JPH05284652A - Control circuit for universal filter - Google Patents

Control circuit for universal filter

Info

Publication number
JPH05284652A
JPH05284652A JP4077240A JP7724092A JPH05284652A JP H05284652 A JPH05284652 A JP H05284652A JP 4077240 A JP4077240 A JP 4077240A JP 7724092 A JP7724092 A JP 7724092A JP H05284652 A JPH05284652 A JP H05284652A
Authority
JP
Japan
Prior art keywords
phase
power
component
circuit
current command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4077240A
Other languages
Japanese (ja)
Inventor
Takeshi Shioda
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP4077240A priority Critical patent/JPH05284652A/en
Publication of JPH05284652A publication Critical patent/JPH05284652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Abstract

PURPOSE:To obtain a voltage command containing no basic wave component by subtracting two phase current commands for R and S components, obtained from reverse phase real power R and imaginary power S, from two phase current commands for P and Q components obtained from instantaneous real power P and imaginary power Q of a conventional system. CONSTITUTION:A P, Q operating circuits 101, a high pass filter 102, and a Q component current command value operating circuit 111 deliver Q component two phase current command signals Ialpha, Ibeta to a three-phase command value operating circuit 110. An R, S operating circuit 107, a low-pass filter 108, and an R, S component current command value operating circuit 109 deliver P, Q component two phase current commands Id, Iq to the three-phase command value operating circuit 110. The three-phase command value operating circuit 110 operates each phase compensation current command signal Icu, Icv, Icw which is then fed to an amplifying circuit 104. The amplifying circuit 104 produces voltage command signals Vu, Vv, Vw to a voltage control circuit 106. The voltage control circuit 106 receives a triangular carrier voltage from a triangular wave generating circuit 105 and produces a trigger signal VG for a switching element in a PWM converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電源系統に負荷に並列
に接続されるリアクトルとコンデンサとを直列に接続し
たパッシブフィルタと、スイッチング素子により構成さ
れる電力変換器を直列接続したパッシブ併用アクティブ
フィルタの制御回路の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passive filter in which a reactor and a capacitor connected in parallel to a load in a power supply system are connected in series, and a passive combined active system in which a power converter composed of a switching element is connected in series. The present invention relates to improvement of a filter control circuit.

【0002】[0002]

【従来の技術】リアクトルとコンデンサとの直列回路よ
りなるパッシブフィルタとスイッチング素子により構成
される電力変換器を直列接続してなるパッシブ併用アク
ティブフィルタは「交流フィルタとパルス幅変調方式電
力変換器を直列接続した高調波抑制装置」等でも解説さ
れている通り公知である。
2. Description of the Related Art A passive combined active filter in which a passive filter composed of a series circuit of a reactor and a capacitor and a power converter composed of a switching element are connected in series is described in "AC filter and pulse width modulation type power converter in series". It is known as described in "Connected Harmonic Suppression Device" and the like.

【0003】図2はパッシブ併用アクティブフィルタの
主回路構成図、図3はその制御回路のブロック線図であ
る。
FIG. 2 is a block diagram of the main circuit of a passive combined active filter, and FIG. 3 is a block diagram of its control circuit.

【0004】図2において、三相交流系統電源1よりサ
イリスタレオナード装置等の負荷2に電力を供給してい
るラインで、負荷に並列にLCフィルタ3が接続され、
そのLCフィルタ3は、コンデンサ31及びリアクトル32
の直列回路からなる第5調波同調フィルタと、コンデン
サ33及びリアクトル34の直列回路からなる第7調波同調
フィルタと、抵抗35とリアクトル36の並列回路とコンデ
ンサ37との直列回路からなる高次フィルタで構成されて
いる。三相の電源電流ISU, ISV,ISW は、負荷電流
LU,ILV,ILWとフィルタ電流IFU,IFV,IFWとを
それぞれ合成して構成されている。
In FIG. 2, an LC filter 3 is connected in parallel to the load in a line in which electric power is supplied from a three-phase AC system power source 1 to a load 2 such as a thyristor Leonard device.
The LC filter 3 includes a capacitor 31 and a reactor 32.
5th harmonic tuning filter consisting of a series circuit of, a seventh harmonic tuning filter consisting of a series circuit of a capacitor 33 and a reactor 34, a higher order consisting of a series circuit of a parallel circuit of a resistor 35 and a reactor 36, and a capacitor 37. It consists of filters. The three-phase power supply currents I SU , I SV , and I SW are configured by combining load currents I LU , I LV , and IL W and filter currents I FU , I FV , and I FW , respectively.

