JPH05305134A - Porous calcium phosphate material for bone formation - Google Patents

Porous calcium phosphate material for bone formation

Info

Publication number
JPH05305134A
JPH05305134A JP4135645A JP13564592A JPH05305134A JP H05305134 A JPH05305134 A JP H05305134A JP 4135645 A JP4135645 A JP 4135645A JP 13564592 A JP13564592 A JP 13564592A JP H05305134 A JPH05305134 A JP H05305134A
Authority
JP
Japan
Prior art keywords
bone
calcium phosphate
pores
hydroxyapatite
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4135645A
Other languages
Japanese (ja)
Inventor
Hideaki Ito
秀明 伊藤
Yuichi Wakizaka
裕一 脇坂
Yoshinori Kuboki
芳徳 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP4135645A priority Critical patent/JPH05305134A/en
Publication of JPH05305134A publication Critical patent/JPH05305134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a growth of a bone in a short time by arranging a molded product which is composed of calcium phosphate to be used for filling a lost part or the like of the bone in such a manner as to let pores truly spherical with a specified diameter having the surface thereof formed rugged finely disperse with a specified porosity. CONSTITUTION:Calcium phosphate employs a signal phase of hydroxyapatite [Ca10 (PO4)6 (OH)2] which is the same in composition as the inorganic component of a natural bone and allows the forming of a bone quickly in vivo. A powder of hydroxyapatite is mixed with material for forming truly spherical pores comprising an organic compound or carbon that allows thermal decomposition at a specified ratio and made closer properly by a pressing and then, the more forming material is burnt away by heating in an atmosphere of an inert gas to be baked in the atmospheric air. This enables the obtaining of a porous calcium phosphate material in which truly spherical pores with a uniform size of 100-300mum having the surface thereof formed rugged finely are dispersed three dimensionally with a porosity of 50-80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、疾病、事故あるいは
外科的な手術によって生ずる骨の欠損部や空隙部に充填
して、この部分に新生骨を生成するための骨形成用多孔
質燐酸カルシウム材に関するものであり、特に骨形成因
子を添加して骨形成を加速する場合の支持体に好適な材
料である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bone-forming porous calcium phosphate for filling a bone defect or void caused by a disease, an accident or a surgical operation to generate new bone in this portion. The present invention relates to a material, and in particular, it is a material suitable for a support when an osteogenic factor is added to accelerate bone formation.

【0002】[0002]

