JPH05153782A - Noise preventive device - Google Patents

Noise preventive device

Info

Publication number
JPH05153782A
JPH05153782A JP3309501A JP30950191A JPH05153782A JP H05153782 A JPH05153782 A JP H05153782A JP 3309501 A JP3309501 A JP 3309501A JP 30950191 A JP30950191 A JP 30950191A JP H05153782 A JPH05153782 A JP H05153782A
Authority
JP
Japan
Prior art keywords
noise
current
noise prevention
case
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3309501A
Other languages
Japanese (ja)
Inventor
Toshihiro Nomura
年弘 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3309501A priority Critical patent/JPH05153782A/en
Publication of JPH05153782A publication Critical patent/JPH05153782A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a noise voltage to an allowable value or less even if a small noise filter is used by adding a noise preventive circuit for canceling a noise current flowing to a parasitic capacitance between a power converter circuit and a metal case. CONSTITUTION:In a noise preventive circuit 5, a compensating capacitor CC2 and a primary winding of a current transformer CT1 are connected in series between an output bus O and a power supply bus N, a current iCC2 responsive to a variation in an output voltage flows, and a noise preventing current iCC3 flows to a secondary side of the transformer CT1 through a compensating capacitor CC3 in a direction from a metal case E to the bus N. Here, the capacities of the capacitors CC2, CC3 and a current ratio of the transformer CT1 are suitably selected. A noise current iCS2 and the current iCC3 are substantially equalized to reduce a noise current cf3 flowing to a filter capacitor Cf3, thereby decreasing a noise voltage DELTAV3. A noise filter 2 can be reduced in size by adding the circuit 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はトランジスタのスイッ
チング等を利用した電力変換器、例えばモータ可変速用
トランジスタインバータ,スイッチング電源,高周波誘
導・誘電加熱電源等が自身の内部で発生するノイズを低
減する装置に関する。なお以下各図において同一の符号
は同一もしくは相当部分を示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention reduces noise generated inside a power converter utilizing transistor switching, such as a motor variable speed transistor inverter, a switching power supply, a high frequency induction / dielectric heating power supply, and the like. Regarding the device. In the following figures, the same reference numerals indicate the same or corresponding parts.

【0002】[0002]

【従来の技術】図6は従来の電力変換回路の構成図であ
る。以下この図6と共に、次に述べる図2(a)を用い
て従来の技術を説明する。図6において、1は直流電
源、2はノイズフィルタ、31は電力変換回路3として
の高周波インバータ、41は負荷である。またLf1,
Lf2はノイズフィルタ2を構成するフィルタリアクト
ル、Cf1,Cf2は同じくフィルタコンデンサであ
る。また高周波インバータ31内において、CDは電源
平滑コンデンサ、Q1,Q2はスイッチング素子として
のトランジスタ、Cr1,Cr2は負荷41と共振回路
を構成する共振コンデンサである。
2. Description of the Related Art FIG. 6 is a block diagram of a conventional power conversion circuit. A conventional technique will be described below with reference to FIG. 2 and FIG. In FIG. 6, 1 is a DC power supply, 2 is a noise filter, 31 is a high frequency inverter as the power conversion circuit 3, and 41 is a load. Also, Lf1,
Lf2 is a filter reactor forming the noise filter 2, and Cf1 and Cf2 are also filter capacitors. In the high frequency inverter 31, CD is a power supply smoothing capacitor, Q1 and Q2 are transistors as switching elements, and Cr1 and Cr2 are resonance capacitors that form a resonance circuit with the load 41.

【0003】またEはノイズフィルタ2および電力変換
回路31もしくはその部品を取付け又は収容する金属の
シャーシ又はケースで、このシャーシ,ケースは相互に
電気的にも結合され前記回路2,31に対しグランドを
形成している。Cs1,Cs2は夫々このシャーシ,ケ
ースEと、電力変換回路31内の特にトランジスタQ
1,Q2のコレクタとの間に形成されたストレーキャパ
シタンス(寄生容量)である。またCf3はシャーシ,
ケースEと負極電源母線Nとの間に付設されたフィルタ
コンデンサである。
E is a metal chassis or case for mounting or accommodating the noise filter 2 and the power conversion circuit 31 or parts thereof. The chassis and case are electrically coupled to each other and the circuits 2 and 31 are grounded. Is formed. Cs1 and Cs2 are the chassis, case E, and especially the transistor Q in the power conversion circuit 31.
It is a stray capacitance (parasitic capacitance) formed between the collectors of 1 and Q2. Cf3 is the chassis,
It is a filter capacitor attached between the case E and the negative power source bus N.