【0005】LCフィルタ3の各相の他端は(Y−Y)
変圧器7の一次側に接続し、その変圧器7の一次側の他
端はスター接続され、二次側の一方の端もスター結線に
なっていると共に、他端は各相に交流リアクトル4が直
列接続され、また、変圧器7の二次側と交流リアクトル
4との各相接続点には、コンデンサ8が接続されてい
る。
The other end of each phase of the LC filter 3 is (Y-Y)
The transformer 7 is connected to the primary side, the other end of the primary side of the transformer 7 is star-connected, and one end of the secondary side is also star-connected, and the other end is an AC reactor 4 for each phase. Are connected in series, and a capacitor 8 is connected to each phase connection point between the secondary side of the transformer 7 and the AC reactor 4.

【0006】交流リアクトル4の反変圧器側にはPWM
変換器5が接続され、このPWM変換器5の直流側端子
には直流コンデンサ6が接続され、その直流コンデンサ
6には並列に単相ダイオード整流器9を接続している。
PWM変換器5はオンオフ可能なスイッチング素子S1〜
S6にそれぞれダイオードD1〜D6を並列接続した三相ブリ
ッジ回路を形成し、これは図3に示す制御回路で生成さ
れるトリガ信号VG によりスイッチング素子S1〜S6がオ
ンオフして高調波制御を行うものである。交流リアクト
ル4及びコンデンサ8はスイッチングリップル抑制用の
LCフィルタであり、PWM変換器5のスイッチング周
波数が高いときには無くてもよい。
PWM is provided on the side opposite to the transformer of the AC reactor 4.
A converter 5 is connected, a DC capacitor 6 is connected to the DC side terminal of the PWM converter 5, and a single-phase diode rectifier 9 is connected in parallel to the DC capacitor 6.
The PWM converter 5 is a switching element S1 which can be turned on and off.
A three-phase bridge circuit in which diodes D1 to D6 are respectively connected in parallel to S6 is formed, and switching elements S1 to S6 are turned on / off by a trigger signal V G generated by the control circuit shown in FIG. 3 to perform harmonic control. It is a thing. The AC reactor 4 and the capacitor 8 are LC filters for suppressing switching ripples, and may be omitted when the switching frequency of the PWM converter 5 is high.

【0007】かような高調波抑制回路はLCフィルタ3
の部分、変圧器7、交流リアクトル4、コンデンサ8、
PWM変換器5、直流コンデンサ6、単相ダイオード整
流回路9と、図3に示す制御回路とを主構成部とするも
のである。
Such a harmonic suppression circuit has an LC filter 3
Part, transformer 7, AC reactor 4, capacitor 8,
The PWM converter 5, the DC capacitor 6, the single-phase diode rectifier circuit 9, and the control circuit shown in FIG. 3 are main components.

【0008】基本波に対して、LCフィルタ3は進相コ
ンデンサとして動作させ、PWM変換器5は零インピー
ダンスとして動作させると、PWM変換器5には基本波
電圧が印加されない。
When the LC filter 3 is operated as a phase advancing capacitor and the PWM converter 5 is operated as zero impedance with respect to the fundamental wave, the fundamental wave voltage is not applied to the PWM converter 5.

【0009】また、高調波に対しては、PWM変換器5
は電源電流の高調波分を阻止するように高調波電圧を発
生させるものであり、LCフィルタ3の問題点である反
共振や上位系統からの高調波電流の流入を抑制すること
ができる。
For the harmonics, the PWM converter 5
Generates a harmonic voltage so as to block the harmonic component of the power supply current, and can suppress the problem of the LC filter 3, such as anti-resonance and the inflow of the harmonic current from the host system.

【0010】そのため、ここでは三相〜二相変換を行い
実電力及び虚電力なる概念を導入して、これを以下数式
を用いて詳述する。
Therefore, here, the concept of real power and imaginary power is introduced by performing three-phase to two-phase conversion, and this will be described in detail using the following mathematical expressions.

