the present invention is to provide a DC power supply device having a secondary side circuit of a transformer for a rectifier, which is capable of reducing the voltage drop of the above and suppressing local heating of surrounding metal structures.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、2脚鉄心の2本の鉄心脚のそれ
ぞれに一次巻線と二次巻線とが設けられた整流器用変圧
器と、これら2つの二次巻線にそれぞれ接続された整流
素子からなる整流器とを備え、前記整流器用変圧器の一
次巻線にインバータで生成された高周波交流が入力さ
れ、整流器用変圧器で所定の電圧に降圧された低圧交流
を前記整流器で全波整流して直流電力が得られる直流電
源装置において、前記2本の鉄心脚それぞれの二次巻線
を2つの分割二次巻線で構成し、それぞれの分割二次巻
線に流れる電流の方向が逆になるように整流素子を接続
して鉄心脚ごとに独立した変圧整流回路を構成してなる
ものとし、また、一方の鉄心脚の1方の分割二次巻線の
両方の端子をu1 、x1、これと位相の順を合わせて他方
の分割二次巻線の両方の端子をy1、v1としたとき、端子
1 及びこれに接続される接続リードと端子v1 及びこ
れに接続される接続リードとを直接対向して配置し、端
子y1及びこれに接続される接続リードと端子x1及びこれ
に接続される接続リードとを直接対向して配置してな
り、他方の鉄心脚の2つの分割二次巻線の端子及びその
接続リードも前述の鉄心脚の分割二次巻線の端子及びそ
の接続リードと同一構成としてなるものとし、また、幅
面を共通の平面として平行配置され2本の平角導体から
なる直流リードの前記平面に対して、2本の鉄心脚に共
通な平面を直交させて整流器用変圧器を配置し、2本の
鉄心脚のそれぞれの分割二次巻線のそれぞれの端子の引
き出し位置を、前記2脚鉄心を挟んで対向させて配置し
てなるものとし、また、幅面を共通の平面として平行配
置された2本の直流リードの前記平面に対して、2本の
鉄心脚に共通な平面を平行させて整流器用変圧器を配置
し、それぞれの鉄心脚のそれぞれの分割二次巻線の端子
を、前記鉄心脚に共通な平面に平行な面に並べて配置し
てなるものとする。
In order to solve the above-mentioned problems, according to the present invention, for a rectifier in which a primary winding and a secondary winding are provided in each of two iron core legs of a two-leg iron core. A transformer and a rectifier transformer, which comprises a transformer and a rectifier composed of a rectifying element connected to each of these two secondary windings, and the high frequency alternating current generated by the inverter is input to the primary winding of the rectifier transformer. In the DC power supply device, in which the low-voltage AC, which has been stepped down to a predetermined voltage by the rectifier, is full-wave rectified to obtain DC power, the secondary winding of each of the two iron core legs is divided into two divided secondary windings. It is assumed that an independent transformer rectifier circuit is configured for each iron core leg by connecting rectifying elements so that the directions of the currents flowing in the respective split secondary windings are opposite. U 1 , x for both terminals of one split secondary winding of 1. When both the terminals of the other split secondary winding are set to y 1 and v 1 by matching the order of the phase with this, the terminal u 1 and the connecting lead connected to the terminal and the terminal v 1 and the connecting lead are connected. And the connection lead connected to the terminal y 1 and the connection lead connected to the terminal x 1 and the connection lead connected to the terminal x 1 are directly opposed to each other. The terminals of the two split secondary windings of the legs and the connecting leads thereof shall have the same structure as the terminals of the split secondary windings of the iron core and the connecting leads thereof, and the width surfaces are arranged in parallel as a common plane. The transformer for rectifier is arranged such that the plane common to the two iron core legs is orthogonal to the plane of the DC lead composed of the two rectangular conductors, and the divided secondary windings of each of the two iron core legs are arranged. Align the lead-out position of each terminal of the wire with the two-leg iron core in between. And a rectifier transformer in which a common plane is parallel to the two iron core legs with respect to the planes of the two DC leads arranged in parallel with the width plane as a common plane. And the terminals of the respective divided secondary windings of the respective iron core legs are arranged side by side on a plane parallel to the plane common to the iron core legs.

【0016】[0016]

【作用】この発明の構成において、2本の鉄心脚それぞ
れの二次巻線を分割して2つの分割二次巻線で構成し、
1本の鉄心脚の中で電流の方向が互いに逆になるように
それぞれの分割二次巻線に整流素子を接続して鉄心脚ご
とに独立した変圧整流回路を構成することによって、そ
れぞれの鉄心脚の一次巻線に流れる電流は正負ともが流
れる交流になるので、一方の方向の電流だけが流れる従
来の場合に比べて一次巻線の体格と発生損失が低減す
る。
In the structure of the present invention, the secondary winding of each of the two iron core legs is divided into two divided secondary windings,
By connecting a rectifying element to each split secondary winding so that the current directions are opposite to each other in one iron core leg, and forming an independent transformer rectification circuit for each iron core leg, Since the current flowing through the primary winding of the leg is an alternating current that flows in both positive and negative directions, the size and loss of the primary winding are reduced as compared with the conventional case where only the current in one direction flows.