【0004】次に図2は図6の要部の動作波形を従来と
本発明の場合とで比較して示すものであり。図2(a)
が従来の動作波形を示す。この図2(a)において、V
Q2はトランジスタQ2の出力電圧、ics2,icf
3は夫々ストレーキャパシタンスCs2,フィルタコン
デンサCf3の電流としてのノイズ電流、ΔV3はフィ
ルタコンデンサCf3の両端電圧としてのノイズ電圧で
ある。
Next, FIG. 2 shows the operation waveforms of the main parts of FIG. 6 in comparison between the conventional case and the case of the present invention. Figure 2 (a)
Shows a conventional operation waveform. In FIG. 2A, V
Q2 is the output voltage of the transistor Q2, ics2, icf
3 is a noise current as a current of the stray capacitance Cs2 and the filter capacitor Cf3, and ΔV3 is a noise voltage as a voltage across the filter capacitor Cf3.

【0005】ところで例えば図6に示すような高周波イ
ンバータでは電源1の数百Vの直流電圧を、図2(a)
で示す出力電圧VQ2のような急峻な電位変化を含む交
流の出力に変換することが行われる。この例ではトラン
ジスタQ1,Q2が交互にオン,オフ、すなわちスイッ
チングすることにより交流出力を得ている。またトラン
ジスタQ1,Q2は放熱のため冷却フィンとかシャー
シ,ケースE等の金属構造部分に広い面積で絶縁して密
に接触され、特にトランジスタQ1,Q2のコレクタ
(C)部とケースEの間には数十〜数百pF(ピコファ
ラッド)のストレーキャパシタンス(寄生容量)Cs
1,Cs2ができてしまう。Q1のコレクタに生ずるス
トレーキャパシタンスCs1は正極電源母線Pとケース
Eとの間に存在してあまり問題とはならない。
By the way, for example, in a high frequency inverter as shown in FIG.
The output voltage VQ2 shown by is converted into an AC output including a sharp potential change. In this example, the transistors Q1 and Q2 are alternately turned on and off, that is, switched to obtain an AC output. The transistors Q1 and Q2 are closely contacted with a cooling fin or a metal structure portion such as a chassis or case E in a large area for heat dissipation so as to be in close contact with each other, and particularly between the collector (C) portion of the transistors Q1 and Q2 and the case E. Is a tens to hundreds of pF (picofarad) stray capacitance (parasitic capacitance) Cs.
1 and Cs2 are created. The stray capacitance Cs1 generated in the collector of Q1 exists between the positive power source bus P and the case E and does not pose a problem.

【0006】それに対しストレーキャパシタンスCs2
は出力母線OとケースE間にあるため、図2(a)に示
すような電圧VQ2の急変により、大きなノイズ電流i
cs2が流れることになる。これを放置するとケースE
と電源母線N間にほぼVQ2の反作用に相当する電圧が
発生するので、フィルタコンデンサCf3を付設して、
この電圧(ノイズ電圧)をΔV3(Vcf3)で示され
るように1桁以上低減しておく。ここでΔV3は次式の
ように表わされる。 ΔV3≒VQ2×Cs2/Cf3 従ってフィルタコンデンサCf3の値を大とすればΔV
3は小さくできるが限界があるので、従来はフィルタコ
ンデンサCf3に加えてノイズフィルタ2で示す大きな
LCフィルタを設けていた。
On the other hand, the stray capacitance Cs2
Between the output bus O and the case E, a large noise current i due to a sudden change in the voltage VQ2 as shown in FIG.
cs2 will flow. If this is left, Case E
Since a voltage substantially equivalent to the reaction of VQ2 is generated between the power supply bus N and the power supply bus N, a filter capacitor Cf3 is attached,
This voltage (noise voltage) is reduced by one digit or more as indicated by ΔV3 (Vcf3). Here, ΔV3 is expressed by the following equation. ΔV3≈VQ2 × Cs2 / Cf3 Therefore, if the value of the filter capacitor Cf3 is large, ΔV3
Since 3 can be made small, but there is a limit, a large LC filter shown by the noise filter 2 is conventionally provided in addition to the filter capacitor Cf3.

【0007】[0007]