【従来の技術】外科、整形外科および口腔外科において
は、疾病、事故あるいは手術によって生じた骨の欠損部
および空隙に対し、自家骨を当人の身体の他の部分から
採取し、これを充填することで該当部分の骨組織の再建
を図ることが行われる。ところが、患者にとっては骨採
取に伴う手術が増えることによる苦痛が大きい。この苦
痛を低減する目的で、従来より代替材料が用いられてい
るが、金属系の材料の場合、生体内における溶解によ
り、毒性の金属イオンが溶出することがある。またセラ
ミックス系材料の場合でも、アルミナやジルコニアなど
は生体内で安定に存在するものの、骨組織そのものとの
結合は機械的な接合に頼らざるを得ない。これに対し、
セラミックス系材料の中でも、リン酸カルシウム系のリ
ン酸三カルシウム[Ca3(PO42]やハイドロキシア
パタイト、リン酸四カルシウム[Ca4O(PO43
は、生体内で骨組織と化学的に結合するため、人工骨や
人工歯などへの応用が進められている。とくにハイドロ
キシアパタイトは、チタンなどの金属材料表面に溶射な
どの手法で被覆する材料として使用され、このハイドロ
キシアパタイト皮膜が形成された金属材料は、人工歯根
やヒップジョイントに用いられている。また、骨欠損部
の充填材として、牛の骨や魚の骨を原料として、これを
焼成した天然のハイドロキシアパタイトや合成ハイドロ
キシアパタイトの焼結体が用いられている。
2. Description of the Related Art In surgery, orthopedics and oral surgery, autologous bones are collected from other parts of a person's body and filled in the bone defects and voids caused by illness, accident or surgery. By doing so, reconstruction of the bone tissue of the relevant portion is performed. However, the patient suffers from the increased number of operations for bone harvesting. Although alternative materials have been conventionally used for the purpose of reducing this pain, in the case of metal-based materials, toxic metal ions may elute due to dissolution in the living body. Further, even in the case of a ceramic material, although alumina and zirconia exist stably in the living body, mechanical bonding is inevitably used for bonding with the bone tissue itself. In contrast,
Among ceramic materials, calcium phosphate-based tricalcium phosphate [Ca 3 (PO 4 ) 2 ], hydroxyapatite, tetracalcium phosphate [Ca 4 O (PO 4 ) 3 ].
Is chemically bonded to bone tissue in vivo, and is being applied to artificial bones and teeth. In particular, hydroxyapatite is used as a material for coating the surface of a metal material such as titanium by a method such as thermal spraying, and the metal material on which this hydroxyapatite coating is formed is used for artificial tooth roots and hip joints. Further, as a filler for the bone defect portion, a sintered body of natural hydroxyapatite or synthetic hydroxyapatite obtained by burning cow bone or fish bone as a raw material is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した材料
では生体内での骨形成が速やかに行われず、治癒までに
長期間を必要とする問題がある。これを改善するため
に、多孔質の構造にして生体内での体液の循環、各種の
細胞の内部への侵入を図って骨形成を促進しようとする
焼結体が提案されているが、骨形成速度は十分とは言え
ない。また、骨形成を速やかにする他の方法として、F
GF(fibroblast growth factor)、BMP(bone mor
phogenetic protein)などの骨形成因子を、骨の脱灰残
渣、グラスファイバーを支持体として埋植した例がある
が、骨形成は促進されるものの、その初期において軟骨
の形成が見られるという問題点がある。本発明者らは、
鋭意研究を行った結果、特定構造のカルシウム材を用い
ることにより、骨形成速度が改善されるとともに、骨形
成因子の支持体として用いた場合にも、軟骨の形成が認
めらず、非常に短期間で良好に骨が育成されることを見
いだし本発明をするに至ったものである。
However, the above-mentioned materials have a problem that bone formation in vivo is not carried out promptly and a long period of time is required for healing. In order to improve this, a sintered body has been proposed which has a porous structure to circulate body fluid in a living body and to invade various cells inside to promote bone formation. The formation speed is not sufficient. In addition, as another method for accelerating bone formation, F
GF (fibroblast growth factor), BMP (bone mor
There is an example of implanting bone morphogenetic proteins such as phogenetic protein) with bone demineralization residue and glass fiber as a support. However, although bone formation is promoted, cartilage formation is observed in the early stage. There is. We have
As a result of diligent research, the use of a calcium material having a specific structure improves the rate of bone formation, and when used as a support for the osteogenic factor, cartilage formation was not observed, and it was extremely short-term. The present invention has been completed by finding that bones are cultivated satisfactorily.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本願発明は、燐酸カルシウムで構成された成形体で
あって、100〜300μm径の均一な大きさを有する
真球状気孔が50〜80%の気孔率で三次元的に連続し
て形成されており、この気孔表面が微細な凹凸面で構成
されていることを特徴とする。第2の発明は、粒径が3
00〜1000μmの燐酸カルシウム粒子で構成された
顆粒体であって、前記粒子内に100〜300μm径の
均一な大きさを有する真球状気孔が50〜80%の気孔
率で三次元的に連続して形成されており、この気孔表面
が微細な凹凸面で構成されていることを特徴とする。
In order to solve the above-mentioned problems, the present invention is a molded product made of calcium phosphate, having 50 to 80 true spherical pores having a uniform size of 100 to 300 μm. It is characterized in that it is formed three-dimensionally continuously with a porosity of%, and that the surface of the pores is constituted by fine irregularities. The second invention has a particle size of 3
A granular body composed of calcium phosphate particles having a diameter of 0 to 1000 μm, in which the spherical pores having a uniform size of 100 to 300 μm are three-dimensionally continuous with a porosity of 50 to 80%. It is characterized in that the surface of the pores is constituted by a fine uneven surface.

【0005】上記した燐酸カルシウムとしてはハイドロ
キシアパタイト[Ca10(PO46(OH)2]単相が好
適であり、乾式法、湿式法などの方法で合成される。ハ
イドロキシアパタイトは天然の骨の無機質成分と同じ組
成を有し、生体内での骨形成が速い。しかし、CaとP
の比がCa/P=1.67からずれた非化学量論比組成
のハイドロキシアパタイトを熱処理した場合や1300
℃以上の高温で熱処理を行った場合には、分解によりリ
ン酸三カルシウムやリン酸四カルシウムが現れる。生体
内に埋植した際、これらの分解生成物は容易に溶解する
ため、支持体周囲の体液pHが上昇し、骨形成が遅れ
る。したがって、ハイドロキシアパタイトは焼結後にお
いても分解生成物のない単相のものがよい。また、上記
した燐酸カルシウム材には骨形成因子を保持させること
ができる。
Hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] single phase is suitable as the above-mentioned calcium phosphate, and it is synthesized by a dry method, a wet method or the like. Hydroxyapatite has the same composition as the mineral component of natural bone, and bone formation in vivo is fast. However, Ca and P
When the hydroxyapatite having a non-stoichiometric composition with a ratio of Ca / P = 1.67 deviates from 1300
When heat-treated at a high temperature of ℃ or higher, tricalcium phosphate or tetracalcium phosphate appears due to decomposition. When they are implanted in a living body, these decomposition products are easily dissolved, so that the pH of the body fluid around the support is increased and the bone formation is delayed. Therefore, it is preferable that the hydroxyapatite has a single phase without decomposition products even after sintering. Further, the above-mentioned calcium phosphate material can retain an osteogenic factor.