【0017】また、一方の鉄心脚の1方の分割二次巻線
の両方の端子をu1 、x1、これと位相の順を合わせて他
方の分割二次巻線の両方の端子をy1、v1としたとき、端
子u 1 及びこれに接続される接続リードと端子v1 及び
これに接続される接続リードとを直接対向して配置し、
端子y1及びこれに接続される接続リードと端子x1及びこ
れに接続される接続リードとを直接対向して配置し、他
方の鉄心脚の2つの分割二次巻線の端子及びその接続リ
ードも前述の鉄心脚の分割二次巻線の端子及びその接続
リードと同一構成とすることによって、同時に同じ波形
の電流が互いに反対方向に流れる端子と接続リードが互
いに直接対向することになって、それぞれが生成する磁
束を互いに打ち消し合うことになって転流電流が生成す
る磁束が小さくなりこれに伴って転流インダクタンスも
小さくなる。
Also, one split secondary winding of one iron core leg
Both terminals of u1, X1, And the order of the phase with this, etc.
Both terminals of the split secondary winding are y1, V1And when the end
Child u 1And connecting lead and terminal v connected to this1as well as
Placed directly opposite the connection lead connected to this,
Terminal y1And the connecting leads and terminals connected to it x1Toko
Place it directly opposite the connection lead connected to it, and
Terminal of the two split secondary windings of one core leg and its connection
The terminals are also the secondary secondary winding terminals of the iron core legs and their connections.
By using the same structure as the lead, the same waveform can be obtained simultaneously.
The terminals and connection leads where the
The magnets generated by each
A commutation current is generated because the bundles cancel each other out.
The magnetic flux is reduced, and the commutation inductance is also
Get smaller.

【0018】また、前述の直流リードに共通の平面に対
して、2本の鉄心脚に共通な平面を直交させて整流器用
変圧器を配置し、2本の鉄心脚のそれぞれの分割二次巻
線の端子の引き出し位置を、2脚鉄心を挟んで対向させ
て配置することによって、接続リードを捩じることなく
端子と直流リード、端子と整流素子の間を接続すること
ができるので接続リードの引き回し形状が簡素になる。
Further, the rectifier transformer is arranged such that the plane common to the two iron core legs is orthogonal to the plane common to the above-mentioned DC lead, and the divided secondary winding of each of the two iron core legs is arranged. By arranging the lead-out positions of the wire terminals so as to face each other with the two-leg iron core sandwiched therebetween, the connection lead can be connected between the terminal and the DC lead and between the terminal and the rectifying element without twisting the connection lead. The routing shape of is simple.

【0019】また、前述の直流リードの共通平面に対し
て、鉄心脚に共通な平面を平行させて整流器用変圧器を
配置し、それぞれの鉄心脚の分割二次巻線の端子を、鉄
心脚に共通な平面に平行な面に並べて配置することによ
って、前述の場合と同じように接続リードを捩じること
なく引き回し形状とすることができる。
Further, a rectifier transformer is arranged with the common plane of the iron core legs parallel to the common plane of the DC lead, and the terminals of the split secondary windings of the respective iron core legs are connected to the iron core legs. By arranging them side by side on a plane parallel to the common plane, it is possible to form the connecting lead without twisting it, as in the case described above.

【0020】[0020]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す直流電源装置の回路図で
あり、図4と同じ構成要素に対しては共通の符号を付け
て詳しい説明を省く。この図において、整流器用変圧器
5を構成する2本の鉄心脚501,502それぞれの二
次巻線を2つに分割して鉄心脚501の分割された二次
巻線を分割二次巻線531,532、鉄心脚502の二
次巻線を分割二次巻線541,542とする。分割二次
巻線531の両端子をu1 ,x1 、分割二次巻線532
の両端子をy1 ,v1 とし、分割二次巻線541,54
2は分割巻線531,532の端子の添字を2に代えた
ものとする。そしてそれぞれの分割二次巻線531,5
32,541,542に・印で極性を示すように端子u
1 ,y 1 ,u2 ,y2 は同じ位相であり、端子x1 ,v
1 ,x2 ,v2 も同じ位相で端子u1 などとは180°
位相が異なる関係にある。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a circuit diagram of a DC power supply device showing an embodiment of the present invention.
Yes, common reference numerals are given to the same components as in FIG.
And omit detailed explanations. In this figure, transformer for rectifier
2 of the two iron core legs 501 and 502 that compose
The secondary winding in which the iron core 501 is divided by dividing the secondary winding into two
The winding is divided into two parts, the secondary windings 531 and 532 and the iron core leg 502.
The secondary windings are divided secondary windings 541 and 542. Split secondary
Both terminals of winding 531 are u1, X1, Split secondary winding 532
Both terminals of y1, V1And divided secondary windings 541, 54
2 has replaced the subscript of the terminals of the split windings 531 and 532.
I shall. And each of the divided secondary windings 531 and 5
32, 541, 542 are terminals u as indicated by the polarity
1, Y 1, U2, Y2Have the same phase and the terminal x1, V
1, X2, V2Terminal u in the same phase1Is 180 °
The phase is different.