【0011】まず、次の式(1) 〜(3) で三相の電源電流
SU, ISV,ISWと電源電圧VU ,VV , VW を二相の
電流Isα, Isβ及び二相の電圧Vα,Vβに変換する。
First, the three-phase power supply currents I SU , I SV , and I SW and the power supply voltages V U , V V , and V W are converted into two-phase currents Is α, Is β, and two powers by the following equations (1) to (3). Convert to phase voltages Vα and Vβ.

【数1】 ここで、〔C〕は三相〜二相変換行列である。[Equation 1] Here, [C] is a three-phase to two-phase conversion matrix.

【0012】この式(1) 〜(3) により求めた二相の電圧
及び電流から、次の式(4) によって瞬時実電力P及び虚
電力Qが求められる。
From the two-phase voltage and current obtained by the equations (1) to (3), the instantaneous actual power P and the imaginary power Q are obtained by the following equation (4).

【数2】 [Equation 2]

【0013】この電力P、Qがそれぞれ従来の有効電
力、無効電力に対応するもので、これら瞬時実電力P及
び虚電力Qは、次の式(5) 〜(6) のように直流分PDC
DC及び交流分PACとQACに分解される。
The electric powers P and Q correspond to conventional active power and reactive power, respectively, and the instantaneous actual power P and imaginary power Q are the direct current component P as expressed by the following equations (5) to (6). It is decomposed into DC and Q DC and AC components P AC and Q AC .

【数3】 P=PDC+PAC (5) Q=QDC+QAC (6) ここで、二相電源電流Isα, Isβの基本波分は直流分P
DC,QDCに、高調波分は交流分PAC,QACに変換され
る。実際には、これら直流分,交流分の分離はハイパス
フィルタにより行われる。
## EQU3 ## P = P DC + P AC (5) Q = Q DC + Q AC (6) where the fundamental wave component of the two-phase power supply current Isα, Isβ is the DC component P
DC and Q DC are converted into harmonic components, and AC components P AC and Q AC are converted into higher harmonic components. In reality, the direct current component and the alternating current component are separated by a high pass filter.

【0014】図3において 101はP,Q演算回路, 102
はハイパスフィルタ, 103は電流指令値演算回路, 104
は増幅回路, 105は三角波発生回路, 106は電圧制御回
路である。P,Q演算回路101 は系統電圧VU ,VV
W と電源電流ISU, ISV,ISWとの検出値から式(1)
〜(2) に従って瞬時実電力P及び瞬時虚電力Qを演算
し、ハイパスフィルタ102 へ出力する。ハイパスフィル
タ102 は直流分を除去して、瞬時実電力の交流分PAC
び瞬時虚電力Qの交流分QACをそれぞれ実電力指令信号
* 及び虚電力指令信号Q* として電流指令演算回路10
3 に送出する。
In FIG. 3, 101 is a P, Q arithmetic circuit, 102
Is a high-pass filter, 103 is a current command value calculation circuit, 104
Is an amplifier circuit, 105 is a triangular wave generation circuit, and 106 is a voltage control circuit. The P and Q arithmetic circuits 101 are connected to system voltages V U , V V ,
From the detection values of V W and the power supply currents I SU , I SV , and I SW , equation (1)
According to (2), the instantaneous real power P and the instantaneous imaginary power Q are calculated and output to the high pass filter 102. High-pass filter 102 to remove DC component, the current command calculation circuit 10 as an instantaneous real power of the AC component P AC and instantaneous imaginary power Q of the AC component Q AC real power command signal respectively P * and imaginary power command signal Q *
Send to 3.

【数4】 P* =PAC (7) Q* =QAC (8) [Formula 4] P * = P AC (7) Q * = Q AC (8)

【0015】電流指令値演算回路103 は実電力指令信号
* 及び虚電力指令信号Q* と系統電圧VU , VV , V
W とを受け、式(1) 及び次の式(9) 〜(11)に従い二相電
流指令信号を得て、更に式(10)に従って二相〜三相変換
を行い、三相の電流指令信号IU * ,IV * ,IW *
生成し増幅回路104 に送出する。
The current command value calculation circuit 103 uses the actual power command signal P *, the imaginary power command signal Q *, and the system voltages V U , V V , V.
In response to W , the two-phase current command signal is obtained according to formula (1) and the following formulas (9) to (11), and further two-phase to three-phase conversion is performed according to formula (10) to generate a three-phase current command. The signals I U * , I V * , and I W * are generated and sent to the amplifier circuit 104.