【発明が解決しようとする課題】前述のように電力変換
回路とケースE間に生ずるストレーキャパシタンスCs
2によって電源母線とケースE間に生ずるノイズ電圧を
打消すには、従来はフィルタコンデンサCf3とかノイ
ズフィルタ2等を用いる方法しかないので、ノイズ電圧
ΔV3を許容値内(法的規制値又はラジオ等に実害のな
いレベル)に納めるため大きな部品、特にノイズフィル
タ2が必要であった。そこで本発明は小さなノイズフィ
ルタ2を用いてノイズ電圧ΔV3を許容値内に納め得る
ノイズ防止装置を提供することを課題とする。
As described above, the stray capacitance Cs generated between the power conversion circuit and the case E as described above.
In order to cancel the noise voltage generated between the power source bus and the case E by 2, the conventional method is to use the filter capacitor Cf3, the noise filter 2, etc., so that the noise voltage ΔV3 is within the allowable value (legal regulation value or radio etc.). Therefore, a large part, especially the noise filter 2, was required in order to put it in a level where there is no real damage. Therefore, it is an object of the present invention to provide a noise prevention device that can keep the noise voltage ΔV3 within an allowable value by using a small noise filter 2.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1のノイズ防止装置は、電力変換器(3な
ど)を保持または収容する金属ケース(Eなど)と、こ
の電力変換器内の前記ケースに対する電位が急峻に変化
する部分(トランジスタQ2のコレクタなど)との間の
ストレーキャパシタンス(Cs2など)に生ずるノイズ
電流(ics2など)と大きさがほぼ等しく逆位相のノ
イズ防止電流(icc3など)を電力変換回路内に別に
設けたノイズ防止電流発生手段を介して発生し、前記ケ
ースに流すようにするものとし、
In order to solve the above-mentioned problems, a noise prevention device according to claim 1 comprises a metal case (E or the like) for holding or housing a power converter (3 or the like), and this power conversion device. The noise prevention current (ics2, etc.) that is approximately equal in magnitude to the noise current (ics2, etc.) generated in the stray capacitance (Cs2, etc.) between the portion in which the potential with respect to the case sharply changes (the collector of the transistor Q2, etc.) and has the opposite phase. (Icc3 or the like) is generated through a noise prevention current generating means separately provided in the power conversion circuit, and is caused to flow in the case,

【0009】請求項2のノイズ防止装置では、請求項1
に記載のノイズ防止装置において、前記ノイズ防止電流
発生手段は、コンデンサ(Cc2,Cc3など)と、変
流器(CT1など)とを備えた(ノイズ防止回路51,
52など)。
According to the noise prevention device of claim 2,
In the noise prevention device described in (1), the noise prevention current generating means includes a capacitor (Cc2, Cc3, etc.) and a current transformer (CT1, etc.) (noise prevention circuit 51,
52).

【0010】請求項3のノイズ防止装置では、請求項1
に記載のノイズ防止装置において、前記ノイズ防止電流
発生手段は、演算増巾器(OP1,OP2など)等の電
子回路を用いてトランスレスに構成される(ノイズ防止
回路54,55など)。
According to the noise prevention device of claim 3,
In the noise prevention device described in (1), the noise prevention current generating means is configured without an transformer using electronic circuits such as an operational amplifier (OP1, OP2, etc.) (noise prevention circuits 54, 55, etc.).

【0011】請求項4のノイズ防止装置では、請求項1
ないし請求項3に記載のノイズ防止装置において、前記
ノイズ防止電流発生手段は、複数個所の前記ストレーキ
ャパシタンス(Cs2,Cs4,Cs6など)に生ずる
各ノイズ電流と夫々大きさがほぼ等しく逆位相のノイズ
防止電流を一括重畳して前記ケースに流す(ノイズ防止
回路53など)。
According to another aspect of the noise prevention device of the present invention,
4. The noise prevention device according to claim 3, wherein the noise prevention current generating means has noises of substantially the same magnitude as the noise currents generated in the stray capacitances (Cs2, Cs4, Cs6, etc.) at a plurality of locations and having an opposite phase. Preventive currents are collectively superimposed and sent to the case (noise prevention circuit 53, etc.).

【0012】[0012]

【作用】電力変換回路とケース,シャーシEとの間に生
ずる寄生容量Cs2等に流れるノイズ電流はCs2等を
除去しない限り止めようがないが、このノイズ電流がそ
の電力変換回路の或る部分からシャーシ,ケース等の特
定部分に流れ出すとすれば、そのノイズ電流と同じ電流
がその電力変換回路部分にシャーシ,ケース等の前記特
定部分から流れ込むようにすれば、実効的にノイズ電流
を打消すことになる。そこで本発明では上記寄生容量C
s2等に流れるノイズ電流を打消す回路を付加するよう
にする。
The noise current flowing in the parasitic capacitance Cs2 and the like generated between the power conversion circuit and the case and chassis E cannot be stopped unless Cs2 and the like are removed. If it flows into a specific part such as a chassis or a case, the noise current can be effectively canceled if the same current as the noise current flows into the power conversion circuit part from the specific part such as the chassis or the case. become. Therefore, in the present invention, the parasitic capacitance C
A circuit for canceling the noise current flowing through s2 etc. is added.