【0021】端子u1 には整流素子61のアノード側が
接続されそのカソード側がP極である直流リード81に
接続され、端子y1 には整流素子62のカソード側が接
続されそのアノード側がN極である直流リード82に接
続されており、端子x1 ,y 1 は直流リード82、81
にそれぞれ直接接続されている。また、端子v2 には整
流素子63のアノード側が接続されそのカソード側が直
流リード81に接続され、端子x2 には整流素子64の
カソード側が接続されそのアノード側が直流リード82
に接続されており、端子y2 ,u2 はそれぞれ直接直流
リード82,81に接続されている。
Terminal u1The anode side of the rectifying element 61 is
Connected to the DC lead 81 whose cathode side is the P pole
Connected, terminal y1Is connected to the cathode side of the rectifying element 62.
Connected to the DC lead 82 whose anode side is the N pole.
Connected, terminal x1, Y 1DC leads 82, 81
Are each directly connected to. Also, the terminal v2In order
The anode side of the flow element 63 is connected and the cathode side of the current element 63 is directly connected.
Connected to the current lead 81, terminal x2Of the rectifying element 64
The cathode side is connected and the anode side is the DC lead 82.
Connected to the terminal y2, U2Direct DC
It is connected to the leads 82 and 81.

【0022】分割巻線531,532と整流素子61,
62との組み合わせは、図4の二次巻線53,54と整
流素子61A,62Aとの組み合わせに同じ回路になっ
ていることから明らかなように、独立した変圧整流回路
を構成している。したがって、これらに共通の1つの一
次巻線51には後述の図3に示すように交流が流れる。
したがって、整流器用変圧器51Aと整流器用変圧器5
1とは同じ容量であるとしたとき、一次巻線51Aに対
して一次巻線51は、巻線体格、損失ともに2の平方根
分の1と小さくなる。一次巻線52も同様である。
The split windings 531 and 532 and the rectifying element 61,
The combination with 62 constitutes an independent transformer rectification circuit, as is clear from the fact that the combination of the secondary windings 53 and 54 and the rectification elements 61A and 62A in FIG. 4 is the same circuit. Therefore, an alternating current flows through one primary winding 51 common to these as shown in FIG. 3 described later.
Therefore, the rectifier transformer 51A and the rectifier transformer 5
Assuming that the capacity is the same as 1, the primary winding 51 is smaller than the primary winding 51A in both the winding size and the loss, which is 1 / square root of 2. The same applies to the primary winding 52.

【0023】図2は図1の直流電源装置の正面図であ
る。この図において、図示のように2本の鉄心脚50
1,502に共通な平面は紙面に平行しており、直流リ
ード81,82は図では断面図が示されているように、
前述の鉄心脚に共通の平面に直交するように配置してあ
る。分割二次巻線531,532の端子u1 ,x1 ,y
1,v1 は図の左側から、分割二次巻線541,542
の端子u2 ,x2 ,y2 ,v2 は2脚鉄心50を挟んで
図の右側からそれぞれの引き出し位置を配置してある。
FIG. 2 is a front view of the DC power supply device of FIG. In this figure, two iron core legs 50 are shown as shown.
The plane common to 1 and 502 is parallel to the paper surface, and the DC leads 81 and 82 are as shown in the cross-sectional view in the figure.
The iron core legs are arranged so as to be orthogonal to a common plane. Terminals u 1 , x 1 , y of the split secondary windings 531 and 532
1 , v 1 are split secondary windings 541 and 542 from the left side of the drawing.
The terminals u 2 , x 2 , y 2 and v 2 of each of the two are arranged at their respective drawn-out positions from the right side of the figure with the two-leg iron core 50 interposed therebetween.

