JPH05244725A - Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof - Google Patents

Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof

Info

Publication number
JPH05244725A
JPH05244725A JP4039184A JP3918492A JPH05244725A JP H05244725 A JPH05244725 A JP H05244725A JP 4039184 A JP4039184 A JP 4039184A JP 3918492 A JP3918492 A JP 3918492A JP H05244725 A JPH05244725 A JP H05244725A
Authority
JP
Japan
Prior art keywords
power
solar cell
parallel
solar
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4039184A
Other languages
Japanese (ja)
Inventor
Kouichi Tatsumura
浩一 立村
Yukio Ishigaki
幸雄 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4039184A priority Critical patent/JPH05244725A/en
Publication of JPH05244725A publication Critical patent/JPH05244725A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PURPOSE:To permit the independent operation of both the devices by a method wherein a superconductive energy storage device is connected in parallel to a solar battery through DC buses so that the solar light power generating device and the superconductive energy storage device can be separated from a circuit. CONSTITUTION:An electric power system 30 is connected to an electric power converting device 9 through a switch 11 and a transformer 10. A superconductive energy storage device consisting of a superconductive coil 2 is connected in parallel to a solar battery 1 through DC buses. The converting device 9 accommodates an AC/DC converter and a DC/AC converter A controller 21 turns on/off the converting device 9 and self arc-extinguishing elements 4, 5 by signals from a power detector 18 and an energy transporting amount detector 20 to store the output of the solar battery 1 into the superconductive coil 2 or discharge it into the power system 30 through inverter operation or give-and-takes the energy between the superconductive coil 2 and the power system 30 regardless of the solar battery and effects independent operation or combined operation. According to this method, solar energy can be utilized effectively with a simple device and a low loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発電装置、及びその運転
方法、並びに太陽光発電装置と超電導エネルギー貯蔵装
置との複合システム、及びその運転方法に係り、特に電
力変換装置を介して電力系統と連結される太陽光発電装
置、若しくは燃料電池発電装置の回路に超電導エネルギ
ー貯蔵装置が接続されているものに好適な発電装置、及
びその運転方法、並びに太陽光発電装置と超電導エネル
ギー貯蔵装置との複合システム、及びその運転方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator, an operating method thereof, a combined system of a photovoltaic power generator and a superconducting energy storage device, and an operating method thereof, and more particularly to a power system through a power converter. A power generation device suitable for a solar power generation device to be connected or a superconducting energy storage device connected to a circuit of a fuel cell power generation device, an operating method thereof, and a composite of a solar power generation device and a superconducting energy storage device The present invention relates to a system and its operating method.

【0002】[0002]

【従来の技術】一般に、電力系統に電力変換装置を介し
て連結された太陽電池を備える太陽光発電装置は、その
回路に超電導エネルギー貯蔵装置が接続されて構成され
ている。
2. Description of the Related Art In general, a solar power generation device including a solar cell connected to an electric power system through a power conversion device has a circuit to which a superconducting energy storage device is connected.

【0003】その太陽光発電装置の運転方式の一例とし
て、太陽電池からの発電電力と夜間の余剰電力を超電導
エネルギー貯蔵装置に貯蔵し、電力需要の多い季節、及
び時間帯のピークを補う方式、また、電力系統に連系し
短時間に生じる負荷変動に対して、太陽電池の発電電力
だけでなく超電導エネルギー貯蔵装置の高速応答により
負荷変動を補償する方式が考えられる。
As an example of the operation method of the solar power generation device, a method of storing generated power from a solar cell and surplus power at night in a superconducting energy storage device to compensate for peaks in seasons and time zones when power demand is high, In addition, there is a method of compensating for load fluctuations that are connected to the power system and occur in a short time not only by the generated power of the solar cell but also by the high-speed response of the superconducting energy storage device.

【0004】上記の運転方式を実現しうる回路構成とし
て、太陽光発電装置と超電導エネルギー貯蔵装置を電力
系統で接続する方式と、直流で太陽電池と超電導コイル
を接続する方式がある。
As circuit configurations capable of realizing the above-mentioned operation system, there are a system in which a solar power generation device and a superconducting energy storage device are connected by a power system, and a system in which a solar cell and a superconducting coil are connected by direct current.

【0005】直流で太陽電池と超電導コイルを接続する
方式には、太陽電池と超電導コイルを直列に接続する方
式と、太陽電池と超電導コイルを並列に接続する方式が
ある。
As a method of connecting the solar cell and the superconducting coil with direct current, there are a method of connecting the solar cell and the superconducting coil in series, and a method of connecting the solar cell and the superconducting coil in parallel.

【0006】例えば、前者に関しては、平成2年度電気
学会電力・エネルギー部門全国大会の予稿集P283〜
P288に記載されている。
[0006] For example, regarding the former, the proceedings of the National Conference of the Institute of Electrical Engineers of Japan, Electricity and Energy Division, 1990, P283-
P288.

【0007】この予稿集に記載されている太陽光発電装
置は、図3に示すように、太陽電池1と直列に接続され
る超電導コイル2の間に、逆流防止用ダイオード22,
平滑リアクトル23,コンデンサ7,超電導コイル2に
流す電流を制御する降圧チョッパ12,超電導コイル2
の直流電流を還流させる還流ダイオード3、及び超電導
コイル2の電流を交流に変換する電力変換装置9から構
成され、電力変換装置9を介して電力系統30に接続さ
れている。
As shown in FIG. 3, the solar power generation device described in this abstract includes a backflow prevention diode 22, a superconducting coil 2 connected in series with a solar cell 1, and a backflow prevention diode 22 ,.
Smoothing reactor 23, capacitor 7, step-down chopper 12 that controls the current flowing in superconducting coil 2, superconducting coil 2
Of the superconducting coil 2 and an electric power converter 9 for converting the electric current of the superconducting coil 2 into an alternating current, and are connected to the electric power system 30 via the electric power converter 9.

【0008】そして、太陽電池1からも電力系統30か
らも超電導コイル2に電力を貯蔵することができ、必要
なときは電力変換装置9をインバータとして運転して、
エネルギーを系統に供給するようにしたものである。
Electric power can be stored in the superconducting coil 2 from both the solar cell 1 and the electric power system 30, and the electric power converter 9 is operated as an inverter when necessary.
It is designed to supply energy to the grid.

【0009】また、後者に関しては、特開昭64−19929
号公報に記載されている太陽光発電装置がある。
Regarding the latter, JP-A-64-19929
There is a solar power generation device described in the publication.

【0010】これは、超電導コイルの冷却システムを利
用して、太陽電池を通常の使用温度よりも低くし太陽電
池の発電効率を上げる方式であるが、他の電力系統から
独立した電力系統に接続される負荷に電力を供給する装
置である。
This is a system in which the cooling system of the superconducting coil is used to lower the temperature of the solar cell below the normal operating temperature to increase the power generation efficiency of the solar cell, but it is connected to a power system independent from other power systems. Is a device for supplying electric power to a load.

【0011】[0011]

【発明が解決しようとする課題】上記の超電導コイル2
と太陽電池1を直列に接続する構成の場合、太陽光発電
装置と超電導エネルギー貯蔵装置を単独運転(以下、太
陽光発電装置のみの運転、及び超電導エネルギー貯蔵装
置のみの運転と言う。)できない回路構成のため、太陽
電池1の定電圧制御を行う降圧チョッパ12のスイッチ
ングによる電圧変動が超電導コイル2の交流損失とな
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the case of a configuration in which the solar cell 1 and the solar cell 1 are connected in series, a circuit in which the solar power generation device and the superconducting energy storage device cannot operate independently (hereinafter, referred to as operation of only the solar power generation device and operation of only the superconducting energy storage device) is not possible. Due to the configuration, the voltage fluctuation due to the switching of the step-down chopper 12 that controls the constant voltage of the solar cell 1 becomes the AC loss of the superconducting coil 2.