【0013】[0013]

【実施例】図1は誘導加熱用高周波トランジスタインバ
ータ31に本発明によるノイズ防止回路51を適用した
実施例を示し、図2(b)は図1の本発明実施時(つま
りノイズ防止回路51の付加時)の要部の動作波形を示
す。なお図2(a)は前述したように図1の本発明実施
前の動作波形である。図1においては、直流電源1の正
極母線Pと負極母線Nとの間にリプル電流を吸収する大
きな平滑コンデンサCDが接続され、スイッチングトラ
ンジスタQ1とQ2が母線PからNに直列に接続されて
いる。トランジスタQ1,Q2の中間点が出力母線Oと
なっていて、Q1とQ2を交互にオン,オフすること
で、図2(a)の上段に示すVQ2のような交流出力電
圧を得るようになっている。出力部Oは負荷41を通し
て共振コンデンサCr1,Cr2の中点に接続されてい
る。このコンデンサCr1,Cr2はPからNに直列に
接続されている。
1 shows an embodiment in which a noise prevention circuit 51 according to the present invention is applied to a high frequency transistor inverter 31 for induction heating, and FIG. 2 (b) shows a case where the present invention in FIG. The operation waveforms of the main parts (when added) are shown. As described above, FIG. 2 (a) is an operation waveform before implementing the present invention in FIG. In FIG. 1, a large smoothing capacitor CD that absorbs a ripple current is connected between a positive electrode bus P and a negative electrode bus N of a DC power supply 1, and switching transistors Q1 and Q2 are connected in series from the bus P to N. . The output bus O is located at the midpoint between the transistors Q1 and Q2. By alternately turning on and off Q1 and Q2, an AC output voltage such as VQ2 shown in the upper part of FIG. 2A can be obtained. ing. The output section O is connected to the middle point of the resonance capacitors Cr1 and Cr2 through the load 41. The capacitors Cr1 and Cr2 are connected in series from P to N.

【0014】このように接続されて作動する高周波イン
バータのスイッチングトランジスタQ2のコレクタ
(c)とシャーシ,ケースEとの間に寄生コンデンサC
s2が有ると、図6に示した従来の場合、前述したよう
に図2(a)の中段のようなノイズ電流ics2が↓印
の方向に流れ、ケースEと母線Nの間に図2(a)下段
に示すノイズ電圧ΔV3が(↑)印で示すノイズ電流i
cf3とフィルタコンデンサCf3の関係で発生する。
このノイズ電圧ΔV3を所定の許容値以下に抑えるた
め、ノイズフィルタ2等が必要である。
A parasitic capacitor C is provided between the collector (c) of the switching transistor Q2 of the high-frequency inverter which is connected and operates as described above, and the chassis and case E.
If there is s2, in the case of the conventional case shown in FIG. 6, as described above, the noise current ics2 as in the middle stage of FIG. a) The noise voltage ΔV3 shown in the lower stage is the noise current i indicated by the mark (↑)
It occurs due to the relationship between cf3 and the filter capacitor Cf3.
The noise filter 2 and the like are necessary in order to suppress the noise voltage ΔV3 to a predetermined allowable value or less.

【0015】ところで本発明に基づくノイズ防止回路5
(51)は変流器CT1と、この変流器の1次巻線,2
次巻線に夫々直列に接続さた補償コンデンサCc2,C
c3とからなり、変流器CT1の1次側のこの直列回路
はトランジスタQ2のコレクタと電源母線Nとの間に接
続され、同じく変流器CT1の2次側の直列回路は電源
母線NとケースEとの間に接続されている。このような
ノイズ防止回路51を付加すると母線OとNの間に補償
コンデンサCc2と変流器CT1の1次巻線とが直列に
接続されるため、出力電圧VQ2の変化に応じた、→印
で示す電流icc2が流れ、変流器CT1の2次側から
補償コンデンサCc3を通してケースEから母線Nの方
向に↑矢印で示すノイズ電流を打消す電流(ノイズ防止
電流という)icc3が図2(b)の上段のように流れ
る。
By the way, the noise prevention circuit 5 according to the present invention
(51) is the current transformer CT1 and the primary winding of this current transformer, 2
Compensation capacitors Cc2, C connected in series to the next winding
This series circuit on the primary side of the current transformer CT1 is connected between the collector of the transistor Q2 and the power supply bus N, and the series circuit on the secondary side of the current transformer CT1 is also connected to the power supply bus N. It is connected to the case E. When such a noise prevention circuit 51 is added, the compensating capacitor Cc2 and the primary winding of the current transformer CT1 are connected in series between the bus lines O and N, so that the → mark corresponding to the change of the output voltage VQ2 is shown. The current icc2 flows from the secondary side of the current transformer CT1 through the compensation capacitor Cc3 in the direction from the case E to the bus line N to cancel the noise current indicated by the arrow (i.e., noise prevention current) icc3 shown in FIG. ) Flows like the upper row.

【0016】補償コンデンサCc2,Cc3の容量と変
流器CT1の変流比Kを適正に選ぶと、↓印のノイズ電
流ics2と↑印のノイズ防止電流icc3がほぼ等し
くなり、図2(b)の中段に示すようにフィルタコンデ
ンサCf3に流れる電流icf3は相殺されて1桁以上
小さい値とすることができ、図2(b)の下段に示すよ
うにノイズ電圧ΔV3を著しく低下させることができ
る。
When the capacitances of the compensation capacitors Cc2 and Cc3 and the current transformer ratio K of the current transformer CT1 are properly selected, the noise current ics2 indicated by ↓ and the noise prevention current icc3 indicated by ↑ become substantially equal, and FIG. The current icf3 flowing through the filter capacitor Cf3 can be canceled out to a value smaller by one digit or more as shown in the middle part of FIG. 2, and the noise voltage ΔV3 can be significantly reduced as shown in the lower part of FIG. 2B.