【0024】端子と直流リード又は整流素子との接続は
接続リードで接続されており、端子u1 と整流素子61
とは接続リード811で、端子v1 と直流リード81と
は接続リード812で、同じようにして図示のように接
続リード813,814,821,822,823,8
24が使用されている。端子u1 ,x1 ,y1 ,v1
2 ,x2 ,y2 ,v2 をそれぞれ幅面を紙面に垂直に
して引き出しているのでこれらに接続される接続リード
811,812,813,814,821,822,8
23,824も幅面が紙面に垂直になるので、同じよう
に紙面に直交して配置されている直流リード81,82
との接続においてこれらの接続リードを捩じることなく
素直に引き回しが可能な構成になっている。接続リード
811と812とは転流時には反対方向に電流が流れる
ので発生する磁束が互いに打ち消し合い磁束量、インダ
クタンスとも小さくなる。同じようなことが全ての接続
リードにも言える。
The terminal and the DC lead or the rectifying element are connected by a connecting lead, and the terminal u 1 and the rectifying element 61 are connected.
Is a connection lead 811, and the terminal v 1 and the DC lead 81 are connection leads 812. Similarly, as shown in the drawing, the connection leads 813, 814, 821, 822, 823, 8
24 are used. Terminals u 1 , x 1 , y 1 , v 1 ,
Since u 2 , x 2 , y 2 , and v 2 are drawn out with their width surfaces perpendicular to the paper surface, connection leads 811, 812, 813, 814, 821, 822, 8 connected to them.
Since the width surfaces of 23 and 824 are also perpendicular to the paper surface, the DC leads 81 and 82 similarly arranged orthogonal to the paper surface.
When connecting with, it is possible to straightly route these connecting leads without twisting. At the time of commutation, current flows in the opposite directions to the connection leads 811 and 812, so that the generated magnetic fluxes cancel each other out, and both the magnetic flux amount and the inductance become small. The same applies to all connection leads.

【0025】図3は図1に示す各部の電圧、電流の時間
的変化を示す波形図である。この図において、横軸は時
間、縦軸はそれぞれの波形の大きさであり、最上段の図
の一次電圧V1 と2段目の図の一次電流I1 は図6のそ
れと同じである。下から2段目の図は一次巻線51の電
流I11、最下段は一次巻線52の電流I12であり、いず
れも大きさが一次電流I1 の2分の1、波形は同じにな
っている。すなわち、図6では一次巻線に流れる電流は
二次巻線のそれと同じく正又は負の半波でしかも一次電
圧が零になる期間では半分の電流が流れるものであった
のに対して、図3では2つの一次巻線51,52には正
負の半波が交互に流れる交流である。前述のように、図
6の一次巻線51A,52Aの場合には交流が流れる場
合に比べて巻線体格、発生損失ともに2の平方根倍以上
であったのに対して、図1の一次巻線51,52の場合
には、このような巻線体格、発生損失の増大を招くこと
はないことから、従来の構成の一次巻線に対して巻線体
格を小さくすることができしかも発生損失が低減するこ
とになる。
FIG. 3 is a waveform diagram showing changes in voltage and current of each part shown in FIG. 1 with time. In this figure, the horizontal axis represents time and the vertical axis represents the size of each waveform, and the primary voltage V 1 in the uppermost diagram and the primary current I 1 in the second diagram are the same as those in FIG. Current I 11 of the second stage from the bottom figure the primary winding 51, the bottom is the current I 12 of the primary winding 52, one half of any size the primary current I 1, the waveform is the same Is becoming That is, in FIG. 6, the current flowing through the primary winding is a positive or negative half-wave like that of the secondary winding, and half the current flows during the period when the primary voltage is zero. In No. 3, alternating current in which positive and negative half waves alternately flow in the two primary windings 51 and 52. As described above, in the case of the primary windings 51A and 52A of FIG. 6, both the winding size and the generated loss are more than the square root of 2 as compared with the case where the alternating current flows, whereas the primary winding of FIG. In the case of the wires 51 and 52, since the winding size and the generated loss are not increased as described above, the winding size can be made smaller than that of the primary winding of the conventional configuration, and the generated loss is also increased. Will be reduced.

【0026】図2に示すように,鉄心脚501,502
に共通な平面は紙面に平行であるが、直流リード81,
82に共通な平面は紙面に直交、すなわち、鉄心脚50
1,502に共通な平面に直交した配置である。端子u
1 ,x1 ,y1 ,v1 ,u2,x2 ,y2 ,v2 はとも
に幅面を紙面に直交させて引き出される配置なので直流
リード81,82や整流素子61,62,63,64と
の間を接続する接続リード811,812,813,8
14,821,822,823,824も直流リード8
1,82と平行することなる。そのため、接続リードを
直角に捩じることなく簡素な引き回し構造とすることが
できる。
As shown in FIG. 2, iron core legs 501, 502
Common plane is parallel to the paper surface, but the DC leads 81,
The plane common to 82 is orthogonal to the paper surface, that is, the iron core leg 50
This is an arrangement orthogonal to the plane common to 1 and 502. Terminal u
Since 1 , x 1 , y 1 , v 1 , u 2 , x 2 , y 2 , and v 2 are arranged so that their width faces are orthogonal to the plane of the drawing, DC leads 81, 82 and rectifying elements 61, 62, 63, 64 are provided. Connection leads 811, 812, 813, 8 for connecting between
14, 821, 822, 823, 824 are also DC leads 8
It will be parallel to 1,82. Therefore, it is possible to provide a simple routing structure without twisting the connection lead at a right angle.