【数5】 なお、〔C〕-1は〔C〕の逆行列である。[Equation 5] Note that [C] −1 is the inverse matrix of [C].

【0016】増幅回路104 は電流指令信号IU * ,IV
* ,IW * を入力し、ゲインK倍して電圧指令信号VU
* ,VV * ,VW * を生成して、電圧制御回路106 へ出
力する。
The amplifier circuit 104 uses the current command signals I U * , I V
* , I W * are input, gain is multiplied by K, and voltage command signal V U
* , V V * , and V W * are generated and output to the voltage control circuit 106.

【0017】電圧制御回路106 は、三角波発生回路105
より出力される三角波キャリア電圧St と、電圧指令信
号VU * ,VV * ,VW * とを入力し、電圧指令信号V
U *≧三角波キャリア電圧St ならばスイッチング素子S
1をオンして、スイッチング素子S6をオフし、電圧指令
信号VU * <三角波キャリア電圧St ならばスイッチン
グ素子S1をオフして、スイッチング素子S6をオンする。
The voltage control circuit 106 is a triangular wave generation circuit 105.
The triangular wave carrier voltage St output from the above and the voltage command signals V U * , V V * , V W * are input, and the voltage command signal V t is input.
If U * ≥ triangular wave carrier voltage S t , switching element S
1 is turned on, the switching element S6 is turned off, and if the voltage command signal V U * <triangular wave carrier voltage St , the switching element S1 is turned off and the switching element S6 is turned on.

【0018】また、電圧指令信号VV * ≧三角波キャリ
ア電圧St ならばスイッチング素子S3をオンして、スイ
ッチング素子S2をオフするようなトリガ信号VG を生成
するものである。このトリガ信号VG により、スイッチ
ング素子S1〜S6がオン、オフされ、PWM変換器5の各
相の電圧瞬時値が制御される。
If the voltage command signal V V * ≧ triangular wave carrier voltage S t , a trigger signal V G for turning on the switching element S3 and turning off the switching element S2 is generated. The trigger signal V G turns the switching elements S1 to S6 on and off, and controls the instantaneous voltage value of each phase of the PWM converter 5.

【0019】[0019]

【発明が解決しようとする課題】図2に示したパッシブ
併用アクティブフィルタにおいて、図3に示す制御装置
により式(1) 〜(11)の演算を行い、電圧指令信号
U * ,VV * ,VW * を導出すると、負荷2が不平衡
の場合には電圧指令信号VU * ,VV * ,VW * に基本
波成分を含むものとなる。
In the passive combined active filter shown in FIG. 2, the control unit shown in FIG. 3 calculates the equations (1) to (11) to obtain the voltage command signals V U * and V V *. , V W * , the voltage command signals V U * , V V * , V W * include the fundamental wave component when the load 2 is unbalanced.

【0020】そのために、三相PWMコンバータ5に基
本波が流れて、容量を大きくしなければならない。本発
明はこの点を改善しようとするものである。
Therefore, the fundamental wave must flow through the three-phase PWM converter 5 to increase the capacity. The present invention seeks to improve this point.

【0021】[0021]

【課題を解決するための手段】本発明は上述したような
点に鑑みなされたものであり、特に逆相電流成分を検出
する演算回路を設けることにより、従来の電圧指令信号
から逆相電圧成分を差し引いて、新たに電圧指令信号と
なすものである。
The present invention has been made in view of the above points, and in particular, by providing an arithmetic circuit for detecting an anti-phase current component, an anti-phase voltage component from a conventional voltage command signal can be obtained. Is subtracted to form a new voltage command signal.