【0012】また、太陽電池1の発電電力を貯蔵する時
には、インバータのバイパスペア動作を必要とするた
め、半導体素子の順電圧降下による損失が増加する。
Further, when the generated electric power of the solar cell 1 is stored, the bypass pair operation of the inverter is required, so that the loss due to the forward voltage drop of the semiconductor element increases.

【0013】さらに、電力系統30の電力を貯蔵すると
きは、超電導コイル2に直列に接続された還流ダイオー
ド3の順電圧降下が損失となる。
Further, when the electric power of the electric power system 30 is stored, the forward voltage drop of the reflux diode 3 connected in series to the superconducting coil 2 becomes a loss.

【0014】さらに、降圧チョッパ12が非自己消弧形
素子で構成されているため、回路構成素子数が多くなる
難点があり、高効率の太陽光発電装置とは成りえない。
Further, since the step-down chopper 12 is composed of non-self-extinguishing type elements, there is a drawback that the number of circuit constituent elements is large, and it cannot be a highly efficient solar power generation device.

【0015】一方、特開昭64−19929 号公報に記載され
ている太陽光発電装置は、他の電力系統から独立した発
電装置のため、電力系統の余剰電力を超電導エネルギー
貯蔵装置に貯蔵する運転ができないので、積極的なエネ
ルギーの有効利用はできない。また、電力系統と連系し
て系統の変動を抑制するための運転も不可能である。本
発明は上述の点に鑑みなされたもので、その第1の目的
は、太陽電池を備える太陽光発電装置、若しくは燃料電
池を備える燃料電池発電装置と超電導エネルギー貯蔵装
置を単独運転でき、また、第2の目的は、回路構成要素
を低減して装置を低損失で運転し、かつ、安定で高効率
の発電が可能な発電装置、及びその運転方法、並びに太
陽光発電装置と超電導エネルギー貯蔵装置との複合シス
テム、及びその運転方法を提供するにある。
On the other hand, since the solar power generation device described in Japanese Patent Laid-Open No. 64-19929 is a power generation device independent of other power systems, an operation for storing surplus power of the power system in the superconducting energy storage device. Therefore, it is not possible to actively use energy effectively. In addition, it is not possible to operate the system to connect it to the power system and suppress fluctuations in the system. The present invention has been made in view of the above points, and a first object thereof is to independently operate a photovoltaic power generation device including a solar cell, or a fuel cell power generation device including a fuel cell and a superconducting energy storage device. A second object is to reduce the number of circuit components to operate the device with low loss and to enable stable and highly efficient power generation, an operating method thereof, and a solar power generation device and a superconducting energy storage device. And a method of operating the same.

【0016】[0016]

【課題を解決するための手段】本発明では、上記第1の
目的は、電力変換装置と太陽電池、若しくは燃料電池を
接続する直流母線に超電導エネルギー貯蔵装置を並列に
接続して構成することにより達成される。また、上記第
2の目的は、還流ダイオードを並列接続した超電導コイ
ルに第一の自己消弧形素子を直列接続した回路,太陽電
池と並列接続される第一の開閉手段とコンデンサとの直
列回路,電力系統に接続された電力変換装置とこの間を
開閉動作させる第二の開閉手段との直列回路、及び第二
の自己消弧形素子を前記太陽電池に直列接続した回路を
それぞれ並列接続して全体を構成したり、あるいは電力
系統と電力変換装置の間に設けられ、前記太陽光発電装
置を電力系統から切り離すための第二の開閉器、及び絶
縁のための変圧器とからなる交流回路と、前記電力変換
装置と太陽電池の間に、直流回路保護のための直流遮断
器と前記太陽電池の発電電力を制御する第二の自己消弧
形素子が直列に接続され、前記太陽電池の発電電力を一
旦蓄えるためのコンデンサと該コンデンサと直列接続さ
れ、このコンデンサを回路から切り離すための第一の開
閉器が前記太陽電池と並列に接続されて構成される直流
回路と、前記太陽電池に並列に超電導コイルが接続され
て構成されるエネルギー貯蔵回路とを備えていることに
より達成される。
According to the present invention, the first object is to configure a superconducting energy storage device in parallel with a DC bus connecting an electric power converter and a solar cell or a fuel cell. To be achieved. A second object is a circuit in which a first self-arc-extinguishing element is connected in series to a superconducting coil in which a free wheeling diode is connected in parallel, and a series circuit in which a first opening / closing means and a capacitor are connected in parallel with a solar cell. , A series circuit of a power converter connected to the power system and a second opening / closing means for opening / closing between the power converter and a circuit in which a second self-extinguishing element is connected in series to the solar cell are connected in parallel. An AC circuit that is configured as a whole or is provided between a power system and a power conversion device, and includes a second switch for disconnecting the solar power generation device from the power system, and a transformer for insulation. , A DC circuit breaker for protecting a DC circuit and a second self-arc-extinguishing element for controlling the generated power of the solar cell are connected in series between the power conversion device and the solar cell, Once store electricity And a DC circuit that is connected in series with the capacitor, and a first switch for disconnecting this capacitor from the circuit is connected in parallel with the solar cell, and a superconducting coil in parallel with the solar cell. And an energy storage circuit configured by being connected to each other.

【0017】[0017]

【作用】本発明の発電装置は、超電導エネルギー貯蔵装
置を太陽電池、若しくは燃料電池に並列に直流母線で接
続する構成のため、太陽光発電装置、若しくは燃料電池
発電装置と超電導エネルギー貯蔵装置を回路より電気的
に切り離すことができるので、太陽光発電装置、若しく
は燃料電池発電装置と超電導エネルギー貯蔵装置を各々
単独運転することができる。
The power generator of the present invention has a structure in which the superconducting energy storage device is connected to the solar cell or the fuel cell in parallel with a DC bus, so that the solar power generation device or the fuel cell power generation device and the superconducting energy storage device are connected in a circuit. Since they can be electrically separated from each other, the solar power generation device or the fuel cell power generation device and the superconducting energy storage device can be independently operated.

【0018】また、太陽電池の逆流防止用ダイオードと
平滑リアクトルを回路より省き、エネルギー転送用素子
を自己消弧形素子として回路構成要素を少なくしている
ので、回路構成要素が低減されて装置を低損失で運転で
き、かつ、安定で高効率の発電が可能となる。
Further, since the backflow prevention diode and the smoothing reactor of the solar cell are omitted from the circuit, and the energy transfer element is a self-turn-off element to reduce the number of circuit components, the circuit components are reduced and the device is reduced. It can be operated with low loss, and stable and highly efficient power generation becomes possible.

【0019】[0019]

【実施例】以下、図示した実施例に基づいて本発明を詳
細に説明する。尚、符号は従来と同一のものは同符号を
使用する。
The present invention will be described in detail below with reference to the illustrated embodiments. The same reference numerals are used for the same reference numerals.

【0020】図1には、本発明の太陽光発電装置と超電
導エネルギー貯蔵装置との複合システムにおける主回路
構成図の位置実施例を示する。
FIG. 1 shows a position example of a main circuit configuration diagram in a composite system of a photovoltaic power generator and a superconducting energy storage device of the present invention.