【0027】端子u1 ,x1 ,y1 ,v1 と端子u2
2 ,y2 ,v2 との引き出し位置の配置は2脚鉄心5
0を間に挟んで両側に設けてあるので、図示のように直
流リード81を挟んでその両側の幅面に整流素子61,
63を、同じようにして直流リード82を挟んでその両
側の幅面に整流素子62,64を取付ける構成とするこ
とができる。図で明らかなように全ての構成要素が左右
で対称、すなわち、2脚鉄心501と502とにそれぞ
れ関係する構成要素が同一の形状寸法になっているの
で、転流時の循環電流が流れる経路のインダクタンスも
それぞれで同一になることから、このインダクタンスに
比例する電圧降下も一致することになり、2つの変圧整
流回路で電流分担の不平衡はない。
Terminals u 1 , x 1 , y 1 , v 1 and terminals u 2 ,
The arrangement of the pull-out position with x 2 , y 2 and v 2 is a two-leg iron core 5.
Since it is provided on both sides with 0 interposed therebetween, the rectifying elements 61,
Similarly, the rectifying elements 62 and 64 may be attached to the width surfaces on both sides of the DC lead 82 with the DC lead 82 interposed therebetween. As is clear from the figure, all the constituent elements are symmetrical left and right, that is, the constituent elements related to the two-leg iron cores 501 and 502 have the same shape and dimension, so that the circulating current flow path during commutation flows. Since the respective inductances are also the same, the voltage drops proportional to this inductance also match, and there is no imbalance in current sharing between the two transformer rectification circuits.

【0028】図2の代わりに図5と同じように、直流リ
ード81,82に共通する平面、鉄心脚501,502
に共通な平面及び端子とこれに接続される接続リード全
てを紙面に平行に配置する構成を採用することもでき
る。この場合も端子は循環電流が互いに反対方向に流れ
る2本の端子及び接続リードが組になって引き出される
から、インダクタンスと発生磁束量が小さくなることに
変わりはない。
As in FIG. 5, instead of FIG. 2, the plane common to the DC leads 81, 82, the core legs 501, 502.
It is also possible to adopt a configuration in which the common plane and terminals and all the connection leads connected to the terminals are arranged parallel to the paper surface. In this case as well, the terminals and the connecting leads, in which the circulating currents flow in opposite directions to each other, are pulled out as a set, so that the inductance and the amount of generated magnetic flux remain small.

【0029】図1では整流素子62を端子v1 ではなく
端子y1 に接続し、整流素子64を端子u2 ではなく端
子x2 に接続した回路構成としたのは、図2の整流素子
61,62,63,64を直流リード81,82にそれ
ぞれ2つずつを重複しないように割り振るためである。
実際には、4つの整流素子を接続する端子と、分割二次
巻線から端子を引き出す位置の配置との組み合わせには
種々あり、図2や前述の図2とは直交する構成や配置に
こだわるものではなく、この発明の目的に反しない範囲
で異なる構成配置を採用することができる。
In FIG. 1, the rectifying element 62 of FIG. 2 is connected to the terminal y 1 instead of the terminal v 1 and the rectifying element 64 is connected to the terminal x 2 instead of the terminal u 2 . , 62, 63, 64 are allocated to the DC leads 81, 82 so that two of them are not overlapped.
Actually, there are various combinations of the terminals for connecting the four rectifying elements and the arrangement of the positions where the terminals are drawn out from the divided secondary winding, and the configuration and the arrangement orthogonal to FIG. 2 and FIG. However, different configurations and arrangements can be adopted within the range not deviating from the object of the present invention.

【0030】[0030]

【発明の効果】この発明は前述のように、2本の鉄心脚
それぞれの二次巻線を分割して2つの分割二次巻線で構
成し、1本の鉄心脚の中で電流の方向が互いに逆になる
ようにそれぞれの分割二次巻線に整流素子を接続して鉄
心脚ごとに独立した変圧整流回路を構成することによっ
て、それぞれの鉄心脚の一次巻線に流れる電流は正負と
もが流れる交流になるので、一方の方向の電流だけが流
れる従来の場合に比べて一次巻線の体格と発生損失が低
減することによって直流電源装置のコストダウンと効率
の向上が図られるという効果が得られる。
As described above, according to the present invention, the secondary winding of each of the two iron core legs is divided into two divided secondary windings, and the direction of the current flow in one iron leg. By connecting rectifying elements to each split secondary winding so that they are opposite to each other, and forming an independent transformer rectification circuit for each iron core leg, the current flowing through the primary winding of each iron leg can be positive or negative. Since it becomes an alternating current, there is an effect that the size of the primary winding and the generated loss are reduced as compared with the conventional case in which only the current in one direction flows and the cost and efficiency of the DC power supply device can be improved. can get.