【0006】本発明の燐酸カルシウム材の製造方法は特
に限定されないが、例えば、湿式法により合成したハイ
ドロキシアパタイト粉末を、熱分解が可能な有機物ある
いはカーボンからなる真球状の気孔形成材と所定の割合
で混合し、金型によるプレス成形および等方靜水圧プレ
スによる緻密化を行った後、窒素などの不活性ガス雰囲
気下あるいは大気中で加熱して気孔形成材を燃焼除去
し、さらに大気中で焼結することにより作成できる。顆
粒状粉末の場合は、等方靜水圧プレス後、あるいは焼結
後に粉砕し、フルイ分けすることで所定の粒径の多孔質
顆粒体を得ることができる。このときの用いるハイドロ
キシアパタイト粉末を数〜数十μmの大きさのものを使
用すると、プレスにより球形の気孔形成材に密着すると
きにその表面に凹凸が生じやすく、焼結処理後もその凹
凸形状が維持される。
The method for producing the calcium phosphate material of the present invention is not particularly limited. For example, hydroxyapatite powder synthesized by a wet method is mixed with a pyrolyzable organic substance or a spherical pore forming material made of carbon in a predetermined ratio. After mixing with a mold and densifying with a die and isostatic pressing, the mixture is heated in an atmosphere of an inert gas such as nitrogen or in the atmosphere to burn off the pore-forming material, and then in the atmosphere. It can be created by sintering. In the case of a granular powder, it is possible to obtain a porous granule having a predetermined particle size by crushing after isostatic pressing, or after sintering, and pulverizing. When the hydroxyapatite powder used at this time has a size of several to several tens of μm, the surface of the hydroxyapatite powder is likely to have irregularities when it is brought into close contact with the spherical pore-forming material by a press, and the irregularity shape is maintained even after sintering. Is maintained.

【0007】[0007]

【作用】本願発明によれば、気孔の貫通性がよく、体内
に埋植した場合でも血流が妨げられない構造を有してお
り、血液中の酸素が良好に供給されて軟骨を経ないで骨
が良好に形成され、さらに、骨形成後もその内部に血流
を保つ連続空孔が残存する。また、本願発明のカルシウ
ム材をBMPなどの骨形成因子とともに生体内に埋植す
れば、骨のない部位(皮下)においても良好な骨形成を
示しており、骨欠損部・空隙部といった骨周辺の骨形成
は勿論のこと、さらには歯槽膿漏により退化した歯槽骨
のように骨のない部分に骨を形成するような治療におい
ても効果を奏する。
EFFECTS OF THE INVENTION According to the present invention, the pores have good penetrability and have a structure in which blood flow is not obstructed even when implanted in the body, and oxygen in blood is well supplied and does not pass through cartilage. The bone is well formed by the method, and after the bone is formed, continuous pores that maintain blood flow remain inside. Further, when the calcium material of the present invention was implanted in a living body together with a bone morphogenetic factor such as BMP, good bone formation was shown even in a region without bone (subcutaneous), and the bone periphery such as a bone defect portion or a void portion was shown. The present invention is effective not only in bone formation but also in the treatment of forming bone in a bone-free portion such as alveolar bone degenerated by alveolar pyorrhea.

【0008】以下に詳細な作用とともに、具体的な構成
限定理由を述べる。本願発明のカルシウム材は多孔体か
らなるが、これは生体中に存在する骨芽細胞を支持体内
部に効果的に導入し、かつ支持体内部への血流を維持す
ることにより、骨形成を速やかにするためのものであ
る。したがって、約10μmの骨芽細胞を安定に保持
し、効率的に骨形成を行わせるためには、気孔径として
は100〜300μmであることが必要である。気孔径
が100μm未満の場合には骨形成細胞が気孔内に侵入
するすることができず、また、300μmを越えると、
体液の循環に伴い、細胞が容易に流出してしまうので、
上記範囲に限定した。
A detailed reason for limiting the structure will be described below together with the detailed operation. The calcium material of the present invention is composed of a porous body, which effectively introduces osteoblasts existing in the living body into the inside of the support, and maintains the blood flow to the inside of the support, thereby promoting bone formation. This is for speed. Therefore, in order to stably retain osteoblasts of about 10 μm and efficiently perform osteogenesis, the pore diameter must be 100 to 300 μm. When the pore diameter is less than 100 μm, bone-forming cells cannot enter the pores, and when it exceeds 300 μm,
With the circulation of body fluid, cells easily flow out,
It is limited to the above range.