【0021】該図において、30は電力系統で、9は電
力変換装置であり、この電力系統30と電力変換装置9
の間に、太陽電池1から成る太陽光発電装置を電力系統
30から切り離すための第一の開閉手段である開閉器1
1と絶縁のための変圧器10を設け交流回路を形成して
いる。また、上記電力変換装置9は、太陽光発電装置と
超電導エネルギー貯蔵装置の単独運転、または併用運転
を行うため、図2に示す通り、超電導エネルギー貯蔵装
置用電力変換装置9−1と太陽光発電装置用電力変換装
置9−2で構成される。
In the figure, 30 is a power system, 9 is a power converter, and this power system 30 and power converter 9
The switch 1 which is the first opening / closing means for disconnecting the solar power generation device including the solar cell 1 from the power system 30 between
1 and a transformer 10 for insulation are provided to form an AC circuit. In addition, since the power conversion device 9 performs the single operation or the combined operation of the solar power generation device and the superconducting energy storage device, as shown in FIG. 2, the power conversion device 9-1 for the superconducting energy storage device and the solar power generation. The power conversion device for device 9-2 is used.

【0022】一方、電力変換装置9と太陽電池1の間に
は、直流回路保護のための直流遮断器8と太陽電池1の
発電電力の制御をする第二の自己消弧形素子5が直列に
接続され、更に太陽電池1の発電電力を一旦蓄えるため
のコンデンサ7と、このコンデンサ7と直列に接続さ
れ、コンデンサ7を回路から切り離すためのスイッチ6
とが太陽電池1に並列に接続されて直流回路を形成して
いる。
On the other hand, a DC circuit breaker 8 for protecting the DC circuit and a second self-extinguishing element 5 for controlling the generated power of the solar cell 1 are connected in series between the power converter 9 and the solar cell 1. And a capacitor 7 for temporarily storing the generated power of the solar cell 1, and a switch 6 connected in series with the capacitor 7 for disconnecting the capacitor 7 from the circuit.
And are connected in parallel to the solar cell 1 to form a DC circuit.

【0023】また、直流母線を介し太陽電池1に並列に
超電導コイル2が接続されてエネルギー貯蔵回路が形成
されている。上記エネルギー貯蔵回路には、超電導コイ
ル2と並列に還流ダイオード3が接続され、更にエネル
ギー貯蔵回路と太陽電池回路を切り離す機能、及びコン
デンサ7の静電エネルギーを超電導コイル2に転送する
機能を有する第一の自己消弧形素子4が直列に接続され
ている。
Further, the superconducting coil 2 is connected in parallel to the solar cell 1 via a DC bus to form an energy storage circuit. A reflux diode 3 is connected in parallel to the superconducting coil 2 to the energy storage circuit, and further has a function of separating the energy storage circuit and the solar cell circuit and a function of transferring the electrostatic energy of the capacitor 7 to the superconducting coil 2. One self-extinguishing element 4 is connected in series.

【0024】更に、制御系に関しては、太陽電池1の直
流電流,直流電圧と超電導コイル2の直流電流を直流計
測用変流器14,15で検出し、この検出した直流電
流,直流電圧をエネルギー転送量検出器20に入力する
ことでエネルギー転送量を検出する。また、電力系統3
0に供給する電力を交流計測用変圧器16、及び交流計
測用変流器17により検出する電力検出器18と、上記
エネルギー転送量検出器20とを制御装置21で常時監
視することで、適切なゲートパルス指令をゲート回路1
9から電力変換装置9,第一、及び第二の自己消弧形素
子4,5に与えることで制御を行う。
Further, regarding the control system, the DC current and DC voltage of the solar cell 1 and the DC current of the superconducting coil 2 are detected by the DC measuring current transformers 14 and 15, and the detected DC current and DC voltage are used as energy. The energy transfer amount is detected by inputting it to the transfer amount detector 20. In addition, power system 3
It is appropriate that the controller 21 constantly monitors the power detector 18 that detects the power supplied to 0 by the AC measuring transformer 16 and the AC measuring current transformer 17 and the energy transfer amount detector 20. Gate circuit 1 for various gate pulse commands
Control is performed by applying the power conversion device 9 to the power conversion device 9, the first and second self-extinguishing elements 4 and 5.

【0025】次に本装置の動作について説明する。Next, the operation of this apparatus will be described.

【0026】まず、本装置の基本動作として、太陽電池
1の発電電力を超電導コイル2に貯蔵する動作をモード
1,超電導コイル2に貯蔵したエネルギーを、電力変換
装置9−1をインバータ運転することで電力系統30に
放出する動作をモード2,太陽電池1の発電電力を超電
導コイル2を使用せず電力変換装置9−2をインバータ
運転することで電力系統30に放出する動作をモード
3,電力系統30の電力を電力変換装置9−1を順変換
運転して超電導コイル2に貯蔵する動作をモード4とす
る。
First, as a basic operation of this apparatus, the operation of storing the generated electric power of the solar cell 1 in the superconducting coil 2 in mode 1, the energy stored in the superconducting coil 2 is operated by the inverter of the power converter 9-1. The operation of releasing the generated power of the solar cell 1 to the power system 30 by operating the power conversion device 9-2 with the inverter without using the superconducting coil 2 is the mode 3, power Mode 4 is an operation in which the power of the grid 30 is forward-converted by the power converter 9-1 and stored in the superconducting coil 2.

【0027】そこで、各モードを具体的に説明すると、
モード1では、まず、電力変換装置9のゲートブロッ
ク、及び直流遮断器8のオープンを行い電力変換装置9
側にエネルギーが流入しないようにする。次に、スイッ
チ6をONして第二の自己消弧形素子5を制御し、太陽
電池1の発電電力をコンデンサ7に設定電圧まで充電
し、その後、第二の自己消弧形素子5をOFFすると共
に、第一の自己消弧形素子4をONさせてコンデンサ7
の放電により超電導コイル2を励磁する。さらに、コン
デンサ7の放電が終了すると還流ダイオード3が導通し
て、この還流ダイオード3と超電導コイル2との閉ルー
プとなり、超電導コイル2にエネルギーが転送され、第
一の自己消弧形素子4はOFFする。ここで、第二の自
己消弧形素子5をONさせて、上記動作をエネルギー転
送量検出器20で監視しながら目標値に達するまで繰り
返し、制御装置21で制御することで超電導コイル2に
エネルギーが貯蔵される。
Therefore, each mode will be specifically described as follows.
In mode 1, first, the gate block of the power converter 9 and the DC breaker 8 are opened to perform the power converter 9
Prevent energy from flowing into the side. Next, the switch 6 is turned on to control the second self-arc-extinguishing element 5, the generated power of the solar cell 1 is charged to the capacitor 7 to the set voltage, and then the second self-extinguishing element 5 is turned on. When turned off, the first self-extinguishing element 4 is turned on to turn on the capacitor 7
The superconducting coil 2 is excited by the discharge of. Further, when the discharge of the capacitor 7 is completed, the freewheeling diode 3 becomes conductive, and the freewheeling diode 3 and the superconducting coil 2 form a closed loop, energy is transferred to the superconducting coil 2, and the first self-extinguishing element 4 is turned off. To do. Here, the second self-extinguishing element 5 is turned on, the above operation is monitored by the energy transfer amount detector 20 repeatedly until the target value is reached, and the control device 21 controls the energy to the superconducting coil 2. Is stored.

【0028】モード2では、第二の自己消弧形素子5と
スイッチ6をOFFし、第一の自己消弧形素子4、及び
直流遮断器8をONさせてから電力変換装置9−1で一
旦還流ダイオード3に逆電圧を与えOFFさせ、それか
ら電力変換装置9−1をインバータ運転して超電導コイ
ル2に貯蔵されたエネルギーを電力系統30に放出す
る。
In mode 2, the second self-extinguishing element 5 and the switch 6 are turned off, the first self-extinguishing element 4 and the DC breaker 8 are turned on, and then the power converter 9-1 is used. The reverse voltage is once applied to the return diode 3 to turn it off, and then the power converter 9-1 is operated by an inverter to release the energy stored in the superconducting coil 2 to the power system 30.