【0031】また、一方の鉄心脚の1方の分割二次巻線
の両方の端子をu1 、x1、これと位相の順を合わせて他
方の分割二次巻線の両方の端子をy1、v1としたとき、端
子u 1 及びこれに接続される接続リードと端子v1 及び
これに接続される接続リードとを直接対向して配置し、
端子y1及びこれに接続される接続リードと端子x1及びこ
れに接続される接続リードとを直接対向して配置し、他
方の鉄心脚の2つの分割二次巻線の端子及びその接続リ
ードも前述の鉄心脚の分割二次巻線の端子及びその接続
リードと同一構成とすることによって、同時に同じ波形
の電流が互いに反対方向に流れる端子と接続リードが互
いに直接対向することになって、それぞれが生成する磁
束を互いに打ち消し合うことになって転流電流が生成す
る磁束が小さくなることによって鉄心を始めとする金属
構造物に発生する渦電流損が低減して直流電源装置とし
ての効率が向上するという効果が得られるとともに、渦
電流損が局部的に集中することによる局部過熱による寿
命の低下という問題が回避できるという効果も得られ
る。また、磁束が小さくなるのに伴って転流インダクタ
ンスも小さくなることから、直流の負荷電流による電圧
降下が小さくなってその分整流器用変圧器やインバータ
などの容量を小さくすることができることによるコスト
ダウンも期待できるという降下が得られる。
Also, one split secondary winding of one iron core leg
Both terminals of u1, X1, And the order of the phase with this, etc.
Both terminals of the split secondary winding are y1, V1And when the end
Child u 1And connecting lead and terminal v connected to this1as well as
Placed directly opposite the connection lead connected to this,
Terminal y1And the connecting leads and terminals connected to it x1Toko
Place it directly opposite the connection lead connected to it, and
Terminal of the two split secondary windings of one core leg and its connection
The terminals are also the secondary secondary winding terminals of the iron core legs and their connections.
By using the same structure as the lead, the same waveform can be obtained simultaneously.
The terminals and connection leads where the
The magnets generated by each
A commutation current is generated because the bundles cancel each other out.
Metals such as iron cores due to reduced magnetic flux
Reduces eddy current loss generated in structures
The efficiency is improved and the vortex
Life due to local overheating due to local concentration of current loss
It also has the effect of avoiding the problem of life loss.
It Also, as the magnetic flux decreases, the commutation inductor
Since the impedance also becomes smaller, the voltage due to the DC load current
Since the drop is small, the rectifier transformer and inverter
The cost of being able to reduce the capacity of
You can get a descent that you can expect down.

【0032】また、直流リードに共通の平面に対して、
2本の鉄心脚に共通な平面を直交させて整流器用変圧器
を配置し、2本の鉄心脚のそれぞれの分割二次巻線の端
子の引き出し位置を、2脚鉄心を挟んで対向させて配置
することによって、直流リード、端子及びこれに接続さ
れる接続リードの幅面が全て前述の鉄心脚に共通な平面
に直交することから、接続リードを捩じることなく端子
と直流リード、端子と整流素子の間を接続することがで
きるので接続リードの引き回し形状が簡素になるという
効果が得られる。また、前述の直流リードの共通平面に
対して、鉄心脚に共通な平面を平行させて整流器用変圧
器を配置し、それぞれの鉄心脚の分割二次巻線の端子
を、鉄心脚に共通な平面に平行な面に並べて配置するこ
とによって、前述の場合と同じように接続リードを捩じ
ることなく引き回し形状とすることができる。
Also, with respect to the plane common to the DC leads,
Arrange the transformers for rectifiers so that the plane common to the two iron core legs is orthogonal to each other, and the lead-out positions of the split secondary winding terminals of the two iron core legs are opposed to each other with the two-leg iron core sandwiched therebetween. By arranging them, the width surfaces of the DC lead, the terminal, and the connection lead connected to this are all orthogonal to the plane common to the iron core leg described above, so that the terminal, the DC lead, and the terminal can be connected without twisting the connection lead. Since the rectifying elements can be connected to each other, it is possible to obtain the effect of simplifying the lead shape of the connecting lead. In addition, the rectifier transformer is arranged with the common plane of the iron core legs parallel to the common plane of the DC leads described above, and the terminals of the split secondary windings of each iron leg are shared by the iron legs. By arranging them side by side on a plane parallel to the plane, the connection lead can be formed in a lead-out shape without twisting as in the case described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す直流電源装置の回路図FIG. 1 is a circuit diagram of a DC power supply device showing an embodiment of the present invention.