【0009】またカルシウム材内部まで細胞が侵入し、
十分な血流を維持するためには気孔がすべて連続してい
なければならず、異方性のない三次元的な気孔の連続性
を持たせるためには、真球状の気孔形状が最適である。
さらにあ、多孔体全体に均一に細胞を侵入させるために
は、気孔径ができるかぎり均一であることが望ましい。
この気孔率が50%未満の場合には、形成される気孔の
連続性が低下し、独立した閉じた気孔が生成されてしま
うため、細胞の侵入や血の循環が行えなくなってしま
う。また、均一径の球の最密充填の場合に、球の占める
体積は74%であり、燐酸カルシウムの微細な気孔を考
慮するば、80%を越えると気孔形成材間に燐酸カルシ
ウム粉末が十分な量まで充填されない状態となり、等方
靜水圧プレスによっても緻密化が達成されないので上記
範囲とする。
[0009] Also, the cells penetrate into the calcium material,
To maintain sufficient blood flow, all pores must be continuous, and in order to have non-anisotropic three-dimensional pore continuity, a perfect spherical pore shape is optimal. ..
Furthermore, in order to allow cells to uniformly penetrate into the entire porous body, it is desirable that the pore diameter be as uniform as possible.
If the porosity is less than 50%, the continuity of the formed pores is reduced and independent closed pores are generated, so that cell invasion and blood circulation cannot be performed. Also, in the case of the closest packing of spheres of uniform diameter, the volume occupied by spheres is 74%. Considering the fine pores of calcium phosphate, if it exceeds 80%, calcium phosphate powder will be sufficient between the pore-forming materials. It is not filled up to a certain amount, and densification cannot be achieved even by an isotropic hydrostatic press, so the above range is set.

【0010】気孔内部の燐酸カルシウムの表面は、滑ら
かな状態でなく、微小な凹凸があることにより細胞の付
着がスムーズに行われ、骨形成を速める要因となる。ま
た、燐酸カルシウムとしてハイドロキシアパタイト単相
を使用しても、その表面が生体内で溶出しやすく、生体
内で局部的なpH上昇を生じ骨芽細胞の侵入が遅くなる
傾向があるので、燐酸カルシウム材を生体内に充填する
前に、中性の燐酸塩緩衝溶液に浸すなどして洗浄するこ
とにより、溶出し易い成分を予め取り去ってしまうこと
が望ましく、これによって生体内に充填した後の骨形成
を速めることができる。また、燐酸カルシウム材を30
0〜1000μmの顆粒状態で使用すると、骨芽細胞の
侵入が、充填したハイドロキシアパタイト全体に渡って
速やかに完了して全体の骨形成が行われる。気孔径とし
て100μm以上を確保するために顆粒径は300μm
以上が必要であり、また、1000μmを越えるとバル
クと同様の挙動が生じ、顆粒体としての特性が失われる
ので、上記範囲とする。
The surface of the calcium phosphate in the pores is not in a smooth state, but has fine irregularities so that cells can be smoothly attached to the surface, which is a factor for accelerating bone formation. Moreover, even if a hydroxyapatite single phase is used as calcium phosphate, its surface is likely to be eluted in vivo and a local increase in pH tends to occur in vivo to slow down invasion of osteoblasts. Before filling the material into the living body, it is desirable to remove components that are likely to be eluted by immersing it in a neutral phosphate buffer solution and then washing it. Formation can be accelerated. In addition, calcium phosphate material 30
When it is used in a granular state of 0 to 1000 μm, invasion of osteoblasts is rapidly completed throughout the filled hydroxyapatite, and the entire bone formation is performed. Granule diameter is 300μm to ensure pore diameter of 100μm or more
The above is required, and if it exceeds 1000 μm, the same behavior as bulk occurs and the characteristics as a granule are lost, so the above range is set.

【0011】[0011]

【実施例】【Example】

(実施例1)リン酸水素カルシウム二水和物[CaHP
4・2H2O]をアルカリ水溶液中で加水分解してカル
シウムとリンの比(Ca/P)が、1.67のハイドロ
キシアパタイト粉末(燐酸カルシウム粉末)を得た。こ
の粉末は、粒径が1〜120μmの範囲にあり平均粒径
が15μmのフレーク状の結晶であった。この粉末を大
気中にて800℃で3時間か焼を行った後、100〜2
00μm径のアクリル系真球状樹脂と重量比で5:4の
割合に混合した。
(Example 1) Calcium hydrogen phosphate dihydrate [CaHP
O 4 .2H 2 O] was hydrolyzed in an alkaline aqueous solution to obtain a hydroxyapatite powder (calcium phosphate powder) having a calcium to phosphorus ratio (Ca / P) of 1.67. This powder was flaky crystals having a particle size in the range of 1 to 120 μm and an average particle size of 15 μm. This powder was calcined in the air at 800 ° C. for 3 hours and then 100 to 2
Acrylic spherical resin having a diameter of 00 μm was mixed at a weight ratio of 5: 4.