【0029】モード3では、スイッチ6,第二の自己消
弧形素子5、及び直流遮断器8をON,第一の自己消弧
形素子4をOFFすることで太陽電池1の回路と超電導
コイル2の回路を電気的に切り離し、太陽電池1の発電
電力を電力変換装置9−2を介して電力系統30に供給
する太陽電池1の単独運転を行う。
In the mode 3, the circuit of the solar cell 1 and the superconducting coil are turned on by turning on the switch 6, the second self-extinguishing element 5 and the DC breaker 8 and turning off the first self-extinguishing element 4. The circuit of No. 2 is electrically disconnected, and the solar cell 1 that supplies the generated power of the solar cell 1 to the power system 30 via the power converter 9-2 is operated independently.

【0030】モード4では、第二の自己消弧形素子5、
及びスイッチ6をOFFし、直流遮断器8、及び第一の
自己消弧形素子4をONさせ太陽電池1を回路から切り
離し、次に、電力変換装置9−1をコンバータ運転し電
力系統30の電力を超電導コイル2に貯蔵する。
In mode 4, the second self-extinguishing element 5,
Then, the switch 6 is turned off, the DC circuit breaker 8 and the first self-extinguishing element 4 are turned on to disconnect the solar cell 1 from the circuit, and then the power converter 9-1 is operated as a converter to operate the power system 30. Electric power is stored in the superconducting coil 2.

【0031】更に、本実施例の装置では上記基本モード
を組合せることにより、以下の運転方法が可能である。
Further, in the apparatus of this embodiment, the following operating method is possible by combining the above basic modes.

【0032】まず、電力系統30の特定負荷の電力供給
源として使用する場合には、エネルギー転送量検出器2
0を制御装置21で常時監視しながらモード1の運転を
繰り返して超電導コイル2の貯蔵エネルギーを目標値に
なるまで制御する。超電導コイル2の貯蔵エネルギーが
目標値に達した時点でモード2の運転に変える。これに
よって、電力系統30の特定負荷に電力を供給すること
ができる。
First, when used as a power supply source for a specific load of the power system 30, the energy transfer amount detector 2
While the controller 21 constantly monitors 0, the operation of mode 1 is repeated to control the stored energy of the superconducting coil 2 until it reaches a target value. When the stored energy of the superconducting coil 2 reaches the target value, the operation is switched to mode 2. Thereby, electric power can be supplied to the specific load of the electric power system 30.

【0033】一方、電力系統30の短時間の負荷変動を
補償する場合には、モード1、またはモード4の運転で
予め超電導コイル2にエネルギーを貯蔵した状態で待機
する。この時、負荷が増加したときには太陽電池1の発
電電力を常時監視しながら、太陽電池1の発電電力が設
定値より大きいならば、電力系統30に電力を放出す
る。逆に、太陽電池1の発電電力が設定値より小さいな
らば、超電導コイル2の貯蔵エネルギーを電力系統30
に放出する。また、負荷が減少したときには超電導コイ
ル2にエネルギーを吸収させる。これにより、電力系統
30の短時間の負荷変動を補償することができる。
On the other hand, when compensating for a short-term load fluctuation of the power system 30, the superconducting coil 2 is preliminarily stored with energy in the mode 1 or mode 4 operation. At this time, when the load increases, the generated power of the solar cell 1 is constantly monitored, and if the generated power of the solar cell 1 is larger than the set value, the power is discharged to the power system 30. On the contrary, if the generated power of the solar cell 1 is smaller than the set value, the stored energy of the superconducting coil 2 is changed to the power system 30.
To release. Further, when the load decreases, the superconducting coil 2 absorbs energy. This makes it possible to compensate for short-term load fluctuations in the power system 30.

【0034】更に、電力系統30の日間の負荷変動を平
準化させる場合には、電力系統30の余剰電力をモード
4の運転で超電導コイル2に貯蔵し、昼間のピーク負荷
時に、太陽電池1の発電電力と設定値を比較して、発電
電力が大きい時はモード3の運転で電力系統30に電力
を放出し、発電電力が小さいときはモード2の運転で超
電導コイル2の貯蔵エネルギーを電力系統30に放出す
る。これにより、電力系統30の日間の負荷変動を平準
化させることができる。
Furthermore, when leveling the daily load fluctuations of the power system 30, the surplus power of the power system 30 is stored in the superconducting coil 2 in the operation of mode 4, and the solar cell 1 of the solar cell 1 is loaded at the peak load in the daytime. The generated power is compared with the set value, and when the generated power is large, the power is released to the power system 30 in the mode 3 operation, and when the generated power is small, the stored energy of the superconducting coil 2 is stored in the power system in the mode 2 operation. Release to 30. This makes it possible to equalize the daily load fluctuations of the power system 30.

【0035】なお、上記各モードの運転が適切に行われ
るよう制御装置21で制御されることは勿論である。
It goes without saying that the control device 21 controls the operation in each of the above modes appropriately.

【0036】このような本発明の各実施例とすることに
より、太陽光発電装置と超電導エネルギー貯蔵装置を各
々単独運転することができ、かつ、太陽電池の逆流防止
用ダイオードと平滑リアクトルを回路より省き、エネル
ギー転送素子を自己消弧形素子として回路構成要素を少
なくしているので、回路構成要素が低減されて装置を低
損失で運転できると共に、安定で高効率の発電が可能と
なる。また、本実施例の各運転モードを組み合わせるこ
とにより、電力系統の特定負荷に電力を供給することが
できることは勿論、電力系統の短時間の負荷変動を補償
することができると共に、電力系統の短時間の負荷変動
をも補償することができるし、更には電力系統の日間の
負荷変動を平準化させることができると言う種々の効果
を得ることができる。
By adopting each of the embodiments of the present invention as described above, the solar power generation device and the superconducting energy storage device can be operated independently, and the backflow prevention diode and the smoothing reactor of the solar cell are connected from the circuit. Since the number of circuit components is reduced by using the energy transfer element as a self-extinguishing element, the number of circuit components can be reduced, the device can be operated with low loss, and stable and highly efficient power generation can be achieved. In addition, by combining the respective operation modes of the present embodiment, it is possible to supply power to a specific load of the power system, and of course, it is possible to compensate for short-term load fluctuations of the power system and to shorten the power system. It is possible to obtain the various effects that the load change over time can be compensated and further the daily load change of the power system can be leveled.

【0037】尚、上述した実施例は、太陽電池を用いて
これと超電導エネルギー貯蔵装置を組み合わせたものに
ついて説明したが、太陽電池に代えて燃料電池を用いて
超電導エネルギー貯蔵装置と組み合わせ、上述した実施
例と同様にすることにより、得られる効果は太陽電池を
用いた場合と同一である。
In the above-mentioned embodiment, the solar cell is used to combine the superconducting energy storage device with each other. However, instead of the solar cell, a fuel cell is used to combine the superconducting energy storage device with the superconducting energy storage device. The same effects as those obtained by using the solar cell can be obtained by using the same method as in the example.