【図2】図1の直流電源装置の正面図FIG. 2 is a front view of the DC power supply device of FIG.

【図3】図1に示す各部の電圧、電流の時間的変化を示
す波形図
FIG. 3 is a waveform diagram showing changes over time in voltage and current of each part shown in FIG.

【図4】従来の直流電源装置の回路図FIG. 4 is a circuit diagram of a conventional DC power supply device.

【図5】図4の直流電源装置の(a)は正面図、(b)
は側面図
5A is a front view of the DC power supply device of FIG. 4, and FIG.
Is a side view

【図6】図4に示す各部の電圧、電流の時間的変化を示
す波形図
FIG. 6 is a waveform diagram showing changes in voltage and current of each part shown in FIG. 4 with time.

【符号の説明】[Explanation of symbols]

1 三相交流電源 2 整流器 4 インバータ 5 整流器用変圧器 50 2脚鉄心 501 鉄心脚 502 鉄心脚 51 一次巻線 52 一次巻線 531 分割二次巻線 532 分割二次巻線 541 分割二次巻線 542 分割二次巻線 6 整流器 61 整流素子 62 整流素子 61 整流素子 62 整流素子 81 直流リード 82 直流リード 811 接続リード 812 接続リード 813 接続リード 814 接続リード 821 接続リード 822 接続リード 823 接続リード 824 接続リード 1 Three-phase AC power supply 2 Rectifier 4 Inverter 5 Rectifier transformer 50 Two-leg iron core 501 Iron core leg 502 Iron core leg 51 Primary winding 52 Primary winding 531 Split secondary winding 532 Split secondary winding 541 Split secondary winding 542 Split secondary winding 6 Rectifier 61 Rectifier element 62 Rectifier element 61 Rectifier element 62 Rectifier element 81 DC lead 82 DC lead 811 Connection lead 812 Connection lead 812 Connection lead 814 Connection lead 821 Connection lead 822 Connection lead 823 Connection lead 824 Connection lead

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】2脚鉄心の2本の鉄心脚のそれぞれに一次
巻線と二次巻線とが設けられた整流器用変圧器と、これ
ら2つの二次巻線にそれぞれ接続された整流素子からな
る整流器とを備え、前記整流器用変圧器の一次巻線にイ
ンバータで生成された高周波交流が入力され、整流器用
変圧器で所定の電圧に降圧された低圧交流を前記整流器
で全波整流して直流電力が得られる直流電源装置におい
て、前記2本の鉄心脚それぞれの二次巻線を2つの分割
二次巻線で構成し、それぞれの分割二次巻線に流れる電
流の方向が逆になるように整流素子を接続して鉄心脚ご
とに独立した変圧整流回路を構成してなることを特徴と
する直流電源装置。
1. A rectifier transformer in which a primary winding and a secondary winding are provided on each of two iron core legs of a two-leg iron core, and a rectifying element connected to each of these two secondary windings. And a high-frequency alternating current generated by an inverter is input to the primary winding of the rectifier transformer, and low-voltage alternating current that is stepped down to a predetermined voltage by the rectifier transformer is full-wave rectified by the rectifier. In the direct current power supply device capable of obtaining direct current power, the secondary windings of each of the two iron core legs are composed of two split secondary windings, and the directions of the currents flowing through the split secondary windings are reversed. A DC power supply device characterized in that an independent transformer rectification circuit is configured for each iron core leg by connecting the rectification elements as described above.
【請求項2】一方の鉄心脚の1方の分割二次巻線の両方
の端子をu1 、x1、これと位相の順を合わせて他方の分
割二次巻線の両方の端子をy1、v1としたとき、端子u1
及びこれに接続される接続リードと端子v1 及びこれに
接続される接続リードとを直接対向して配置し、端子y1
及びこれに接続される接続リードと端子x1及びこれに接
続される接続リードとを直接対向して配置してなり、他
方の鉄心脚の2つの分割二次巻線の端子及びその接続リ
ードも前述の鉄心脚の分割二次巻線の端子及びその接続
リードと同一構成としてなることを特徴とする請求項1
記載の直流電源装置。
2. The terminals of one split secondary winding of one iron core leg are connected to u 1 and x 1 , and the terminals of the other split secondary winding are connected to y 1 and x 1 in phase order. 1 and v 1 , the terminal u 1
And the connection lead connected thereto and the terminal v 1 and the connection lead connected thereto are directly opposed to each other, and the terminal y 1
And the connection lead connected thereto, the terminal x 1 and the connection lead connected thereto are directly opposed to each other, and the terminals of the two split secondary windings of the other core leg and the connection lead thereof are also 2. The terminal of the split secondary winding of the iron core leg and the connecting lead thereof have the same structure.
DC power supply described.
【請求項3】幅面を共通の平面として平行配置され2本
の平角導体からなる直流リードの前記平面に対して、2
本の鉄心脚に共通な平面を直交させて整流器用変圧器を
配置し、2本の鉄心脚のそれぞれの分割二次巻線のそれ
ぞれの端子の引き出し位置を、前記2脚鉄心を挟んで対
向させて配置してなることを特徴とする請求項1、又は
2記載の直流電源装置。
3. A direct current lead composed of two flat rectangular conductors arranged in parallel with a width plane as a common plane is set to be 2 with respect to the plane.
A rectifier transformer is arranged so that the plane common to the two iron core legs is orthogonal to each other, and the lead-out positions of the respective terminals of the split secondary windings of the two iron core legs are opposed to each other with the two-leg iron core sandwiched therebetween. The DC power supply device according to claim 1 or 2, wherein the DC power supply device is arranged so as to be arranged.
【請求項4】幅面を共通の平面として平行配置された2
本の直流リードの前記平面に対して、2本の鉄心脚に共
通な平面を平行させて整流器用変圧器を配置し、それぞ
れの鉄心脚のそれぞれの分割二次巻線の端子を、前記鉄
心脚に共通な平面に平行な面に並べて配置してなること
を特徴とする請求項1、又は2記載の直流電源装置。
4. The two are arranged in parallel with the width plane as a common plane.
A rectifier transformer is arranged with the plane common to the two iron core legs parallel to the plane of the DC leads, and the terminals of the split secondary windings of the iron core legs are connected to the iron core. 3. The DC power supply device according to claim 1, wherein the DC power supply device is arranged side by side on a plane parallel to a plane common to the legs.
JP4119330A 1992-05-13 1992-05-13 Dc power source Pending JPH05316734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119330A JPH05316734A (en) 1992-05-13 1992-05-13 Dc power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119330A JPH05316734A (en) 1992-05-13 1992-05-13 Dc power source