【0017】なおコンデンサCc2,Cc3の値は実用
的にはおよそ下記のように決められる。即ち、 Cc2×K≒Cs2≪Cc3≒Cf3≦0.1μF 例えば変流比K=2,Cs2=200pFとすると、 Cc2=Cs2/K=200pF/2=100pF Cc3はCs2=200pFより十分大として2000
〜10000pFとなる。そしてこのCc3の値はフィ
ルタコンデンサCf3の値と略等しいものとなる。数十
KHz,数百V,数KWで動作する高周波インバータでは
このノイズ防止回路51で扱う電力はノイズ成分のみの
数VAを処理できる小さなものでよく、極く小形軽量の
部品で構成できる。
The values of the capacitors Cc2 and Cc3 are practically determined as follows. That is, Cc2 × K≈Cs2 << Cc3≈Cf3 ≦ 0.1 μF For example, if the current change ratio K = 2 and Cs2 = 200 pF, Cc2 = Cs2 / K = 200 pF / 2 = 100 pF Cc3 is sufficiently larger than Cs2 = 200 pF and 2000
It becomes 10000 pF. The value of this Cc3 becomes substantially equal to the value of the filter capacitor Cf3. In a high-frequency inverter operating at several tens of KHz, several hundreds of volts, and several KW, the electric power handled by the noise prevention circuit 51 may be a small power capable of processing only a few VA of only the noise component, and can be composed of extremely small and lightweight parts.

【0018】またノイズフィルタ2についてもノイズ防
止回路51を付設しない場合、Lf1,Lf2のフィル
タリアクトルに数十Aの通電容量を有する数KVA相当
の大きな部品が必要で、数mHのインダクタンスといえ
ども数百グラムの重量を有する大きなものとなるが、ノ
イズ防止回路51の付設によってこのノイズフィルタ2
を著しく小形化することができる。
If the noise prevention circuit 51 is not attached to the noise filter 2 as well, a large component equivalent to several KVA having an energizing capacity of several tens of amperes is required in the filter reactor of Lf1 and Lf2, and even an inductance of several mH is required. Although it is a large one having a weight of several hundred grams, the noise filter 2 is attached by the addition of the noise prevention circuit 51.
Can be significantly miniaturized.

【0019】図3は本発明の第2の実施例としての電力
変換回路の構成を示し、同図は電力変換回路3としての
1石式のDC・DC変換器32のスイッチングトランジ
スタQ2のコレクタ(C)部のストレーキャパシタンス
Cs2の影響をノイズ防止回路5(52)を用いて除去
する場合を示したものである。これによりノイズフィル
タ2を小さくすることができる。この様に全く別の動作
をする電力変換器にも本発明を同様に適用することがで
きる。
FIG. 3 shows the configuration of a power conversion circuit according to a second embodiment of the present invention. In the figure, the collector of the switching transistor Q2 of the DC / DC converter 32 of the one-stone type as the power conversion circuit 3 ( It shows a case where the influence of the stray capacitance Cs2 in the section C) is removed by using the noise prevention circuit 5 (52). Thereby, the noise filter 2 can be downsized. The present invention can be similarly applied to a power converter that operates in a completely different manner as described above.

【0020】図4は本発明の第3の実施例としてのノイ
ズ防止回路の構成を示す。即ち図1,図3ではノイズ防
止回路5をコンデンサと変流器の受動部品で構成したも
のを、図4では演算増幅器等の能動部品を使用してトラ
ンスレスに構成したものである。ここで図4(a)のノ
イズ防止回路5(54)では、演算増巾器OP1は入力
電流icc2(→印)に比例した出力電流icc3(↑
印)を発生する。また図4(b)のノイズ防止回路5
(55)では、演算増幅器OP2は3つのコンデンサC
と1つの抵抗Rを用いて簡易的な電流反転回路を構成し
ている。図4(a),(b)共ほぼ同様の動作が得ら
れ、他にも種々の回路は考えられる。
FIG. 4 shows the configuration of a noise prevention circuit as a third embodiment of the present invention. That is, in FIGS. 1 and 3, the noise prevention circuit 5 is composed of a capacitor and a passive component of a current transformer, and in FIG. 4, an active component such as an operational amplifier is used without a transformer. Here, in the noise prevention circuit 5 (54) in FIG. 4A, the operational amplifier OP1 outputs the output current icc3 (↑) proportional to the input current icc2 (→ mark).
Mark) is generated. In addition, the noise prevention circuit 5 of FIG.
In (55), the operational amplifier OP2 has three capacitors C
And a single resistor R are used to form a simple current inverting circuit. 4 (a) and 4 (b) provide substantially the same operation, and various other circuits are conceivable.