【0012】この混合粉末を金型プレスにより、200
kg/cm2の圧力で、20mm径×4mm厚に成形
後、3000kg/cm2の圧力でラバープレスした。
これを窒素雰囲気中で600℃まで加熱して、アクリル
系樹脂を分解、蒸発させた後、大気中で1200℃、1
時間の焼結を行った。この様にして作成した多孔質ハイ
ドロキシアパタイトの気孔率は約70%であり、気孔内
表面は、図1のSEM観察像に示すようにフレーク状の
ハイドロキシアパタイトが球状の樹脂に密着した時の微
細な凹凸(約1μm粗さ)をとどめていた。この多孔体
を5×5×3mmに成形し、多孔体のみの場合、骨髄細
胞を添加した場合、骨形成タンパク質を添加した場合に
ついて、各試験片をねずみの背中の皮下に埋植し、以降
の経過を観察した。
This mixed powder is pressed with a die press to 200
at a pressure of kg / cm 2, after forming a 20mm diameter × 4 mm thick, and rubber-pressed at a pressure of 3000 kg / cm 2.
This is heated to 600 ° C. in a nitrogen atmosphere to decompose and evaporate the acrylic resin, then 1200 ° C. in the atmosphere,
Sintered for hours. The porosity of the porous hydroxyapatite prepared in this way is about 70%, and the inner surface of the pores is fine when flaky hydroxyapatite adheres to the spherical resin as shown in the SEM observation image of FIG. The irregularities (roughness of about 1 μm) were retained. This porous body was molded into a size of 5 × 5 × 3 mm, and in the case of only the porous body, the case of adding bone marrow cells, or the case of adding bone morphogenetic protein, each test piece was implanted subcutaneously on the back of a mouse. Was observed.

【0013】その結果、ハイドロキシアパタイトのみの
場合には、3週間後では多孔体表層のみに細胞が侵入し
ているが、時間の経過とともに内部へ侵入し、9週間後
には完全に内部まで侵入した。また、9週間後では部分
的な骨形成が認められた。また、骨髄細胞を添加して
も、骨形成はハイドロキシアパタイトのみの場合と同様
であった。これに対し、骨形成タンパク質を添加した場
合には、細胞の侵入が速く、6週間後には内部まで侵入
した。また、骨形成も速く、6周ですでに部分的に骨形
成が生じ、9周では全体的に骨化が進行していた。
As a result, in the case of only hydroxyapatite, cells invaded only the surface layer of the porous body after 3 weeks, but penetrated into the interior with the passage of time, and completely invaded after 9 weeks. .. In addition, partial bone formation was observed after 9 weeks. Even when bone marrow cells were added, bone formation was similar to that of hydroxyapatite alone. On the other hand, when the bone morphogenetic protein was added, the cells invaded rapidly, and 6 weeks later, the cells invaded the inside. In addition, bone formation was fast, and partial bone formation had already occurred in 6th round, and ossification had progressed in 9th round.

【0014】(実施例2)実施例1で作成した多孔質ハ
イドロキシアパタイト材を5×5×3mmに成形後、p
H=7.4の燐酸緩衝液で2〜3日洗浄後、骨形成タン
パク質を添加し、実施例1と同様にねずみの皮下に埋植
した。その結果、実施例1の同等品よりも細胞の侵入が
速く、3週間後には試験片外周部がほとんど石灰化し
た。
(Example 2) The porous hydroxyapatite material prepared in Example 1 was molded into 5 x 5 x 3 mm, and then p
After washing with a phosphate buffer of H = 7.4 for 2 to 3 days, bone morphogenetic proteins were added and the mice were subcutaneously implanted as in Example 1. As a result, invasion of cells was faster than that of the equivalent product of Example 1, and the outer peripheral portion of the test piece was almost calcified after 3 weeks.