Publications (1)

Publication Number Publication Date
JPH05316734A true JPH05316734A (en) 1993-11-26

Family

ID=14758810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119330A Pending JPH05316734A (en) 1992-05-13 1992-05-13 Dc power source

Country Status (1)

Country Link
JP (1) JPH05316734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332147A (en) * 2002-05-17 2003-11-21 Cosel Co Ltd Transformer for switching power source
JPWO2015104922A1 (en) * 2014-01-09 2017-03-23 三菱電機株式会社 Power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332147A (en) * 2002-05-17 2003-11-21 Cosel Co Ltd Transformer for switching power source
JPWO2015104922A1 (en) * 2014-01-09 2017-03-23 三菱電機株式会社 Power converter

Similar Documents

Publication Publication Date Title
US9054599B2 (en) Power converter and integrated DC choke therefor
JP5933012B2 (en) Power converter
US8994232B2 (en) Star-point reactor
US9153376B2 (en) Harmonic cancelling interphase magnetic device
US8537575B2 (en) Power converter and integrated DC choke therefor
US8004867B2 (en) Switching power supply unit
US7902956B2 (en) Filtering choke arrangement
US20140268896A1 (en) Reactor Apparatus and Power Converter Using Same
JP6369737B1 (en) Insulated DC / DC converter, control device therefor, and DC / AC converter
US20210151240A1 (en) Inductor assembly
CN215815555U (en) Multiphase autotransformer and rectifier system
CN101145427B (en) Methods and apparatus for flux dispersal in ring inductor
US11791118B2 (en) Polyphase switching regulator
CN107808752A (en) A kind of four post stepless adjustable voltage transformers
JPH11144983A (en) Choke coil and rectifying/smoothing circuit using the same
CN109378981A (en) Double anti-star-like rectifiers based on power electronics phase-shifting transformer
CN112992510A (en) Self-excitation type three-phase three-column type electrically-controlled reactor
Surana et al. A fault-tolerant 24-Sided voltage space vector structure for open-end winding induction motor drive
CN110492752A (en) 12 Pulses Rectifiers based on the double anti-Star Type Transformers of zigzag connection
JPH05316734A (en) Dc power source
Cougo et al. Impact of PWM methods and load configuration in the design of intercell transformers used in parallel three-phase inverters
JP3696855B2 (en) Rectifier
JP3226051B2 (en) DC power supply
CN210246597U (en) Converter device
JPH06327252A (en) Dc power supply device