【0038】[0038]

【発明の効果】以上説明した本発明の発電装置、及びそ
の運転方法、並びに太陽光発電装置と超電導エネルギー
貯蔵装置との複合システム、及びその運転方法によれ
ば、電力変換装置と太陽電池、若しくは燃料電池を接続
する直流母線に超電導エネルギー貯蔵装置を並列に接続
して構成した発電装置、及び太陽光発電装置、若しくは
燃料電池発電装置と電力変換装置を接続する直流母線に
並列接続される超電導エネルギー貯蔵装置を電気的に切
り離し、太陽光発電装置、若しくは燃料電池発電装置の
発電電力を前記電力変換装置を介して電力系統に供給す
る太陽光発電装置の運転方法としたものであるから、太
陽光発電装置、若しくは燃料電池発電装置と超電導エネ
ルギー貯蔵装置の単独運転、及び併用運転の切り換えを
簡単に行える。
According to the power generator of the present invention, the method of operating the same, the combined system of the photovoltaic power generator and the superconducting energy storage device, and the method of operating the same, the power converter and the solar cell, or A power generator configured by connecting a superconducting energy storage device in parallel to a direct current bus connecting a fuel cell, and a superconducting energy connected in parallel to a solar power generator or a direct current bus connecting a fuel cell power generator and a power converter The storage device is electrically disconnected, and the solar power generation device, or the operation method of the solar power generation device that supplies the generated power of the fuel cell power generation device to the power system through the power conversion device is used. Switching between the single operation and the combined operation of the power generation device or the fuel cell power generation device and the superconducting energy storage device can be easily performed.

【0039】また、太陽電池と、該太陽電池の発電電力
の出力を制御する制御手段と、前記太陽電池と並列に接
続されている超電導エネルギー貯蔵装置と、該超電導エ
ネルギー貯蔵装置に前記太陽電池の発電エネルギーを転
送するエネルギー転送装置とを備え、これらが電力変換
装置を介して電力系統と連結されている太陽光発電装置
と超電導エネルギー貯蔵装置との複合システム、及びそ
れの運転方法としたものであるから、回路構成要素を低
減できるので装置を低損失で運転できると共に、安定で
高効率の太陽光発電が可能であり、エネルギーの有効利
用が図れる効果がある。
Further, a solar cell, a control means for controlling the output of electric power generated by the solar cell, a superconducting energy storage device connected in parallel with the solar cell, and a superconducting energy storage device for connecting the solar cell to the solar cell. An energy transfer device for transferring generated energy, which is a composite system of a solar power generation device and a superconducting energy storage device, which are connected to a power system via a power conversion device, and an operating method thereof. Therefore, since the circuit components can be reduced, the device can be operated with low loss, and stable and highly efficient solar power generation can be performed, so that the energy can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の太陽光発電装置と超電導エネルギー貯
蔵装置との複合システムの一実施例を示す主回路構成図
である。
FIG. 1 is a main circuit configuration diagram showing an embodiment of a combined system of a solar power generation device and a superconducting energy storage device of the present invention.

【図2】図1に示した電力変換装置の構成図である。FIG. 2 is a configuration diagram of the power conversion device shown in FIG.

【図3】従来の太陽光発電装置の主回路構成を示す図で
ある。
FIG. 3 is a diagram showing a main circuit configuration of a conventional solar power generation device.

【符号の説明】 1…太陽電池、2…超電導コイル、3…還流ダイオー
ド、4…第一の自己消弧形素子、5…第二の自己消弧形
素子、6…スイッチ、7…コンデンサ、8…直流遮断
器、9…電力変換装置、9−1…超電導エネルギー貯蔵
装置用電力変換装置、9−2…太陽光発電装置用電力変
換装置、10…変圧器、11…開閉器、18…電力検出
器、19…ゲート回路、20…エネルギー転送量検出
器、21…制御装置。
[Explanation of Codes] 1 ... Solar cell, 2 ... Superconducting coil, 3 ... Reflux diode, 4 ... First self-extinguishing element, 5 ... Second self-extinguishing element, 6 ... Switch, 7 ... Capacitor, 8 ... DC circuit breaker, 9 ... Power converter, 9-1 ... Power converter for superconducting energy storage device, 9-2 ... Power converter for photovoltaic power generator, 10 ... Transformer, 11 ... Switch, 18 ... Electric power detector, 19 ... Gate circuit, 20 ... Energy transfer amount detector, 21 ... Control device.