【0015】(実施例3)実施例1の製造工程における
ラバープレス後に得られる成形体を同様にして製造し、
これを粉砕して、300〜500μmの粒径の顆粒体を
フルイ分けにより回収した。この顆粒を再び実施例1と
同様の後工程で樹脂を蒸発させ、さらに焼結することに
より顆粒状の多孔質ハイドロキシアパタイトを得た。得
られた顆粒体に骨形成タンパク質を添加し、ねずみの背
中の皮下に埋植した。その結果、1週間後にはすべての
気孔内に細胞が侵入し、2週間後に骨化が生じていた。
また、顆粒状多孔体の吸収が生じており、完全な骨への
転化が非常に速やかに行われることを示唆している。
Example 3 A molded body obtained after rubber pressing in the manufacturing process of Example 1 was manufactured in the same manner,
This was crushed and granules having a particle diameter of 300 to 500 μm were collected by sieving. The granules of porous hydroxyapatite were obtained by again evaporating the resin from the granules in the same post-process as in Example 1 and further sintering. Bone morphogenetic protein was added to the obtained granules, and they were implanted subcutaneously on the back of mice. As a result, cells were invaded into all stomata after 1 week, and ossification occurred after 2 weeks.
In addition, the absorption of the granular porous body is occurring, suggesting that the conversion into complete bone is performed very quickly.

【0016】(比較例1)牛の骨を焼成した、天然骨由
来のハイドロキシアパタイトブロックを5×5×3mm
に形成して、ブロックのみの場合、これに骨髄細胞を添
加した場合、骨形成タンパク質を添加した場合につい
て、各試験片をねずみの背中の皮下に埋植し、以降の経
過を観察した。その結果、ブロックのみの場合は実施例
1と同等品と比較して、3週間後にすでに細胞が内部ま
で侵入しており、細胞の侵入が非常に速い。しかし、骨
形成は速く、9週間後においても骨形成は生じていなか
った。また、骨髄細胞の添加による影響は見られなかっ
た。さらに骨形成タンパク質を添加した場合には、細胞
の侵入はブロックのみの場合よりも速く、9週間後には
部分的に骨化したところがあったが、実施例1に比べて
骨形成速度で大きく劣っていた。
(Comparative Example 1) Natural bone-derived hydroxyapatite block obtained by burning bovine bone was measured in a size of 5 × 5 × 3 mm.
Each test piece was formed subcutaneously on the back of a mouse, and the subsequent process was observed in the case of forming only the block, adding the bone marrow cells to the block, and adding the bone morphogenetic protein. As a result, in the case of only the block, the cells have already penetrated into the inside after 3 weeks as compared with the equivalent product of Example 1, and the invasion of the cells is very fast. However, bone formation was fast, and bone formation did not occur even after 9 weeks. In addition, the effect of addition of bone marrow cells was not observed. Further, when the bone morphogenetic protein was added, the invasion of cells was faster than in the case of only the block, and there was a part of ossification after 9 weeks, but the bone formation rate was significantly inferior to that in Example 1. Was there.

【0017】[0017]

【発明の効果】以上説明したように、本願発明の骨形成
用多孔質燐酸カルシウム材によれば、燐酸カルシウムで
構成された成形体であって、100〜300μm径の均
一な大きさを有する真球状気孔が50〜80%の気孔率
で三次元的に連続して形成されており、この気孔表面が
微細な凹凸面で構成されているので、短期間で骨が育成
される効果がある。また燐酸カルシウムとして、ハイド
ロキシアパタイト単相を使用すれば、骨の育成速度はさ
らに向上する。さらに、燐酸カルシウム材の気孔に骨形
成因子を保持させることにより骨育成速度をより一層向
上させることができる。
As described above, according to the bone forming porous calcium phosphate material of the present invention, a molded body made of calcium phosphate having a uniform size of 100 to 300 μm diameter is used. Spherical pores are continuously formed three-dimensionally with a porosity of 50 to 80%, and since the surface of the pores is composed of fine irregularities, bone is cultivated in a short period of time. Further, if the hydroxyapatite single phase is used as the calcium phosphate, the bone growth rate is further improved. Further, the bone growth rate can be further improved by retaining the bone morphogenetic protein in the pores of the calcium phosphate material.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、この発明の実施例における気孔表面の
セラミック組織写真である。
FIG. 1 is a photograph of a ceramic structure of pore surfaces in an example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燐酸カルシウムで構成された成形体であ
って、100〜300μm径の均一な大きさを有する真
球状気孔が50〜80%の気孔率で三次元的に連続して
形成されており、この気孔表面が微細な凹凸面で構成さ
れていることを特徴とする骨形成用多孔質燐酸カルシウ
ム材
1. A molded body composed of calcium phosphate, wherein spherical spherical pores having a uniform size of 100 to 300 μm are continuously formed three-dimensionally with a porosity of 50 to 80%. The porous calcium phosphate material for bone formation, characterized in that the surface of the pores is composed of fine irregularities
【請求項2】 粒径が300〜1000μmの燐酸カル
シウム粒子で構成された顆粒体であって、前記粒子内に
100〜300μm径の均一な大きさを有する真球状気
孔が50〜80%の気孔率で三次元的に連続して形成さ
れており、この気孔表面が微細な凹凸面で構成されてい
ることを特徴とする骨形成用多孔質燐酸カルシウム材
2. A granule composed of calcium phosphate particles having a particle size of 300 to 1000 μm, wherein 50 to 80% of the spherical particles have a uniform size of 100 to 300 μm. Porous calcium phosphate material for bone formation characterized in that it is formed three-dimensionally continuously at a constant rate, and that the surface of the pores is composed of fine irregularities
【請求項3】 燐酸カルシウムがハイドロキシアパタイ
ト[Ca10(PO46(OH)2]単相からなることを特
徴とする請求項1または2記載の骨形成用多孔質燐酸カ
ルシウム材
3. The porous calcium phosphate material for bone formation according to claim 1, wherein the calcium phosphate is composed of hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] single phase.
【請求項4】 気孔内に骨形成因子を保持させたことを
特徴とする請求項1〜3のいずれかに記載の骨形成用多
孔質燐酸カルシウム材
4. The bone-forming porous calcium phosphate material according to claim 1, wherein the bone-forming factor is retained in the pores.
JP4135645A 1992-04-30 1992-04-30 Porous calcium phosphate material for bone formation Pending JPH05305134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135645A JPH05305134A (en) 1992-04-30 1992-04-30 Porous calcium phosphate material for bone formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135645A JPH05305134A (en) 1992-04-30 1992-04-30 Porous calcium phosphate material for bone formation