【0022】[0022]

【作用】本発明は前述の解決手段を具備すると共に、特
に逆相実電力R,逆相虚電力Sなる概念を新たに導入し
ている。ここで、先に式(1) 〜(9) によって瞬時実電力
P及び虚電力Q分二相電流指令Iα* 及びIβ* が演算
されている。
The present invention has the above-mentioned solution, and particularly introduces the concept of the anti-phase real power R and the anti-phase imaginary power S. Here, the instantaneous actual power P and the imaginary power Q-divided two-phase current commands Iα * and Iβ * are previously calculated by the equations (1) to (9).

【0023】次に式(1) 〜(3) により求めた二相の電圧
及び電流を使い、式(4')により逆相実電力R及び虚電力
Sが求められる。
Next, using the two-phase voltage and current obtained by the equations (1) to (3), the anti-phase actual power R and the imaginary power S are obtained by the equation (4 ').

【数6】 [Equation 6]

【0024】これら逆相実電力R及び虚電力Sは、次の
式(5'), (6')により、それぞれ直流分RDC,SDCと交流
分RAC,SACに分解される。
The anti-phase real power R and the imaginary power S are decomposed into direct current components R DC and S DC and alternating current components R AC and S AC by the following equations (5 ') and (6'), respectively.

【数7】 R=RDC+RAC (5') S=SDC+SAC (6')[Equation 7] R = R DC + R AC (5 ') S = S DC + S AC (6')

【0025】ここで、逆相実電力の直流分RDC及び虚電
力の直流分SDCより
Here, from the DC component R DC of the antiphase real power and the DC component S DC of the imaginary power,

【数8】 R* =RDC (12) S* =SDC (13) のごとく、逆相実電力指令信号R* 及び虚電力指令信号
* が得られる。
## EQU00008 ## The reverse-phase real power command signal R * and the imaginary power command signal S * are obtained as R * = R DC (12) S * = S DC (13).

【0026】また、下記の式(9')に従って逆相実電力指
令信号R* 及び虚電力指令信号S*から、二軸変換した
逆相実電力R及び虚電力S分の二相電流指令Id* , Iq*
を得る。これら逆相実電力R,虚電力S分二相電流指令
Id* , Iq* は、P,Q分二相電流指令信号Iα* ,Iβ
* 内に存在する逆相電流分である。
Further, according to the following equation (9 '), the two-phase current command Id corresponding to the reverse-phase actual power R and the imaginary power S is biaxially converted from the reverse-phase actual power command signal R * and the imaginary power command signal S *. * , Iq *
To get Two-phase current command for these reverse phase real power R and imaginary power S
Id * and Iq * are P and Q two-phase current command signals Iα * and Iβ.
It is the negative-phase current component existing in * .

【0027】さらに、式(10') に従って導出される各相
補償電流指令信号ICU * ,ICV * ,ICW * は、基本波分
を含まない各相の高調波のみを消去する信号である。
Further, each phase compensation current command signal I CU * , I CV * , I CW * derived according to the equation (10 ') is a signal for eliminating only the harmonic of each phase not including the fundamental wave component. is there.

【数9】 なお、〔C〕-1は式(11)で与えられている。[Equation 9] Note that [C] −1 is given by the equation (11).

【0028】このようにして得られた各相補償電流指令
信号ICU * ,ICV * ,ICW * をゲインK倍して、電圧指
令信号VU * ,VV * ,VW * を生成し、三角波キャリ
ア電圧と比較して、PWM変換器のスイッチング素子の
オン,オフを制御することにより、不平衡負荷電流の高
調波補償を行うことができる。
The phase compensation current command signals I CU * , I CV * , I CW * obtained in this way are multiplied by the gain K to generate voltage command signals V U * , V V * , V W * . Then, by controlling ON / OFF of the switching element of the PWM converter as compared with the triangular wave carrier voltage, harmonic compensation of the unbalanced load current can be performed.

【0029】[0029]

【実施例】以下、本発明を実施例図面を参照して更に詳
細に説明する。図1は本発明を適用したパッシブ併用ア
クティブフィルタの制御回路の一実施例を表すブロック
線図で、 107はR,S演算回路、 108はローパスフィル
タ、 109はR,S分電流指令値演算回路、 110は三相指
令値演算回路、 111はP,Q分電流指令値演算回路を示
し、図3と同一符号は同一構成部分を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of a control circuit of a passive combined active filter to which the present invention is applied. 107 is an R / S arithmetic circuit, 108 is a low pass filter, 109 is an R / S minute current command value arithmetic circuit. 110 is a three-phase command value calculation circuit, 111 is a P and Q component current command value calculation circuit, and the same symbols as those in FIG. 3 indicate the same components.