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】電力変換装置を介して電力系統と連結され
る太陽電池を備える発電装置において、前記太陽電池と
前記電力変換装置を接続する直流母線に超電導エネルギ
ー貯蔵装置を並列に接続して構成することを特徴とする
発電装置。
1. A power generator including a solar cell connected to a power system via a power converter, in which a superconducting energy storage device is connected in parallel to a DC bus connecting the solar cell and the power converter. A power generation device characterized by:
【請求項2】前記電力変換装置と前記太陽電池との間
に、該太陽電池の出力を制御する出力制御手段と前記超
電導エネルギー貯蔵装置に前記太陽電池の発電エネルギ
ーを転送するエネルギー転送装置を備えていることを特
徴とする請求項1記載の発電装置。
2. An output control means for controlling an output of the solar cell and an energy transfer device for transferring generated energy of the solar cell to the superconducting energy storage device, between the power conversion device and the solar cell. The power generator according to claim 1, wherein
【請求項3】還流ダイオードを並列接続した超電導コイ
ルに第一の自己消弧形素子を直列接続した回路,太陽電
池と並列接続される第一の開閉手段とコンデンサとの直
列回路,電力系統に接続された電力変換装置とこの間を
開閉動作させる第二の開閉手段との直列回路、及び第二
の自己消弧形素子を前記太陽電池に直列接続した回路を
それぞれ並列接続して全体を構成したことを特徴とする
発電装置。
3. A circuit in which a first self-extinguishing element is connected in series to a superconducting coil in which a return diode is connected in parallel, a series circuit in which a first opening / closing means and a capacitor are connected in parallel to a solar cell, and a power system. A series circuit of a connected power conversion device and a second opening / closing means for opening / closing the power conversion device, and a circuit in which a second self-extinguishing element was connected in series to the solar cell were connected in parallel to form the whole. A power generator characterized in that.
【請求項4】電力変換装置を介して電力系統と連結され
る太陽電池と、該太陽電池と電力変換装置を接続する直
流母線に並列接続される超電導エネルギー貯蔵装置とを
電気的に切り外し、前記太陽電池の発電電力を前記電力
変換装置を介して前記電力系統に供給することを特徴と
する太陽光発電装置の運転方法。
4. A solar cell that is connected to a power system via a power conversion device and a superconducting energy storage device that is connected in parallel to a DC bus connecting the solar cell and the power conversion device are electrically disconnected. A method of operating a photovoltaic power generation device, characterized in that power generated by the solar cell is supplied to the power system via the power conversion device.
【請求項5】還流ダイオードを並列接続した超電導コイ
ルに第一の自己消弧形素子を直列接続した回路,太陽電
池と並列接続される第一の開閉手段とコンデンサとの直
列回路,電力系統に接続された電力変換装置とこの間を
開閉動作させる第二の開閉手段との直列回路、及び第二
の自己消弧形素子を太陽電池に直列接続した回路をそれ
ぞれ並列接続し、前記第一の自己消弧形素子を閉路する
と共に、前記第二の自己消弧形素子を開路することで前
記太陽電池を電気的に切り外し、かつ、前記超電導コイ
ルに貯蔵されている貯蔵エネルギーを前記電力変換装置
を介して前記電力系統に供給することを特徴とする発電
装置の運転方法。
5. A circuit in which a first self-extinguishing element is connected in series to a superconducting coil in which a free wheel diode is connected in parallel, a series circuit in which a first switching means and a capacitor which are connected in parallel to a solar cell are connected in series, and to a power system. A series circuit of a connected power conversion device and a second opening / closing means for opening / closing between the power conversion device and a circuit in which a second self-extinguishing element is serially connected to a solar cell are connected in parallel, and the first self The solar cell is electrically disconnected by closing the arc extinguishing element and opening the second self-extinguishing element, and the stored energy stored in the superconducting coil is converted into the power conversion device. A method for operating a power generation device, characterized in that the power is supplied to the electric power system via a power line.
【請求項6】還流ダイオードを並列接続した超電導コイ
ルに第一の自己消弧形素子を直列接続した回路,太陽電
池と並列接続される第一の開閉手段とコンデンサとの直
列回路,電力系統に接続された電力変換装置とこの間を
開閉動作させる第二の開閉手段との直列回路、及び第二
の自己消弧形素子を太陽電池に直列接続した回路をそれ
ぞれ並列接続し、前記第一の開閉手段を閉路すると共
に、前記第二の開閉手段を開路し、更に前記第一の自己
消弧形素子、および前記第二の自己消弧形素子をそれぞ
れ閉路して前記コンデンサに前記太陽電池からの発電電
力を充電し、そのコンデンサに充電したエネルギーを前
記超電導コイルに転送し、この動作を繰り返すことで超
電導エネルギー貯蔵装置に太陽光発電装置の発電電力を
貯蔵することを特徴とする太陽光発電装置と超電導エネ
ルギー貯蔵装置との複合システムの運転方法。
6. A circuit in which a first self-extinguishing element is connected in series to a superconducting coil in which a return diode is connected in parallel, a series circuit in which a first switching means and a capacitor which are connected in parallel to a solar cell are connected in series, and to a power system. A series circuit of a connected power conversion device and a second opening / closing means for opening / closing between the power conversion device and a circuit in which a second self-extinguishing element is serially connected to a solar cell are connected in parallel, and the first opening / closing circuit is provided. With the means closed, the second opening and closing means is opened, the first self-arc-extinguishing element, and the second self-arc-extinguishing element are respectively closed to the capacitor from the solar cell. The generated power is charged, the energy charged in the capacitor is transferred to the superconducting coil, and the generated power of the solar power generation device is stored in the superconducting energy storage device by repeating this operation. The method of operating a complex system of photovoltaic power generator and the superconducting energy storage device for.
【請求項7】電力変換装置を介して電力系統と連結され
る太陽電池を備える太陽光発電装置と、該太陽光発電装
置と電力変換装置を接続する直流母線に超電導エネルギ
ー貯蔵装置を並列に接続し、前記太陽光発電装置の発電
電力が設定値よりも大きいか、またはほぼ一致する場合
には前記超電導エネルギー貯蔵装置を電気的に切り外し
て前記太陽光発電装置の単独運転で電力系統に電力を供
給し、前記太陽光発電装置の発電電力が設定値よりも小
さい場合には前記太陽光発電装置を電気的に切り外して
前記超電導エネルギー貯蔵装置の単独運転で電力系統に
電力を供給する運転を行うことを特徴とする太陽光発電
装置と超電導エネルギー貯蔵装置との複合システムの運
転方法。
7. A solar power generation device including a solar cell connected to a power system via a power conversion device, and a superconducting energy storage device connected in parallel to a DC bus connecting the solar power generation device and the power conversion device. However, when the generated power of the solar power generation device is larger than a set value or substantially matches, the superconducting energy storage device is electrically cut off and power is supplied to the power system in an isolated operation of the solar power generation device. When the generated power of the solar power generation device is smaller than a set value, the solar power generation device is electrically disconnected and the superconducting energy storage device operates independently to supply power to the power grid. A method of operating a combined system of a solar power generation device and a superconducting energy storage device, characterized in that
【請求項8】電力変換装置を介して電力系統と連結され
る太陽電池を備える太陽光発電装置において、前記電力
系統と電力変換装置の間に設けられ、前記太陽光発電装
置を電力系統から切り離すための第二の開閉器、及び絶
縁のための変圧器とからなる交流回路と、前記電力変換
装置と太陽電池の間に、直流回路保護のための直流遮断
器と前記太陽電池の発電電力を制御する第二の自己消弧
形素子が直列に接続され、前記太陽電池の発電電力を一
旦蓄えるためのコンデンサと該コンデンサと直列接続さ
れ、このコンデンサを回路から切り離すための第一の開
閉器が前記太陽電池と並列に接続されて構成される直流
回路と、前記太陽電池に並列に超電導コイルが接続され
て構成されるエネルギー貯蔵回路とを備えていることを
特徴とする太陽光発電装置。
8. A solar power generation device including a solar cell connected to a power system via a power conversion device, the solar power generation device being provided between the power system and the power conversion device, and separating the solar power generation device from the power system. AC switch composed of a second switch for switching and a transformer for insulation, and a DC circuit breaker for protecting a DC circuit and generated power of the solar cell between the power conversion device and the solar cell. A second self-extinguishing element to be controlled is connected in series, a capacitor for temporarily storing the power generated by the solar cell and a series connection with the capacitor, and a first switch for disconnecting the capacitor from the circuit are provided. Solar light comprising a direct current circuit configured by being connected in parallel with the solar cell, and an energy storage circuit configured by connecting a superconducting coil in parallel with the solar cell. Collector.
【請求項9】前記エネルギー貯蔵回路は、前記超電導コ
イルと並列に還流ダイオードが接続され、且つ該エネル
ギー貯蔵回路と太陽電池回路を切り離す機能と前記コン
デンサの静電エネルギーを前記超電導コイルに転送する
機能を有する第一の自己消弧形素子が直列に接続されて
構成されていることを特徴とする請求項8記載の太陽光
発電装置。
9. The energy storage circuit has a freewheeling diode connected in parallel with the superconducting coil, a function of disconnecting the energy storage circuit from the solar cell circuit, and a function of transferring electrostatic energy of the capacitor to the superconducting coil. 9. The solar power generation device according to claim 8, wherein the first self-arc-extinguishing element having is connected in series.
【請求項10】還流ダイオードを並列接続した超電導コ
イルに第一の自己消弧形素子を直列接続した回路,太陽
電池と並列接続される第一の開閉手段とコンデンサとの
直列回路,電力系統に接続された電力変換装置とこの間
を開閉動作をさせる第二の開閉手段との直列回路、及び
第二の自己消弧形素子を太陽電池に直列接続した回路を
それぞれ並列接続して構成すると共に、前記太陽電池の
直流電流,直流電圧と前記超電導コイルの直流電流を検
出することでエネルギー転送量を検出するエネルギー転
送量検出器と、前記電力系統に供給する電力を検出する
電力検出器と、該電力検出器での電力系統に供給する電
力、及び前記エネルギー転送量検出器での太陽電池と超
電導コイルのエネルギー転送量を常時監視すると共に、
適切なゲートパルス指令を前記電力変換装置、第一、及
び第二の自己消弧形素子に与えることで制御する制御装
置とを備えていることを特徴とする太陽光発電装置と超
電導エネルギー貯蔵装置との複合システム。
10. A circuit in which a first self-extinguishing element is connected in series to a superconducting coil in which a free wheeling diode is connected in parallel, a series circuit in which a first opening / closing means and a capacitor which are connected in parallel to a solar cell are connected to a power system. A series circuit of a connected power conversion device and a second opening / closing means for opening and closing the space between the power conversion device and the second self-extinguishing element is connected in parallel to a solar cell, and is configured in parallel. An energy transfer amount detector for detecting an energy transfer amount by detecting a direct current, a direct current voltage of the solar cell and a direct current of the superconducting coil; a power detector for detecting electric power supplied to the power system; While constantly monitoring the power supplied to the power system in the power detector, and the energy transfer amount of the solar cell and the superconducting coil in the energy transfer amount detector,
A solar power generation device and a superconducting energy storage device, comprising: a control device that controls by applying an appropriate gate pulse command to the power conversion device, the first self-extinguishing element, and the second self-extinguishing element. Complex system with.
【請求項11】電力系統に接続された電力変換装置側に
エネルギーが流入しないような手段を施し、次に、太陽
電池と並列に接続されている第一の開閉器をONさせて