Publications (1)

Publication Number Publication Date
JPH05305134A true JPH05305134A (en) 1993-11-19

Family

ID=15156649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135645A Pending JPH05305134A (en) 1992-04-30 1992-04-30 Porous calcium phosphate material for bone formation

Country Status (1)

Country Link
JP (1) JPH05305134A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027742A (en) * 1995-05-19 2000-02-22 Etex Corporation Bioresorbable ceramic composites
US6117456A (en) * 1995-05-19 2000-09-12 Etex Corporation Methods and products related to the physical conversion of reactive amorphous calcium phosphate
GB2348872A (en) * 1999-04-13 2000-10-18 Toshiba Ceramics Co Calcium phosphate porous sintered body and production thereof
US6139578A (en) * 1995-05-19 2000-10-31 Etex Corporation Preparation of cell seeded ceramic compositions
US6214368B1 (en) 1995-05-19 2001-04-10 Etex Corporation Bone substitution material and a method of its manufacture
US6287341B1 (en) 1995-05-19 2001-09-11 Etex Corporation Orthopedic and dental ceramic implants
US6541037B1 (en) 1995-05-19 2003-04-01 Etex Corporation Delivery vehicle
JP2003093052A (en) * 2001-09-21 2003-04-02 Mamoru Aizawa Method for culturing osteoblast
EP1155705A3 (en) * 2000-05-19 2003-10-15 Ochi, Takahiro, Ph. D. Biomaterial
JP2004505747A (en) * 2000-08-22 2004-02-26 ジンテーズ アクチエンゲゼルシャフト クール Bone substitute material
US6713420B2 (en) 2000-10-13 2004-03-30 Toshiba Ceramics Co., Ltd. Porous ceramics body for in vivo or in vitro use
US6953594B2 (en) 1996-10-10 2005-10-11 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US6972130B1 (en) 1996-10-16 2005-12-06 Etex Corporation Bioceramic compositions
US7150879B1 (en) 1995-05-19 2006-12-19 Etex Corporation Neutral self-setting calcium phosphate paste
CN100389733C (en) * 2004-11-29 2008-05-28 西安理工大学 Method for preparing hole structure gradient changing spherical inner hole artificial bone
US7517539B1 (en) 1996-10-16 2009-04-14 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US8641667B2 (en) 2005-10-20 2014-02-04 DePuy Synthes Products, LLC Perfusion device and method
US9155671B2 (en) 2012-10-16 2015-10-13 Surmodics, Inc. Wound packing device and methods
US10201457B2 (en) 2014-08-01 2019-02-12 Surmodics, Inc. Wound packing device with nanotextured surface
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117456A (en) * 1995-05-19 2000-09-12 Etex Corporation Methods and products related to the physical conversion of reactive amorphous calcium phosphate
US6139578A (en) * 1995-05-19 2000-10-31 Etex Corporation Preparation of cell seeded ceramic compositions
US6214368B1 (en) 1995-05-19 2001-04-10 Etex Corporation Bone substitution material and a method of its manufacture
US6287341B1 (en) 1995-05-19 2001-09-11 Etex Corporation Orthopedic and dental ceramic implants
US6027742A (en) * 1995-05-19 2000-02-22 Etex Corporation Bioresorbable ceramic composites
US7150879B1 (en) 1995-05-19 2006-12-19 Etex Corporation Neutral self-setting calcium phosphate paste
US6541037B1 (en) 1995-05-19 2003-04-01 Etex Corporation Delivery vehicle
US6544290B1 (en) 1995-05-19 2003-04-08 Etex Corporation Cell seeding of ceramic compositions
US6953594B2 (en) 1996-10-10 2005-10-11 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US7517539B1 (en) 1996-10-16 2009-04-14 Etex Corporation Method of preparing a poorly crystalline calcium phosphate and methods of its use
US6972130B1 (en) 1996-10-16 2005-12-06 Etex Corporation Bioceramic compositions
US6340648B1 (en) * 1999-04-13 2002-01-22 Toshiba Ceramics Co., Ltd. Calcium phosphate porous sintered body and production thereof
GB2348872B (en) * 1999-04-13 2003-03-26 Toshiba Ceramics Co Calcium phosphate porous sintered body and production thereof
GB2348872A (en) * 1999-04-13 2000-10-18 Toshiba Ceramics Co Calcium phosphate porous sintered body and production thereof
EP1155705A3 (en) * 2000-05-19 2003-10-15 Ochi, Takahiro, Ph. D. Biomaterial
US8679072B2 (en) 2000-08-22 2014-03-25 DePuy Synthes Products, LLC Bone-regeneration material
US8540658B2 (en) 2000-08-22 2013-09-24 DePuy Synthes Products, LLC Bone-regeneration material
JP2004505747A (en) * 2000-08-22 2004-02-26 ジンテーズ アクチエンゲゼルシャフト クール Bone substitute material
US6713420B2 (en) 2000-10-13 2004-03-30 Toshiba Ceramics Co., Ltd. Porous ceramics body for in vivo or in vitro use
JP2003093052A (en) * 2001-09-21 2003-04-02 Mamoru Aizawa Method for culturing osteoblast
CN100389733C (en) * 2004-11-29 2008-05-28 西安理工大学 Method for preparing hole structure gradient changing spherical inner hole artificial bone
US8641667B2 (en) 2005-10-20 2014-02-04 DePuy Synthes Products, LLC Perfusion device and method
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
US9155671B2 (en) 2012-10-16 2015-10-13 Surmodics, Inc. Wound packing device and methods
US10080688B2 (en) 2012-10-16 2018-09-25 Surmodics, Inc. Wound packing device and method
US10201457B2 (en) 2014-08-01 2019-02-12 Surmodics, Inc. Wound packing device with nanotextured surface