【0021】図5は本発明の第4の実施例としての電力
変換回路の構成を示し、同図は電力変換回路としての三
相出力のインバータ3(33)にノイズ防止回路5(5
3)を適用したものである。この場合、負極電源母線N
に接続されるスイッチングトランジスタはQ2,Q4,
Q6の3個となるため、問題の電位が急変してしかもス
トレーキャパシタンスが有る部分、つまり上記のトラン
ジスタQ2,Q4,Q6のコレクタは計3個所、換言す
れば問題のストレーキャパシタンスはCs2,Cs4,
Cs6と3つ存在する。
FIG. 5 shows the configuration of a power conversion circuit according to a fourth embodiment of the present invention. In the figure, a noise prevention circuit 5 (5
3) is applied. In this case, the negative power source bus N
The switching transistors connected to are Q2, Q4
Since there are three Q6s, there are a total of three collectors of the transistors Q2, Q4, and Q6 where the potential in question changes suddenly and there is stray capacitance, in other words, the stray capacitance in question is Cs2, Cs4.
There are three, Cs6.

【0022】この場合のノイズ防止回路としては図1の
ようなノイズ防止回路51をストレーキャパシタンスC
s2,Cs4,Cs6それぞれに計3個設けてもよい
が、ここではノイズ防止回路53を用いて3個所のスト
レーキャパシタンスの影響を括めて処理した例を示して
いる。即ち図5では変流器CT1の1次巻線の上側の端
子とトランジスタQ2,Q4,Q6の夫々のコレクタと
の間に補償コンデンサCc2,Cc4,Cc6を接続し
て、変流器CT1の1次巻線に、この3つの補償コンデ
ンサの電流を重畳して流し、変流器CT1の2次巻線か
らこの重畳電流の位相を反転したノイズ防止電流icc
3(↑↑↑印)をケースEに流すようにしている。これ
によりノイズフィルタ2を小さく、又は、無くすことが
できる。この様に別な動作をするスイッチングトランジ
スタの別々な多点のノイズ電流を括めて打消すことがで
きる。
As a noise prevention circuit in this case, a noise prevention circuit 51 as shown in FIG.
A total of three pieces may be provided in each of s2, Cs4, and Cs6, but here, an example is shown in which the noise prevention circuit 53 is used to collectively process the effects of stray capacitances at three locations. That is, in FIG. 5, compensating capacitors Cc2, Cc4, Cc6 are connected between the upper terminal of the primary winding of the current transformer CT1 and the collectors of the transistors Q2, Q4, Q6, respectively. The noise prevention current icc in which the currents of these three compensation capacitors are superposed on the secondary winding and the phase of the superposed current is inverted from the secondary winding of the current transformer CT1.
3 (↑↑↑ mark) is made to flow into the case E. As a result, the noise filter 2 can be made small or eliminated. In this way, it is possible to collectively cancel the noise currents at different points of the switching transistors which perform different operations.

【0023】[0023]

【発明の効果】半導体スイッチと金属冷却体(従ってこ
の冷却体を取付けたケース)との間のストレーキャパシ
タンスは無くすことができないが、本発明によればこの
ストレーキャパシタンスに流れるノイズ電流にねらいを
定めて、これを打消すノイズ防止電流を流すノイズ防止
回路を付加するようにしたので、小さなコンデンサとC
Tの組合せからなるノイズ防止回路によってストレーキ
ャパシタンスの影響を打消すことができる。さらにノイ
ズ防止回路を演算増幅器等の電子回路でトランスレスに
構成することにより、さらに小形のic(半導体集積回
路)とすることができる。またノイズ防止回路としては
図5で述べたように複数の別な動作をするトランジスタ
のストレーキャパシタンスの影響を括めて処理するよう
に構成することも可能である。これらの効果により、大
きなノイズフィルタ2を省略又は能力の小さなものに置
き換えることができる。
Although the stray capacitance between the semiconductor switch and the metal cooling body (and hence the case in which this cooling body is mounted) cannot be eliminated, the present invention aims at the noise current flowing through this stray capacitance. I added a noise prevention circuit to pass a noise prevention current to cancel this.
The noise prevention circuit composed of the combination of T can cancel the influence of the stray capacitance. Further, by configuring the noise prevention circuit with an electronic circuit such as an operational amplifier without a transformer, it is possible to make a smaller ic (semiconductor integrated circuit). The noise prevention circuit may be configured to collectively process the effects of the stray capacitances of a plurality of transistors that perform different operations as described in FIG. Due to these effects, the large noise filter 2 can be omitted or replaced with a small one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例としての電力変換回路の
構成図
FIG. 1 is a configuration diagram of a power conversion circuit as a first embodiment of the present invention.