【0030】P,Q演算回路101 、ハイパスフィルタ10
2 、及びP,Q分電流指令値演算回路111 は式(1) 〜
(9) によってP,Q分二相電流指令信号Iα* 及びIβ
* を三相指令値演算回路110 へ出力する。
P, Q arithmetic circuit 101, high-pass filter 10
2, and P, Q component current command value calculation circuit 111 is expressed by equation (1)
By (9), P and Q two-phase current command signals Iα * and Iβ
Output * to the three-phase command value calculation circuit 110.

【0031】R,S演算回路107 、ローパスフィルタ10
8 、R,S分電流指令演算回路109は、式(1) 〜(3) 、
式(4')〜(6')、式(12)、(13)及び式(9')によって、P,
Q分二相電流指令Id* 及びIq* を三相指令演算回路110
へ出力する。
R, S arithmetic circuit 107, low-pass filter 10
8, the R, S component current command calculation circuit 109 uses the equations (1) to (3),
By the formulas (4 ′) to (6 ′), the formulas (12), (13) and the formula (9 ′), P,
Q-phase two-phase current command Id * and Iq * are calculated as three-phase command calculation circuit 110
Output to.

【0032】三相指令演算回路110 はP,Q分二相電流
指令Iα* ,Iβ* 及びR,S分二相電流指令Id* ,Iq
* を入力し、式(10') に従って各相補償電流指令
CU * ,ICV * ,ICW * を生成して、増幅回路104 へ出
力する。
The three-phase command calculation circuit 110 uses the two-phase current commands Iα * and Iβ * for P and Q and the two-phase current commands Id * and Iq for R and S.
By inputting * , each phase compensation current command I CU * , I CV * , I CW * is generated according to the equation (10 ′) and output to the amplifier circuit 104.

【0033】増幅回路104 は各相補償電流指令ICU *
CV * ,ICW * を入力し、ゲインK倍して電圧指令信号
U * ,VV * ,VW * を生成し、電圧制御回路106 へ
出力する。
The amplifier circuit 104 uses the phase compensation current command I CU * ,
I CV * and I CW * are input, the gain is multiplied by K to generate voltage command signals V U * , V V * and V W *, which are output to the voltage control circuit 106.

【0034】電圧制御回路106 は、三角波発生回路105
より出力される三角波キャリア電圧Sと電圧指令信号V
U * ,VV * ,VW * とを入力し、PWM変換器5のス
イッチング素子S1〜S6のトリガ信号VG を生成するもの
である。トリガ信号VG によってスイッチング素子S1〜
S6がオン,オフされ、PWM変換器5の各相の電圧瞬時
値が制御される。
The voltage control circuit 106 is a triangular wave generation circuit 105.
Output triangular wave carrier voltage S and voltage command signal V
U *, V V *, and enter the V W *, and generates a trigger signal V G of the switching elements S1~S6 of PWM converter 5. Switching element by a trigger signal V G S1 to
S6 is turned on and off, and the instantaneous voltage value of each phase of the PWM converter 5 is controlled.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
従来方式の瞬時実電力及び虚電力から求めたP,Q分二
相電流指令より、更に逆相実電力及び虚電力より求めた
R,S分二相電流指令を差し引くことにより、基本波成
分を含まない電圧指令を得ることができるので、PWM
変換器の容量を小さくしたまま、系統の高調波補償を行
うことができる。
As described above, according to the present invention,
By subtracting the R, S component two-phase current command obtained from the anti-phase actual power and the imaginary power from the P, Q component two-phase current command obtained from the instantaneous actual power and the imaginary power of the conventional method, the fundamental wave component is obtained. Since it is possible to obtain a voltage command that does not include PWM
It is possible to perform harmonic compensation of the system while keeping the capacity of the converter small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したパッシブ併用アクティブフィ
ルタの制御回路の一実施例を表すブロック線図である。
FIG. 1 is a block diagram showing an embodiment of a control circuit for a passive combined active filter to which the present invention is applied.