Similar Documents

Publication Publication Date Title
Hayashi et al. Honeycomb blocks composed of carbonate apatite, β-tricalcium phosphate, and hydroxyapatite for bone regeneration: effects of composition on biological responses
JPH05305134A (en) Porous calcium phosphate material for bone formation
KR100951199B1 (en) Machinable preformed calcium phosphate bone substitute material implants
KR910001352B1 (en) Porous ceramic material and method for producing thereof
RU2354408C2 (en) Inorganic resorbing material for bone replacement
US7087540B2 (en) Resorbable bone replacement and bone formation material
Dorozhkin Calcium orthophosphate (CaPO4) scaffolds for bone tissue engineering applications
AU2005332589B2 (en) Shaped article
HUE035344T2 (en) Biodegradable composite material
EP2130557A1 (en) Bone Graft Substitute
JPH0359703B2 (en)
EP1380313B1 (en) Method of preparing porous calcium phosphate morsels and granules via Gelatin processing
Ingole et al. Bioactive ceramic composite material stability, characterization
KR102636183B1 (en) Collagen matrix or granulated blend of bone substitute materials
Zyman et al. Nonstoichiometric hydroxyapatite granules for orthopaedic applications
JP4802317B2 (en) Calcium phosphate ceramic bead assembly and method for constructing the same
WO2003075973A1 (en) Spherical calcium phosphate molding and use thereof
Taylor et al. Recent advances in bone graft technologies
JPH0575427B2 (en)
JP2007203034A (en) Member for prosthesis and culture of organic tissue or release of medicine in body and method for manufacturing the member
JPH08112341A (en) Bone packing material and its production
KR102473250B1 (en) A POROUS SCAFFOLD COMPRISING A β-TRICALCIUM PHOSPHATE AND A POLYCARPROLACTON FOR REGENERATING THE PERIODONTAL COMPLEX HAVING IMPROVED TENSILE STRENGTH CHARACTERISTICS, AND METHOD FOR PREPARING THE SAME
JPH01107769A (en) Osteoprosthetic agent
JPH0414584B2 (en)
JPS60256460A (en) Composition for filling bone defficient part and gap part containing fibrin and calcium phosphate