太陽電池と直列に接続されている第二の自己消弧形素子
を制御し、前記第一の開閉器とは直列に接続され、且つ
前記太陽電池とは並列に接続されているコンデンサに太
陽電池の発電電力を設定電圧まで充電し、その後、前記
第二の自己消弧形素子をOFFし、更に前記太陽電池に
並列に接続されている超電導コイルと直列に接続されて
いる第一の自己消弧形素子をONさせて前記コンデンサ
の放電により前記超電導コイルを励磁し、前記コンデン
サの放電が終了すると前記超電導コイルと並列に接続さ
れている還流ダイオードが導通して超電導コイルとの閉
ループとなりエネルギーが転送され、前記第一の自己消
弧形素子はOFFし、以後この動作を目標値に達するま
で繰り返して前記超電導コイルに前記太陽電池の発電電
力を貯蔵することを特徴とする太陽光発電装置と超電導
エネルギー貯蔵装置との複合システムの運転方法。
11. A means for preventing energy from flowing into a power conversion device side connected to a power system, and then turning on a first switch connected in parallel with the solar cell to turn on the solar cell. The second self-extinguishing element connected in series is controlled, and the power generated by the solar cell is connected to a capacitor connected in series with the first switch and in parallel with the solar cell. Is charged to a set voltage, then the second self-extinguishing element is turned off, and further the first self-extinguishing element connected in series with the superconducting coil connected in parallel to the solar cell. Is turned on to excite the superconducting coil by discharging the capacitor, and when the discharging of the capacitor is completed, the freewheeling diode connected in parallel with the superconducting coil becomes conductive to form a closed loop with the superconducting coil. Energy is transferred, the first self-extinguishing element is turned off, and thereafter this operation is repeated until the target value is reached, and the power generated by the solar cell is stored in the superconducting coil. A method for operating a combined system of a device and a superconducting energy storage device.
【請求項12】太陽電池と直列に接続されている第二の
自己消弧形素子と太陽電池と並列に接続されている第一
の開閉器とをOFFし、太陽電池に並列に接続されてい
る超電導コイルと直列に接続されている第一の自己消弧
形素子と電力系統に接続された電力変換装置と前記太陽
電池との間に直列に接続された直流遮断器をONさせて
から前記電力変換装置で一旦前記超電導コイルと並列に
接続されている還流ダイオードに逆電圧を与えてOFF
させ、その後前記電力変換装置をインバータ運転させ超
電導コイルの貯蔵エネルギーを前記電力系統に供給する
ことを特徴とする太陽光発電装置と超電導エネルギー貯
蔵装置との複合システムの運転方法。
12. A second self-extinguishing element connected in series with a solar cell and a first switch connected in parallel with the solar cell are turned off and connected in parallel with the solar cell. The first self-extinguishing element connected in series with the superconducting coil, the power converter connected to the power grid, and the DC circuit breaker connected in series between the solar cell and In the power converter, once the reverse voltage is applied to the freewheeling diode connected in parallel with the superconducting coil, it is turned off.
Then, the power converter is operated by an inverter, and the stored energy of the superconducting coil is supplied to the electric power system. A method of operating a combined system of a photovoltaic power generator and a superconducting energy storage device.
【請求項13】太陽電池と直列に接続されている第二の
自己消弧形素子と太陽電池と並列に接続されている第一
の開閉器、及び電力系統に接続された電力変換装置と前
記太陽電池との間に直列に接続された直流遮断器をON
させると共に、太陽電池に並列に接続されている超電導
コイルと直列に接続されている第一の自己消弧形素子を
OFFして前記太陽電池の回路と前記超電導コイルの回
路を切り離し、前記太陽電池の発電電力を前記電力変換
装置を介して前記電力系統に供給することを特徴とする
太陽光発電装置と超電導エネルギー貯蔵装置との複合シ
ステムの運転方法。
13. A second self-extinguishing element connected in series with a solar cell, a first switch connected in parallel with the solar cell, and a power converter connected to a power system, Turn on the DC breaker connected in series with the solar cell
And the first self-arc-extinguishing element connected in series with the superconducting coil connected in parallel to the solar cell is turned off to disconnect the circuit of the solar cell from the circuit of the superconducting coil, Is supplied to the electric power system through the power conversion device, and a method for operating a combined system of a solar power generation device and a superconducting energy storage device.
【請求項14】太陽電池と直列に接続されている第二の
自己消弧形素子と太陽電池と並列に接続されている第一
の開閉器をOFFすると共に、電力系統に接続された電
力変換装置と前記太陽電池との間に直列に接続された直
流遮断器と太陽電池に並列に接続されている超電導コイ
ルと直列に接続されている第一の自己消弧形素子をON
させて前記太陽電池を回路から切り離し、次に前記電力
変換装置をコンバータ運転して前記電力系統の電力を前
記超電導コイルに貯蔵することを特徴とする太陽光発電
装置と超電導エネルギー貯蔵装置との複合システムの運
転方法。
14. A power converter connected to a power system while turning off a second self-extinguishing element connected in series with the solar cell and a first switch connected in parallel with the solar cell. A first self-extinguishing element connected in series with a DC circuit breaker connected in series between the device and the solar cell and a superconducting coil connected in parallel with the solar cell is turned on.
And disconnecting the solar cell from the circuit, and then performing a converter operation of the power conversion device to store the electric power of the power system in the superconducting coil. A composite of a solar power generation device and a superconducting energy storage device. How to operate the system.
【請求項15】請求項11に記載の運転モードを超電導
コイルの貯蔵エネルギーが目標値になるまで繰り返し、
該超電導コイルの貯蔵エネルギーが目標値に達した時点
で請求項12に記載の運転モードに切り換えることによ
って電力系統の特定負荷に前記超電導コイルの貯蔵エネ
ルギーを供給することを特徴とする太陽光発電装置と超
電導エネルギー貯蔵装置との複合システムの運転方法。
15. The operation mode according to claim 11 is repeated until the stored energy of the superconducting coil reaches a target value.
13. A photovoltaic power generation device, characterized in that when the stored energy of the superconducting coil reaches a target value, the stored energy of the superconducting coil is supplied to a specific load of a power system by switching to the operation mode according to claim 12. And method for operating a combined system of a superconducting energy storage device.
【請求項16】請求項11、又は請求項14に記載の運
転モードで予め超電導コイルにエネルギーを貯蔵した状
態で待機し、電力系統の負荷が増加したときには、太陽
電池の発電電力が設定値より大きいならば該太陽電池の
発電電力を電力系統に供給し、逆に、太陽電池の発電電
力が設定値より小さいならば超電導コイルの貯蔵エネル
ギーを電力系統に供給することを特徴とする太陽光発電
装置と超電導エネルギー貯蔵装置との複合システムの運
転方法。
16. When the operation mode according to claim 11 or 14 stands by in a state where energy is stored in the superconducting coil in advance, and when the load of the power system increases, the generated power of the solar cell exceeds the set value. Solar power generation characterized by supplying the generated power of the solar cell to the power system if larger, and conversely supplying the stored energy of the superconducting coil to the power system if the generated power of the solar cell is smaller than a set value. A method for operating a combined system of a device and a superconducting energy storage device.
【請求項17】請求項11、又は請求項14に記載の運
転モードで予め超電導コイルにエネルギーを貯蔵した状
態で待機し、電力系統の負荷が増加したときには、太陽
電池の発電電力が設定値より大きいならば該太陽電池の
発電電力を電力系統に供給し、逆に、太陽電池の発電電
力が設定値より小さいならば超電導コイルの貯蔵エネル
ギーを電力系統に供給し、且つ電力系統の負荷が減少し
たときには、前記超電導コイルにエネルギーを吸収させ
ることを特徴とする太陽光発電装置と超電導エネルギー
貯蔵装置との複合システムの運転方法。
17. When the operation mode according to claim 11 or 14 stands by in a state where energy is stored in the superconducting coil in advance, and the load of the power system increases, the generated power of the solar cell is higher than the set value. If it is larger, the generated power of the solar cell is supplied to the power system. Conversely, if the generated power of the solar cell is smaller than the set value, the stored energy of the superconducting coil is supplied to the power system, and the load on the power system is reduced. In this case, the method for operating a combined system of a photovoltaic power generation device and a superconducting energy storage device, characterized in that the superconducting coil absorbs energy.
【請求項18】電力系統の余剰電力を請求項14に記載
の運転モードで超電導コイルに貯蔵し、昼間のピーク負
荷時に太陽電池の発電電力と設定値を比較して前記太陽
電池の発電電力が大きい時には請求項13に記載の運転
モードで電力系統に太陽電池の発電電力を供給し、前記
太陽電池の発電電力が小さい時には請求項12に記載の
運転モードで電力系統に超電導コイルの貯蔵エネルギー
を供給することを特徴とする太陽光発電装置と超電導エ
ネルギー貯蔵装置との複合システムの運転方法。
18. Surplus power of the electric power system is stored in the superconducting coil in the operation mode according to claim 14, and the generated power of the solar cell is compared with the generated power of the solar cell at the peak load in the daytime. When it is large, the generated power of the solar cell is supplied to the power system in the operation mode according to claim 13, and when the generated power of the solar cell is small, the stored energy of the superconducting coil is supplied to the power system in the operation mode according to claim 12. A method for operating a combined system of a solar power generation device and a superconducting energy storage device, which is characterized by supplying.
【請求項19】電力変換装置を介して電力系統と連結さ
れる太陽電池を備える太陽光発電装置と、該太陽光発電
装置の回路に接続される超電導コイルを備える超電導エ
ネルギー貯蔵装置とが、各々単独運転できるように構成
されていることを特徴とする太陽光発電装置と超電導エ
ネルギー貯蔵装置との複合システム。
19. A solar power generation device including a solar cell connected to a power system via a power conversion device, and a superconducting energy storage device including a superconducting coil connected to a circuit of the solar power generation device. A composite system of a solar power generation device and a superconducting energy storage device, which is configured to be able to operate independently.
【請求項20】太陽電池と、該太陽電池の発電電力の出
力を制御する制御手段と、前記太陽電池と並列に接続さ
れている超電導エネルギー貯蔵装置と、該超電導エネル
ギー貯蔵装置に前記太陽電池の発電エネルギーを転送す
るエネルギー転送装置とを備え、これらが電力変換装置
を介して電力系統と連結されていることを特徴とする太
陽光発電システム。
20. A solar cell, a control means for controlling the output of electric power generated by the solar cell, a superconducting energy storage device connected in parallel with the solar cell, and a superconducting energy storage device for connecting the solar cell to the solar cell. A solar power generation system, comprising: an energy transfer device that transfers generated energy, and these are connected to a power system via a power conversion device.
【請求項21】電力変換装置を介して電力系統と連結さ
れる電池を備える発電装置において、前記電池と前記電
力変換装置を接続する直流母線に超電導エネルギー貯蔵
装置を並列に接続して構成することを特徴とする発電装
置。
21. A power generator including a battery connected to a power system via a power converter, wherein a superconducting energy storage device is connected in parallel to a DC bus connecting the battery and the power converter. Power generation device characterized by.
【請求項22】前記電池は、太陽電池、若しくは燃料電
池であることを特徴とする請求項21記載の発電装置。
22. The power generator according to claim 21, wherein the battery is a solar cell or a fuel cell.
JP4039184A 1992-02-26 1992-02-26 Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof Pending JPH05244725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4039184A JPH05244725A (en) 1992-02-26 1992-02-26 Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4039184A JPH05244725A (en) 1992-02-26 1992-02-26 Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof

Publications (1)

Publication Number Publication Date
JPH05244725A true JPH05244725A (en) 1993-09-21

Family

ID=12546030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4039184A Pending JPH05244725A (en) 1992-02-26 1992-02-26 Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof

Country Status (1)

Country Link
JP (1) JPH05244725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil
JP2011234534A (en) * 2010-04-28 2011-11-17 Japan Superconductor Technology Inc Excitation power supply device for superconducting coil
CN113691023A (en) * 2021-07-30 2021-11-23 华电电力科学研究院有限公司 Photovoltaic direct-current composite energy storage system and method based on temperature field control technology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060833A (en) * 2005-08-25 2007-03-08 Toshiba Mitsubishi-Electric Industrial System Corp Power converter for superconducting coil
JP4721825B2 (en) * 2005-08-25 2011-07-13 東芝三菱電機産業システム株式会社 Power converter for superconducting coils
JP2011234534A (en) * 2010-04-28 2011-11-17 Japan Superconductor Technology Inc Excitation power supply device for superconducting coil
CN113691023A (en) * 2021-07-30 2021-11-23 华电电力科学研究院有限公司 Photovoltaic direct-current composite energy storage system and method based on temperature field control technology
CN113691023B (en) * 2021-07-30 2023-08-29 华电电力科学研究院有限公司 Photovoltaic direct-current composite energy storage system and method based on temperature field control technology

Similar Documents

Publication Publication Date Title
US10857897B2 (en) Energy generation and storage system with electric vehicle charging capability
US6795322B2 (en) Power supply with uninterruptible function
KR101084214B1 (en) Grid-connected energy storage system and method for controlling grid-connected energy storage system
CN102355042B (en) Super-capacitor-based direct current power device of power station and power supply method thereof
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
WO2011065375A1 (en) Power conversion apparatus, power generating system, and charge/discharge control method
US20120113694A1 (en) Step-down converter and inverter circuit
TWI826868B (en) Photovoltaic energy storage system and control method thereof
Bhule et al. Power management control strategy for PV-Battery standalone system
Sekhar et al. A Non-isolated Two Port Converter for Battery charging and Auxilary supply applications
JP2000102196A (en) Uninterruptible power supply
JPH0951638A (en) Distributed power supply
WO2000074200A1 (en) Battery charging and discharging system
JP4405654B2 (en) Power converter and power generator
JPH05244725A (en) Power generating device and operating method thereof, composite system of solar light power generating device and superconductive energy storage device, and operating method thereof
JP3147724B2 (en) Distributed power supply
JPH05168160A (en) Ac/dc converter system
CN113315220A (en) Uninterrupted direct current power supply device and control method
JP2001025169A (en) Power storage method and power storage device
CN105529746B (en) A kind of flexibility distribution system
CN210007623U (en) Power conversion system
JP2000166124A (en) Auxiliary power unit
Abdelmoaty et al. A single-step, single-inductor energy-harvestingbased power supply platform with a regulated battery charger for mobile applications
Narula et al. Dual Port Impedance Converter for PV–Battery fed Remote Telecom Towers
US11489356B2 (en) MVDC link-powered battery chargers and operation thereof