【図2】パッシブ併用アクティブフィルタの主回路構成
図である。
FIG. 2 is a main circuit configuration diagram of a passive combined active filter.

【図3】図2のパッシブ併用アクティブフィルタの制御
回路のブロック線図である。
FIG. 3 is a block diagram of a control circuit of the passive combined active filter of FIG.

【符号の説明】[Explanation of symbols]

1 三相交流系統電源 2 サイリスタレオナード装置等の負荷 3 LCフィルタ 31, 33, 37 コンデンサ 32, 34, 36 リアクトル 35 抵抗 4 交流リアクトル 5 PWM変換器 6 直流コンデンサ6 7 (Y−Y)変圧器 8 コンデンサ 9 単相ダイオード整流器9 101 P,Q演算回路 102 ハイパスフィルタ 103 電流指令値演算回路 104 増幅回路 105 三角波発生回路 106 電圧制御回路 107 R,S演算回路 108 ローパスフィルタ 109 R,S分電流指令値演算回路 110 三相指令値演算回路 111 P,Q分電流指令値演算回路 D1〜D6 ダイオード ISU, ISV,ISW 三相の電源電流 IFU,IFV,IFW フィルタ電流 ILU,ILV,ILW 負荷電流 Isα, Isβ 二相の電流 IU * ,IV * ,IW * 三相の電流指令信号 Iα* ,Iβ* 瞬時実電力P及び虚電力Q分二相電流指
令 Id* , Iq* 逆相実電力R及び虚電力S分の二相電流指令 ICU * ,ICV * ,ICW * 各相補償電流指令信号 P 瞬時実電力 PDC 瞬時実電力の直流分 PAC 瞬時実電力の交流分 P* 実電力指令信号 Q 瞬時虚電力 QDC 瞬時虚電力の直流分 QAC 瞬時虚電力の交流分 Q* 虚電力指令信号 R 逆相実電力 RDC 逆相実電力の直流分 RAC 逆相実電力の交流分 R* 逆相実電力指令信号 S 逆相虚電力 SDC 逆相虚電力の直流分 SAC 逆相虚電力の交流分 S* 逆相虚電力指令信号 St 三角波キャリア電圧 S1〜S6 オンオフ可能なスイッチング素子 VG トリガ信号 VU , VV , VW 三相の電源電圧 Vα,Vβ 二相の電圧 VU * ,VV * ,VW * 電圧指令信号
1 Three-phase AC system power supply 2 Load of thyristor Leonard device 3 LC filter 31, 33, 37 Capacitor 32, 34, 36 Reactor 35 Resistor 4 AC reactor 5 PWM converter 6 DC capacitor 6 7 (Y-Y) transformer 8 Capacitor 9 Single-phase diode rectifier 9 101 P, Q calculation circuit 102 High-pass filter 103 Current command value calculation circuit 104 Amplification circuit 105 Triangular wave generation circuit 106 Voltage control circuit 107 R, S calculation circuit 108 Low-pass filter 109 R, S minute current command value arithmetic circuit 110 three-phase command value calculation circuit 111 P, Q current command value calculation circuit D1~D6 diode I SU, I SV, I SW three phases of the power source current I FU, I FV, I FW filter current I LU, I LV, I LW load current Isarufa, current Isβ biphasic I U *, I V *, I W * the three-phase current command signal Iα *, * instantaneous real power P and an imaginary power Q component two-phase current command Id * , Iq * Reverse phase real electric Two-phase current command I CU * , I CV * , I CW * for each force R and imaginary power S Compensation current command signal for each phase P Instantaneous actual power P DC Instantaneous actual power DC component P AC Instantaneous actual power AC component P * Actual power command signal Q Instantaneous imaginary power Q DC Direct current component of instantaneous imaginary power Q AC Instantaneous imaginary power AC component Q * Virtual power command signal R Reversed phase actual power R DC Reversed phase Actual power DC component R AC Reversed phase actual AC component of power R * Reverse phase actual power command signal S Reverse phase imaginary power S DC DC component of reverse phase imaginary power S AC AC component of reverse phase imaginary power S * Reverse phase imaginary power command signal S t Triangular wave carrier voltage S1 ~ S6 Switching element that can be turned on and off V G Trigger signal V U , V V , V W Three-phase power supply voltage Vα, Vβ Two-phase voltage V U * , V V * , V W * Voltage command signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電源系統に負荷設備と並列に接続したLC
フィルタとPWM変換器とを直列に接続してなるパッシ
ブ併用アクティブフィルタの制御回路において、 該制御回路は電源電流を検出して瞬時実電力分及び瞬時
虚電力分の交流分より瞬時実電力及び虚電力電流指令値
を出力する手段と、前記電源電流を検出して逆相実電力
分及び逆相虚電力分の直流分より逆相実電力及び虚電力
電流指令値を出力する手段と、前記瞬時実電力及び虚電
力電流指令値と前記逆相実電力及び虚電力電流指令値の
各々の差を取り基本波成分を含まない三相電流指令値を
得る手段と、該三相電流指令値をゲインK倍して電圧指
令値を得る手段とを具えたことを特徴とするパッシプ併
用アクティブフィルタの制御回路。
1. A LC connected to a power system in parallel with a load facility.
In a control circuit of a passive-combined active filter in which a filter and a PWM converter are connected in series, the control circuit detects a power supply current and detects an instantaneous real power and an imaginary power from an AC component of the instantaneous real power and the instantaneous imaginary power. A means for outputting a power current command value; a means for detecting the power supply current and outputting a negative phase actual power and imaginary power current command value from a direct current component of the negative phase actual power component and the antiphase imaginary power component; Means for obtaining a three-phase current command value that does not include a fundamental wave component by taking the difference between each of the actual power and imaginary power current command values and the opposite-phase actual power and imaginary power current command values, and gaining the three-phase current command values A control circuit for a passive combined active filter comprising means for multiplying K to obtain a voltage command value.
JP4077240A 1992-03-31 1992-03-31 Control circuit for universal filter Pending JPH05284652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077240A JPH05284652A (en) 1992-03-31 1992-03-31 Control circuit for universal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077240A JPH05284652A (en) 1992-03-31 1992-03-31 Control circuit for universal filter