【図2】図1の本発明の適用前,後の要部動作波形を比
較して示す図
FIG. 2 is a diagram showing a comparison of operation waveforms of main parts before and after application of the present invention in FIG.

【図3】本発明の第2の実施例としての電力変換回路の
構成図
FIG. 3 is a configuration diagram of a power conversion circuit as a second embodiment of the present invention.

【図4】本発明の第3の実施例としてのノイズ防止回路
の構成図
FIG. 4 is a configuration diagram of a noise prevention circuit according to a third embodiment of the present invention.

【図5】本発明の第4の実施例としての電力変換回路の
構成図
FIG. 5 is a configuration diagram of a power conversion circuit according to a fourth embodiment of the present invention.

【図6】従来の電力変換器の構成図FIG. 6 is a configuration diagram of a conventional power converter.

【符号の説明】[Explanation of symbols]

1 電源 P 正極電源母線 N 負極電源母線 E シャーシ,ケース 2 ノイズフィルタ Cf3 フィルタコンデンサ 3(31,32,33) 電力変換回路 31 高周波インバータ 32 DC・DC変換器 33 3相インバータ Q1 スイッチングトランジスタ Q2 スイッチングトランジスタ Q3 スイッチングトランジスタ Q4 スイッチングトランジスタ Q5 スイッチングトランジスタ Q6 スイッチングトランジスタ Cs2 ストレーキャパシタンス Cs4 ストレーキャパシタンス Cs6 ストレーキャパシタンス 41 負荷 42 負荷 43 負荷 5(51〜55) ノイズ防止回路 Cc2 補償コンデンサ Cc3 補償コンデンサ Cc4 補償コンデンサ Cc6 補償コンデンサ OP1 演算増巾器 OP2 演算増巾器 1 power supply P positive power supply bus bar N negative power supply bus bar E chassis, case 2 noise filter Cf3 filter capacitor 3 (31, 32, 33) power conversion circuit 31 high frequency inverter 32 DC / DC converter 33 three-phase inverter Q1 switching transistor Q2 switching transistor Q3 switching transistor Q4 switching transistor Q5 switching transistor Q6 switching transistor Cs2 stray capacitance Cs4 stray capacitance Cs6 stray capacitance 41 load 42 load 43 load 5 (51-55) noise prevention circuit Cc2 compensation capacitor Cc3 compensation capacitor Cc4 compensation capacitor Cc6 compensation capacitor OP1 operation Magnifier OP2 Computational amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電力変換器を保持または収容する金属ケー
スと、この電力変換器内の前記ケースに対する電位が急
峻に変化する部分との間のストレーキャパシタンスに生
ずるノイズ電流と大きさがほぼ等しく逆位相のノイズ防
止電流を電力変換回路内に別に設けたノイズ防止電流発
生手段を介して発生し、前記ケースに流すようにしたこ
とを特徴とするノイズ防止装置。
1. A noise current generated in a stray capacitance between a metal case for holding or housing a power converter and a portion in the power converter where the potential with respect to the case changes abruptly and substantially the same. A noise prevention device characterized in that a noise prevention current of a phase is generated through a noise prevention current generating means separately provided in a power conversion circuit and is made to flow to the case.
【請求項2】請求項1に記載のノイズ防止装置におい
て、前記ノイズ防止電流発生手段は、コンデンサと、変
流器とを備えたものであることを特徴とするノイズ防止
装置。
2. The noise prevention device according to claim 1, wherein the noise prevention current generating means includes a capacitor and a current transformer.
【請求項3】請求項1に記載のノイズ防止装置におい
て、前記ノイズ防止電流発生手段は、演算増巾器等の電
子回路を用いてトランスレスに構成されたものであるこ
とを特徴とするノイズ防止装置。
3. The noise prevention device according to claim 1, wherein the noise prevention current generating means is configured without a transformer by using an electronic circuit such as an operational amplifier. Prevention device.
【請求項4】請求項1ないし請求項3に記載のノイズ防
止装置において、前記ノイズ防止電流発生手段は、複数
個所の前記ストレーキャパシタンスに生ずる各ノイズ電
流と夫々大きさがほぼ等しく逆位相のノイズ防止電流を
一括重畳して前記ケースに流すものであることを特徴と
するノイズ防止装置。
4. The noise prevention device according to claim 1, wherein the noise prevention current generating means has a noise phase which is substantially equal in magnitude to each noise current generated in the stray capacitances at a plurality of locations and has a phase opposite thereto. A noise prevention device, characterized in that a prevention current is collectively superposed and supplied to the case.
JP3309501A 1991-11-26 1991-11-26 Noise preventive device Pending JPH05153782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3309501A JPH05153782A (en) 1991-11-26 1991-11-26 Noise preventive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3309501A JPH05153782A (en) 1991-11-26 1991-11-26 Noise preventive device

Publications (1)

Publication Number Publication Date
JPH05153782A true JPH05153782A (en) 1993-06-18