Publications (1)

Publication Number Publication Date
JPH05284652A true JPH05284652A (en) 1993-10-29

Family

ID=13628345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077240A Pending JPH05284652A (en) 1992-03-31 1992-03-31 Control circuit for universal filter

Country Status (1)

Country Link
JP (1) JPH05284652A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237434A (en) * 1989-03-06 1990-09-20 Toyo Electric Mfg Co Ltd Controller for resonant active filter
JPH03243135A (en) * 1990-02-21 1991-10-30 Toyo Electric Mfg Co Ltd Active/passive filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237434A (en) * 1989-03-06 1990-09-20 Toyo Electric Mfg Co Ltd Controller for resonant active filter
JPH03243135A (en) * 1990-02-21 1991-10-30 Toyo Electric Mfg Co Ltd Active/passive filter

Similar Documents

Publication Publication Date Title
EP0390184B1 (en) Improvements in variable-voltage &amp; variable-frequency power converter
KR100934311B1 (en) Inverter device
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
JP2005033895A (en) Power converter
JP3323759B2 (en) Pulse width modulation converter device
JPH07123722A (en) Pwm converter
JP2003092832A (en) Controller for self-excited converter for dc transmission
JP2010011613A (en) Pwm converter device
JPH074051B2 (en) Active filter with combined use of passive
JPH05284652A (en) Control circuit for universal filter
JP3247252B2 (en) Control device for power converter
JPH07123726A (en) Power converter
JPH1189219A (en) Circuit arrangement for supply from trunk line of energy source to load of single phase or polyphase
JP3505578B2 (en) Power converter control device
JPS5819169A (en) Controlling method for pwm control converter
JP3191055B2 (en) Control circuit of active filter with passive
JP2877388B2 (en) Harmonic suppression device with voltage compensation function
JP2878779B2 (en) Active filter with passive
JPH06105419B2 (en) Power compensator
JPH04334930A (en) Series-type active filter
JP3318348B2 (en) Control circuit of active filter with passive
JPH11225477A (en) Sine wave converter with filtering function
JPS5911274B2 (en) Control device for commutatorless motor
JPH06245387A (en) Controlling method for system interconnection and system circuit apparatus
JPH02237434A (en) Controller for resonant active filter