Family

ID=17993756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3309501A Pending JPH05153782A (en) 1991-11-26 1991-11-26 Noise preventive device

Country Status (1)

Country Link
JP (1) JPH05153782A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710825A3 (en) * 1994-11-04 1996-06-12 Nippon Denso Co
EP0901212A2 (en) * 1997-09-05 1999-03-10 Siemens Aktiengesellschaft Noise currents compensator in devices with switching power output stages
FR2786337A1 (en) * 1998-11-19 2000-05-26 Cit Alcatel Device and method for reducing electro-magnetic interference emitted by electronic power equipment, such as current converters
US6667685B2 (en) 2000-10-31 2003-12-23 Tdk Corporation Power line noise filter
JP2006311697A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Brushless motor system
JP2007104818A (en) * 2005-10-05 2007-04-19 Canon Inc Drive circuit and fixing device
US7256662B2 (en) 2002-08-19 2007-08-14 Tdk Corporation Common mode signal suppressing circuit and normal mode signal suppressing circuit
US7378943B2 (en) 2002-05-20 2008-05-27 Tdk Corporation Noise suppressing circuit
US7423520B2 (en) 2003-03-05 2008-09-09 Tdk Corporation Noise suppressing circuit
WO2013087823A1 (en) * 2011-12-14 2013-06-20 Renault S.A.S. System and method for compensating for high-frequency leakage currents in a motor vehicle
JP2020096504A (en) * 2018-12-10 2020-06-18 富士電機株式会社 Integrated circuit and switching circuit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710825A3 (en) * 1994-11-04 1996-06-12 Nippon Denso Co
EP0901212A2 (en) * 1997-09-05 1999-03-10 Siemens Aktiengesellschaft Noise currents compensator in devices with switching power output stages
EP0901212A3 (en) * 1997-09-05 2000-06-14 Siemens Aktiengesellschaft Noise currents compensator in devices with switching power output stages
FR2786337A1 (en) * 1998-11-19 2000-05-26 Cit Alcatel Device and method for reducing electro-magnetic interference emitted by electronic power equipment, such as current converters
US6667685B2 (en) 2000-10-31 2003-12-23 Tdk Corporation Power line noise filter
US7378943B2 (en) 2002-05-20 2008-05-27 Tdk Corporation Noise suppressing circuit
US7256662B2 (en) 2002-08-19 2007-08-14 Tdk Corporation Common mode signal suppressing circuit and normal mode signal suppressing circuit
US7423520B2 (en) 2003-03-05 2008-09-09 Tdk Corporation Noise suppressing circuit
JP2006311697A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Brushless motor system
US8198847B2 (en) 2005-04-28 2012-06-12 Hitachi, Ltd. Brushless motor system
JP2007104818A (en) * 2005-10-05 2007-04-19 Canon Inc Drive circuit and fixing device
JP4652943B2 (en) * 2005-10-05 2011-03-16 キヤノン株式会社 Driving circuit and fixing device
WO2013087823A1 (en) * 2011-12-14 2013-06-20 Renault S.A.S. System and method for compensating for high-frequency leakage currents in a motor vehicle
FR2984621A1 (en) * 2011-12-14 2013-06-21 Renault Sa SYSTEM AND METHOD FOR HIGH FREQUENCY LEAKAGE CURRENT COMPENSATION FOR MOTOR VEHICLE.
JP2015511476A (en) * 2011-12-14 2015-04-16 ルノー エス.ア.エス. System and method for compensating high frequency leakage currents in automobiles
JP2020096504A (en) * 2018-12-10 2020-06-18 富士電機株式会社 Integrated circuit and switching circuit

Similar Documents

Publication Publication Date Title
US5831842A (en) Active common mode canceler
JP4162297B2 (en) Voltage converter
US4835411A (en) Active filter unit
JPH05153782A (en) Noise preventive device
US5910889A (en) Hybrid active power filter with programmed impedance characteristics
JPS63240327A (en) Harmonic suppressor
GB1262184A (en) Improvements in power system filter
JP5093452B2 (en) Common mode leakage current suppression circuit applied to power conversion equipment
WO2019188029A1 (en) Voltage converter
Vidal et al. Describing functions and oscillators
JP3427885B2 (en) Switching power supply
US5652480A (en) Electronic ballast incorporating a clocked switching controller
JP3404538B2 (en) Filter circuit for phase detection
JPS62131757A (en) Filter circuit
JP7413301B2 (en) switching power supply
JPH0433361A (en) Hybrid integrated circuit device
JPH0775329A (en) Active filter
JPH0759360A (en) Uninterruptive power unit
JPH0265666A (en) Switching power supply
JPH04178177A (en) Electric power converter
JP2513484Y2 (en) Switching power supply
JPH06292368A (en) Uninterruptible power supply device
JPH0568110U (en) Variable frequency oscillator
JPH06292364A (en) Power supply device
JPS62244228A (en) Circuit arrangement which reduces interference current induced in load